Elaboración y caracterización de membranas de nanotubos de dióxido de titanio para ultrafiltración

dc.contributor.advisorZea Ramírez, Hugo Ricardo
dc.contributor.advisorArias Monje, Pedro José
dc.contributor.authorGarcía Vargas, Andrés Leonardo
dc.contributor.researchgroupGrupo de Investigación en Materiales, Catálisis y Medio Ambientespa
dc.date.accessioned2021-10-19T17:47:59Z
dc.date.available2021-10-19T17:47:59Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractSistemas de ultrafiltración emplean membranas con poros de 20 – 200 nm. En este trabajo se estudia la producción de membranas de nanotubos de dióxido de titanio y su uso en ultrafiltración. Nanotubos de dióxido de titanio fueron obtenidos por anodización potenciostática de láminas de titanio en etilenglicol con fluoruro de amonio y agua. Se analizaron los efectos del contenido de fluoruro de amonio, voltaje y separación de los electrodos sobre las dimensiones de los nanotubos. Se evidenció que una preanodización mejora el grado de ordenamiento de los nanotubos. Adicionalmente, se encontró correlación entre la presencia de defectos en el arreglo de nanotubos y la relación fluoruro de amonio / agua. Para separar la capa de nanotubos del soporte metálico y así obtener una membrana se evaluaron tres métodos: separación mecánica, disolución con peróxido de hidrógeno y paso de alto voltaje. Empleando el método de paso de alto voltaje, pasando de 60 V a 150 V al final de la anodización, se obtiene una membrana de nanotubos de dióxido de titanio con 68% de poros abiertos, diámetro promedio de poro de 121 nm, 25 µm de espesor, tortuosidad de 1 y superficie hidrofílica; características adecuadas para una membrana de ultrafiltración. Sin embargo, esta membrana se quiebra a presiones superiores a 2448 Pa, indicando que se requiere evaluar un refuerzo mecánico. Se diseñó un soporte para realizar ensayos de difusión a través de la membrana, y se comprobó que esta permite el paso de partículas acorde a su tamaño de poro. (Texto tomado de la fuente).spa
dc.description.abstractUltrafiltration systems use membranes with pores of 20-200 nm. In this work, the production of titanium dioxide nanotube membranes and their use in ultrafiltration are studied. Titanium dioxide nanotubes were obtained by potentiostatic anodization of titanium foil in ethylene glycol, ammonium fluoride and water mixtures. The effects of ammonium fluoride content, voltage and electrode spacing on the dimensions of the nanotubes were analyzed. It was evidenced that a pre-anodization improves the degree of ordering of the nanotubes. Additionally, a correlation between the presence of defects in the nanotube array and the ammonium fluoride / water ratio was found. To obtain a membrane by separating the nanotube layer from the metallic substrate, three methodologies were evaluated: mechanical separation, dissolution with hydrogen peroxide and high-voltage step. Using the high-voltage step method, going from 60 V to 150 V at the end of the anodization, a titanium dioxide nanotube membrane is obtained with 68% open pores, average pore diameter of 121 nm, 25 µm thick, tortuosity of 1 and hydrophilic surface; suitable characteristics for an ultrafiltration membrane. However, this membrane breaks at pressures higher than 2448 Pa, indicating that it is necessary to evaluate a mechanical reinforcement. A support was designed to carry out diffusion tests through the membrane, and it was found that the membrane let the particles permeate according to its pore size.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaNanomateriales de óxido de titaniospa
dc.format.extentxv, 87 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80577
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Química y Ambientalspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesDuPontTM, “Titanium Dioxide for Coatings”, pp. 1–28, 2007.spa
dc.relation.referencesM. Janus, Application of Titanium Dioxide. IntechOpen, 2017.spa
dc.relation.referencesP. J. Arias Monje, “Photoelectrocatalytic hydrogen production with TiO2 nanostructures formed by alternating voltage anodization”, Universidad Nacional de Colombia - Sede Bogotá, 2016, Recuperado a partir de http://www.bdigital.unal.edu.co/52732/.spa
dc.relation.referencesJ. Choi, G. Kang, y T. Park, “A Competitive electron transport mechanism in hierarchical homogeneous hybrid structures composed of TiO2 nanoparticles and nanotubes”, Chem. Mater., vol. 27, núm. 4, pp. 1359–1366, 2015, https://doi.org/10.1021/cm504516n.spa
dc.relation.referencesD. H. Yu, X. Yu, C. Wang, X. C. Liu, y Y. Xing, “Synthesis of natural cellulose-templated TiO 2/Ag nanosponge composites and photocatalytic properties”, ACS Appl. Mater. Interfaces, vol. 4, núm. 5, pp. 2781–2787, 2012, https://doi.org/10.1021/am3004363.spa
dc.relation.referencesR. S. C. Nanoscience, Nanotubes and Nanowires. 2007.spa
dc.relation.referencesP. J. Arias, “Degradación de Naranja Ácido 7 con una Capa Fina de TiO2 Formada por Anodización con Voltaje Alternante”, Universidad Nacional de Colombia - Sede Bogotá, 2013.spa
dc.relation.referencesY. Zhao et al., “Efficient photocatalytic degradation of gaseous N,N-dimethylformamide in tannery waste gas using doubly open-ended Ag/TiO 2 nanotube array membranes”, Appl. Surf. Sci., vol. 444, pp. 610–620, 2018, https://doi.org/10.1016/j.apsusc.2018.03.038.spa
dc.relation.referencesL.-L. Li, Y.-J. Chen, H.-P. Wu, N. S. Wang, y E. W.-G. Diau, “Detachment and transfer of ordered TiO2 nanotube arrays for front-illuminated dye-sensitized solar cells”, Energy Environ. Sci., vol. 4, núm. 9, p. 3420, 2011, https://doi.org/10.1039/c0ee00474j.spa
dc.relation.referencesY. Ji et al., “Highly-ordered TiO 2 nanotube arrays with double-walled and bamboo-type structures in dye-sensitized solar cells”, Nano Energy, vol. 1, núm. 6, pp. 796–804, 2012, https://doi.org/10.1016/j.nanoen.2012.08.006.spa
dc.relation.referencesC. A. Grimes y G. K. Mor, TiO2 nanotube arrays: Synthesis, properties, and applications. Boston, MA: Springer US, 2009.spa
dc.relation.referencesM. Assefpour-Dezfuly, C. Vlachos, y E. H. Andrews, “Oxide morphology and adhesive bonding on titanium surfaces”, J. Mater. Sci., vol. 19, núm. 11, pp. 3626–3639, 1984, https://doi.org/10.1007/BF02396935.spa
dc.relation.referencesV. Zwilling, M. Aucouturier, y E. Darque-Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach”, Electrochim. Acta, vol. 45, núm. 6, pp. 921–929, 1999, https://doi.org/10.1016/S0013-4686(99)00283-2.spa
dc.relation.referencesO. Iglesias, M. J. Rivero, A. M. Urtiaga, y I. Ortiz, “Membrane-based photocatalytic systems for process intensification”, Chem. Eng. J., vol. 305, pp. 136–148, 2016, https://doi.org/10.1016/j.cej.2016.01.047.spa
dc.relation.referencesS. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, y H. Wang, “TiO2 based photocatalytic membranes: A review”, J. Memb. Sci., vol. 472, pp. 167–184, 2014, https://doi.org/10.1016/j.memsci.2014.08.016.spa
dc.relation.referencesP. Inc., “Guía de aplicaciones de ultrafiltración”, 2014, Recuperado a partir de www.pentairaqua.com.spa
dc.relation.referencesS. S. Biotech, “Conceptos Básicos de Filtración”, Conceptos Básicos Filtr., p. 92, 2016, Recuperado a partir de http://www.bdcint.com.do/wp-content/uploads/2017/06/Conceptos-basicos-de-filtracion_Pharm_vDS_Junio-2016.pdf.spa
dc.relation.referencesF. Keller, M. S. Hunter, y D. L. Robinson, “Structural Features of Oxide Coatings on Aluminum”, J. Electrochem. Soc., vol. 100, núm. 9, p. 411, 1953, https://doi.org/10.1149/1.2781142.spa
dc.relation.referencesZ. Su y W. Zhou, “Porous Anodic Metal Oxides”, Sci. Found. China, vol. 16, núm. 1, pp. 36–53, 2009, https://doi.org/10.1088/1005-0841/16/1/004.spa
dc.relation.referencesD. Regonini, C. R. Bowen, A. Jaroenworaluck, y R. Stevens, “A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes”, Mater. Sci. Eng. R Reports, vol. 74, núm. 12, pp. 377–406, 2013, https://doi.org/10.1016/j.mser.2013.10.001.spa
dc.relation.referencesI. De Graeve, H. Terryn, y G. E. Thompson, “AC-anodising of aluminium: Contribution to electrical and efficiency study”, Electrochim. Acta, vol. 52, núm. 3, pp. 1127–1134, 2006, https://doi.org/10.1016/j.electacta.2006.07.010.spa
dc.relation.referencesN. K. Allam y C. A. Grimes, “Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO 2 nanotube arrays”, Sol. Energy Mater. Sol. Cells, vol. 92, pp. 1468–1475, 2008, https://doi.org/10.1016/j.solmat.2008.06.007.spa
dc.relation.referencesJ. W. Diggle, T. C. Downie, y C. W. Goulding, “Anodic oxide films on aluminum”, Chem. Rev., vol. 69, núm. 3, pp. 365–405, 1969, https://doi.org/10.1021/cr60259a005.spa
dc.relation.referencesP. Schmuki, H. Tsuchiya, L. Taveira, K. Sirotna, y J. M. Macak, “Anodization of Ti: Formation of Self-Organized Titanium Oxide Nanotube-Layers”, Passiv. Met. Semicond. Prop. Thin Oxide Layers, pp. 179–186, 2006, https://doi.org/10.1016/B978-044452224-5/50030-5.spa
dc.relation.referencesS. D. Kahar, A. Macwan, R. Oza, V. Oza, y S. Shah, “Characterization and Corrosion Study of Titanium Anodized Film Developed in KOH Bath”, J. Eng. Res. Appl. www.ijera.com, vol. 3, núm. 5, pp. 441–445, 2013, Recuperado a partir de www.ijera.com.spa
dc.relation.referencesA. K. Sharma, “Anodizing titanium for space applications”, Thin Solid Films, vol. 208, núm. 1, pp. 48–54, 1992, https://doi.org/10.1016/0040-6090(92)90946-9.spa
dc.relation.referencesD. Gong et al., “Titanium oxide nanotube arrays prepared by anodic oxidation”, J. Mater. Res., vol. 16, núm. 12, pp. 3331–3334, 2001, https://doi.org/10.1557/JMR.2001.0457.spa
dc.relation.referencesH. P. Quiroz, F. Quintero, P. J. Arias, A. Dussan, y H. R. Zea, “Effect of fluoride and water content on the growth of TiO2 nanotubes synthesized via ethylene glycol with voltage changes during anodizing process”, J. Phys. Conf. Ser., vol. 614, núm. 1, p. 012001, 2015, https://doi.org/10.1088/1742-6596/614/1/012001.spa
dc.relation.referencesF. J. Q. Cortes, P. J. Arias-Monje, J. Phillips, y H. Zea, “Empirical kinetics for the growth of titania nanotube arrays by potentiostatic anodization in ethylene glycol”, Mater. Des., vol. 96, núm. February, pp. 80–89, 2016, https://doi.org/10.1016/j.matdes.2016.02.006.spa
dc.relation.referencesJ. M. Macak, S. P. Albu, y P. Schmuki, “Towards ideal hexagonal self-ordering of TiO2 nanotubes”, Phys. Status Solidi - Rapid Res. Lett., vol. 1, núm. 5, pp. 181–183, 2007, https://doi.org/10.1002/pssr.200701148.spa
dc.relation.referencesS. Ozkan, A. Mazare, y P. Schmuki, “Critical parameters and factors in the formation of spaced TiO 2 nanotubes by self-organizing anodization”, Electrochim. Acta, vol. 268, pp. 435–447, 2018, https://doi.org/10.1016/j.electacta.2018.02.120.spa
dc.relation.referencesC. Ruan, M. Paulose, O. K. Varghese, y C. A. Grimes, “Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte”, Sol. Energy Mater. Sol. Cells, vol. 90, núm. 9, pp. 1283–1295, 2006, https://doi.org/10.1016/j.solmat.2005.08.005.spa
dc.relation.referencesQ. Cai, L. Yang, y Y. Yu, “Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization”, Thin Solid Films, vol. 515, núm. 4, pp. 1802–1806, 2006, https://doi.org/10.1016/j.tsf.2006.06.040.spa
dc.relation.referencesQ. Cai, M. Paulose, O. K. Varghese, y C. A. Grimes, “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation”, J. Mater. Res., vol. 20, núm. 1, pp. 230–236, 2005, https://doi.org/10.1557/JMR.2005.0020.spa
dc.relation.referencesL. V. Taveira, J. M. Macák, H. Tsuchiya, L. F. P. Dick, y P. Schmuki, “Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F∕(NH4)2SO4 Electrolytes”, J. Electrochem. Soc., vol. 152, núm. 10, p. B405, 2005, https://doi.org/10.1149/1.2008980.spa
dc.relation.referencesM. Paulose et al., “Anodic Growth of Highly Ordered TiO 2 Nanotube Arrays to 134 μm in Length”, J. Phys. Chem. B, vol. 110, núm. 33, pp. 16179–16184, 2006, https://doi.org/10.1021/jp064020k.spa
dc.relation.referencesK. Shankar, G. K. Mor, A. Fitzgerald, y C. A. Grimes, “Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures”, J. Phys. Chem. C, vol. 111, núm. 1, pp. 21–26, 2007, https://doi.org/10.1021/jp066352v.spa
dc.relation.referencesS. Yoriya, M. Paulose, O. K. Varghese, G. K. Mor, y C. A. Grimes, “Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes”, J. Phys. Chem. C, vol. 111, núm. 37, pp. 13770–13776, 2007, https://doi.org/10.1021/jp074655z.spa
dc.relation.referencesF. Quintero, P. J. Arias, y H. Zea, “Morphological effects of alternating voltage anodizing in the production of Tio2 nanostructures”, Int. J. Appl. Eng. Res., vol. 10, núm. 1, pp. 159–165, 2015.spa
dc.relation.referencesM. Paulose et al., “TiO 2 nanotube arrays of 1000 μm length by anodization of titanium foil: Phenol red diffusion”, J. Phys. Chem. C, vol. 111, núm. 41, pp. 14992–14997, 2007, https://doi.org/10.1021/jp075258r.spa
dc.relation.referencesT. J. Tuaweri, ٭. E. M. Adigio, y P. P. Jombo, “A Study of Process Parameters for Zinc Electrodeposition from a Sulphate Bath”, Int. J. Eng. Sci. Invent. ISSN (Online, vol. 2, núm. 8, pp. 2319–6734, 2013, Recuperado a partir de www.ijesi.orgwww.ijesi.org%0Awww.ijesi.org.spa
dc.relation.referencesY. Dong, J. Feng, D. Lu, H. Zhang, M. Pan, y P. Fang, “Titanate nanotube array membranes filled with polyelectrolyte brushes for proton conduction”, vol. 88, pp. 183–190, 2017.spa
dc.relation.referencesS. Weon, J. Choi, T. Park, y W. Choi, “Freestanding doubly open-ended TiO2 nanotubes for efficient photocatalytic degradation of volatile organic compounds”, Appl. Catal. B Environ., vol. 205, pp. 386–392, 2017, https://doi.org/10.1016/j.apcatb.2016.12.048.spa
dc.relation.referencesJ. Xu et al., “Carbon-Decorated TiO2 Nanotube Membranes: A Renewable Nanofilter for Charge-Selective Enrichment of Proteins”, ACS Appl. Mater. Interfaces, vol. 8, núm. 34, pp. 21997–22004, 2016, https://doi.org/10.1021/acsami.6b06232.spa
dc.relation.referencesT. Zeng, H. Ni, X. Su, Y. Chen, y Y. Jiang, “Highly crystalline Titania nanotube arrays realized by hydrothermal vapor route and used as front-illuminated photoanode in dye sensitized solar cells”, J. Power Sources, vol. 283, pp. 443–451, 2015, https://doi.org/10.1016/j.jpowsour.2015.02.150.spa
dc.relation.referencesJ. Choi, S.-H. Park, Y. Kwon, J. Lim, I. Y. Song, y T. Park, “Facile fabrication of aligned doubly open-ended TiO 2 nanotubes, via a selective etching process, for use in front-illuminated dye sensitized solar cells.pdf”, Chem. comm, vol. 48, núm. 70, pp. 8717–8848, 2012, https://doi.org/10.1039.spa
dc.relation.referencesG. Cha, M. Altomare, N. Nguyen, N. Taccardi, K. Lee, y P. Schmuki, “Double-Side Co-Catalytic Activation of Anodic TiO2 Nanotube Membranes with Sputter-Coated Pt for Photocatalytic H2 Generation from Water-Methanol Mixtures”, Chem. - An Asian J., vol. 12, núm. 3, pp. 276–384, 2017.spa
dc.relation.referencesJ. Lin, X. Liu, S. Zhu, Y. Liu, y X. Chen, “Influence of in situ oxide dissolution on the bottom morphologies of detached TiOnanotube films”, J. Nanomater., vol. 2015, 2015, https://doi.org/10.1155/2015/653192.spa
dc.relation.referencesQ. Chen y D. Xu, “Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells”, J. Phys. Chem. C, vol. 113, núm. 15, pp. 6310–6314, 2009, https://doi.org/10.1021/jp900336e.spa
dc.relation.referencesJ. Wawrzyniak et al., “The geometry of free-standing titania nanotubes as a critical factor controlling their optical and photoelectrochemical performance”, Surf. Coatings Technol., vol. 389, núm. December 2019, 2020, https://doi.org/10.1016/j.surfcoat.2020.125628.spa
dc.relation.referencesS. Yoriya, “Effect of inter-electrode spacing on electrolyte properties and morphologies of anodic TiO2 nanotube array films”, Int. J. Electrochem. Sci., vol. 7, núm. 10, pp. 9454–9464, 2012.spa
dc.relation.referencesZ. Y. Luo, D. C. Mo, y S. S. Lu, “The key factor for fabricating through-hole TiO2 nanotube arrays: A fluoride-rich layer between Ti substrate and nanotubes”, J. Mater. Sci., vol. 49, núm. 19, pp. 6742–6749, 2014, https://doi.org/10.1007/s10853-014-8368-z.spa
dc.relation.referencesQ. Chen, D. Xu, Z. Wu, y Z. Liu, “Free-standing TiO(2) nanotube arrays made by anodic oxidation and ultrasonic splitting.”, Nanotechnology, vol. 19, núm. 36, p. 365708, 2008, https://doi.org/10.1088/0957-4484/19/36/365708.spa
dc.relation.referencesZ. F. Cui y H. S. Muralidhara, Membrane Technology. 2010.spa
dc.relation.referencesS. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, y P. Schmuki, “Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications”, pp. 1–4, 2007.spa
dc.relation.referencesK. Le Li, Z. Bin Xie, y S. Adams, “A reliable TiO 2 nanotube membrane transfer method and its application in photovoltaic devices”, Electrochim. Acta, vol. 62, pp. 116–123, 2012, https://doi.org/10.1016/j.electacta.2011.11.118.spa
dc.relation.referencesZ. Yang, Z. Ma, D. Pan, D. Chen, F. Xu, y S. Chen, “Enhancing the performance of front-illuminated dye-sensitized solar cells with highly [001] oriented, single-crystal-like TiO2 nanotube arrays”, Ceram. Int., vol. 40, núm. 1 PART A, pp. 173–180, 2014, https://doi.org/10.1016/j.ceramint.2013.05.119.spa
dc.relation.referencesA. Hossain, S. Oh, y S. Lim, “Fabrication of dye-sensitized solar cells using a both-ends-opened TiO2 nanotube / nanoparticle hetero-nanostructure”, J. Ind. Eng. Chem., vol. 51, pp. 122–128, 2017, https://doi.org/10.1016/j.jiec.2017.02.022.spa
dc.relation.referencesE. Gerstner, “Nobel Prize 2010: Andre Geim & Konstantin Novoselov”, Nat. Phys., vol. 6, núm. 11, pp. 836–836, 2010, https://doi.org/10.1038/nphys1836.spa
dc.relation.referencesS. So, I. Hwang, F. Riboni, J. E. Yoo, y P. Schmuki, “Robust free standing flow-through TiO2 nanotube membrane of pure anatase”, Chem. Commun., vol. 71, p. submitted, 2016.spa
dc.relation.referencesH. W. Jeong, K. J. Park, Y. Park, D. S. Han, y H. Park, “Exploring the photoelectrocatalytic behavior of free-standing TiO2 nanotube arrays on transparent conductive oxide electrodes: Irradiation direction vs. alignment direction”, Catal. Today, vol. 335, núm. November 2018, pp. 319–325, 2019, https://doi.org/10.1016/j.cattod.2018.12.014.spa
dc.relation.referencesG. Liu, K. Wang, N. Hoivik, y H. Jakobsen, “Progress on free-standing and flow-through TiO 2 nanotube membranes”, Sol. Energy Mater. Sol. Cells, vol. 98, pp. 24–38, 2012, https://doi.org/10.1016/j.solmat.2011.11.004.spa
dc.relation.referencesS. So, I. Hwang, F. Riboni, J. E. Yoo, y P. Schmuki, “Robust free standing flow-through TiO2 nanotube membranes of pure anatase”, Electrochem. commun., vol. 71, pp. 73–78, 2016, https://doi.org/10.1016/j.elecom.2016.08.010.spa
dc.relation.referencesD. Wang y L. Liu, “Continuous fabrication of free-standing TiO2 nanotube array membranes with controllable morphology for depositing interdigitated heterojunctions”, Chem. Mater., vol. 22, núm. 24, pp. 6656–6664, 2010, https://doi.org/10.1021/cm102622x.spa
dc.relation.referencesW. Yuanhao, L. Lin, y Y. Hongxing, “The Fabrication of Barrier Layer Free TiO2 Nanotube Arrays and its Application for Highly Efficient Dye-sensitized Solar Cells”, Energy Procedia, vol. 61, pp. 2608–2612, 2014, https://doi.org/10.1016/j.egypro.2014.12.259.spa
dc.relation.referencesC. Guizard, “Técnicas membranarias de filtración de líquidos: Mucro-, Ultra-, Nanofiltración y Osmosis inversa”, Cuad. FIRP S451P - Modul. enseñanza en fenómenos interfaciales, vol. 2, p. 53, 1999.spa
dc.relation.referencesA. F. Williams, J. D. Baum, y F. A. Glover, “Principles of Ultrafiltration and the Concentration and Fractionation of Cow’s Milk”, Hum. Milk Bank., 1984, Recuperado a partir de https://pdfs.semanticscholar.org/2cc5/d8f7288286286c8678a01d396208ca4ed3b8.pdf.spa
dc.relation.referencesF. Sánchez Font, “Estudio y diseño de una planta de producción de membranas cerámicas de coste reducido”, Esc. Tècnica Super. d’Enginyeria Ind. Barcelona, vol. 2007, núm. pla 94, pp. 1–98, 2007.spa
dc.relation.referencesAmerican Water Works Association, Microfiltration and Ultrafiltration Membranes in Drinking Water: AWWA Manual of Water Supply Practice M57, núm. C. 2005.spa
dc.relation.referencesJ. D. Ferry, “Ferry1936.Pdf”, núm. 3, pp. 373–455, 1936.spa
dc.relation.referencesG. Dhawan, “About Ultrafiltration”, Appl. Membr. Inc, pp. 1–4, Recuperado a partir de http://appliedmembranes.com/media/wysiwyg/pdf/membranes/about_ultrafiltration_technical_article.pdf.spa
dc.relation.referencesD. Mourato, “Microfiltración y nanofiltración en el área de agua potable D. Mourato, Ph.D. ZENON Environmental Inc. Burlington, Ontario, Canadá”, 1998.spa
dc.relation.referencesK. C. Khulbe, C. Y. Feng, y T. Matsuura, Synthetic Polymeric Membranes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.spa
dc.relation.referencesN. D. Koromilas, C. Anastasopoulos, E. K. Oikonomou, y J. K. Kallitsis, “Preparation of porous polymeric membranes based on a pyridine containing aromatic polyether sulfone”, Polymers (Basel)., vol. 11, núm. 1, pp. 1–20, 2019, https://doi.org/10.3390/polym11010059.spa
dc.relation.referencesF. Russo, M. Bulzomì, E. Di Nicolò, C. Ursino, y A. Figoli, “Enhanced anti-fouling behavior and performance of pes membrane by uv treatment”, Processes, vol. 9, núm. 2, pp. 1–17, 2021, https://doi.org/10.3390/pr9020246.spa
dc.relation.referencesB. D. Cassie, A. B. D. Cassie, y S. Baxter, “Of porous surfaces”, Trans. Faraday Soc., vol. 40, núm. 5, pp. 546–551, 1944.spa
dc.relation.referencesJ. Marugán, C. Casado, G. Silverberg, y C. D. Vecitis, “Novel simple method for preparing tailored polymer-titania nanotubes hybrid materials”, Mater. Lett., vol. 174, pp. 95–98, 2016, https://doi.org/10.1016/j.matlet.2016.03.054.spa
dc.relation.referencesS. Nakatsuka, I. Nakate, y T. Miyano, “Drinking water treatment by using ultrafiltration hollow fiber membranes”, Desalination, vol. 106, núm. 1–3, pp. 55–61, 1996, https://doi.org/10.1016/S0011-9164(96)00092-6.spa
dc.relation.referencesP. Completo y D. E. F. D. E. Entrada, “Freshpoint TM sistema de ultrafiltración”.spa
dc.relation.referencesS. L. Polyethersulphone y M. C. Filters, “Single Layer Polyethersulphone Membrane Cartridge Filters Aquafil TM”.spa
dc.relation.referencesM. Safarpour, V. Vatanpour, A. Khataee, y M. Esmaeili, “Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2”, Sep. Purif. Technol., vol. 154, pp. 96–107, 2015, https://doi.org/10.1016/j.seppur.2015.09.039.spa
dc.relation.referencesZ. Xu et al., “Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment”, J. Memb. Sci., vol. 520, pp. 281–293, 2016, https://doi.org/10.1016/j.memsci.2016.07.060.spa
dc.relation.referencesA. Behboudi, Y. Jafarzadeh, y R. Yegani, “Preparation and characterization of TiO2 embedded PVC ultrafiltration membranes”, Chem. Eng. Res. Des., vol. 114, pp. 96–107, 2016, https://doi.org/10.1016/j.cherd.2016.07.027.spa
dc.relation.referencesM. H. D. A. Farahani y V. Vatanpour, “A comprehensive study on the performance and antifouling enhancement of the PVDF mixed matrix membranes by embedding different nanoparticulates: Clay, functionalized carbon nanotube, SiO2 and TiO2”, Sep. Purif. Technol., vol. 197, núm. October 2017, pp. 372–381, 2018, https://doi.org/10.1016/j.seppur.2018.01.031.spa
dc.relation.referencesM. Lorenzetti, E. Gongadze, M. Kulkarni, I. Junkar, y A. Iglič, “Electrokinetic Properties of TiO2 Nanotubular Surfaces”, Nanoscale Res. Lett., vol. 11, núm. 1, 2016, https://doi.org/10.1186/s11671-016-1594-3.spa
dc.relation.referencesM. Siri, “Estudio de Nanopartículas Proteicas y su posible aplicación como vectores de drogas antitumorales”, Universidad Nacional de Quilmes, 2017.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería química::666 - Cerámica y tecnologías afinesspa
dc.subject.lembFilters and filtrationeng
dc.subject.lembFiltraciónspa
dc.subject.lembRutileeng
dc.subject.lembRutilospa
dc.subject.lembMembranes (Tecnology)eng
dc.subject.lembMembranas (Tecnología)spa
dc.subject.proposalNanotubos de dióxido de titaniospa
dc.subject.proposalMembranasspa
dc.subject.proposalUltrafiltraciónspa
dc.subject.proposalAnodizaciónspa
dc.subject.proposalNanomaterialesspa
dc.subject.proposalTitanium dioxide nanotubeseng
dc.subject.proposalMembraneseng
dc.subject.proposalUltrafiltrationeng
dc.subject.proposalUltrafiltrationeng
dc.subject.proposalAnodizationeng
dc.subject.proposalNanomaterialseng
dc.titleElaboración y caracterización de membranas de nanotubos de dióxido de titanio para ultrafiltraciónspa
dc.title.translatedElaboration and characterization of titanium dioxide nanotube membranes for ultrafiltrationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016052712.2021.pdf
Tamaño:
3.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: