Modelo y simulación de dinámica de crecimiento de mieloma

dc.contributor.advisorGarzón Alvarado, Diego Alexanderspa
dc.contributor.authorSánchez Gutiérrez, Juan Felipespa
dc.contributor.orcidJUAN FELIPE SANCHEZ GUTIERREZ, [0000-0002-7821-5234]spa
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingenieríaspa
dc.date.accessioned2024-02-26T19:10:45Z
dc.date.available2024-02-26T19:10:45Z
dc.date.issued2024-02
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn este trabajo se presentan tres capítulos con modelos in-silico desarrollados a través de ecuaciones diferenciales y solucionados computacionalmente, que proporcionan una perspectiva del acoplamiento entre el ciclo de remodelación ósea y las poblaciones tumorales. Comprender las dinámicas entre el tejido sano, las células que realizan el proceso de remodelación y las diferentes patologías, como el osteosarcoma o los tumores metastásicos, es fundamental para crear estrategias m´as personalizadas y especializadas para mitigar los efectos de estas enfermedades o curarlas por completo. Los modelos presentados proveen información mas detallada de la dinámica real de la remodelación ósea en pacientes por masas tumorales. Ofrecen un marco innovador y una base solida para el desarrollo de nuevos modelos, herramientas y técnicas que permitan el desarrollo de la medicina personalizada, con una perspectiva mas completa y controlada de los procesos fisiológicos y patológicos. Se espera que en el futuro, estos modelos sean aun mas robustos y versátiles, brindando un mayor apoyo para la toma de decisiones mas acertadas en cada caso clínico particular. (Texto tomado de la fuente).spa
dc.description.abstractThis work presents three chapters with in-silico models developed through differential equations and computationally solved, providing a perspective of the coupling between the bone remodeling cycle and tumor populations. Understanding the dynamics between healthy tissue, cells involved in the remodeling process, and different pathologies, such as osteosarcoma or metastatic tumors, is fundamental for creating more personalized and specialized strategies to mitigate the effects of these diseases or cure them completely. The models presented provide more detailed information about the real dynamics of bone remodeling in patients with tumor masses. They offer an innovative framework and a solid foundation for the development of new models, tools, and techniques that enable personalized medicine, with a more comprehensive and controlled perspective of physiological and pathological processes. It is expected that in the future, these models will become even more robust and versatile, providing greater support for making more accurate decisions in each specific clinical case.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.researchareaIngeniería de diseño y biomecánicaspa
dc.format.extentxvi, 103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85721
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.indexedBiremespa
dc.relation.references[Ait Oumghar et al., 2020] Ait Oumghar, I., Barkaoui, A., and Chabrand, P. (2020). Toward a mathematical modeling of diseases’ impact on bone remodeling: technical review. Frontiers in Bioengineering and Biotechnology, 8:584198.spa
dc.relation.references[Altrock et al., 2015] Altrock, P. M., Liu, L. L., and Michor, F. (2015). The mathematics of cancer: integrating quantitative models. Nature Reviews Cancer, 15(12):730–745.spa
dc.relation.references[Amat Villegas et al., 2009] Amat Villegas, I., Lobo Mor´an, C., Muro Carral, N., Larzabal Aramberri, M., Aranzadi Mart´ınez, M. J., and Vaquero P´erez, M. (2009). Metaplasia ´osea en relaci´on con una denocarcinoma de colon. Gastroenterol. hepatol.(Ed. impr.), pages 324–325.spa
dc.relation.references[Arias Moreno, 2011] Arias Moreno, A. J. (2011). Modelo computacional para simulaci´on del proceso de osteog´enesis y la curaci´on ´osea despu´es de la fractura. PhD thesis.spa
dc.relation.references[Atkinson and Delgado-Calle, 2019] Atkinson, E. G. and Delgado-Calle, J. (2019). The emerging role of osteocytes in cancer in bone. JBMR plus, 3(3):e10186.spa
dc.relation.references[Atuegwu et al., 2011] Atuegwu, N. C., Arlinghaus, L. R., Li, X., Welch, E. B., Chakravarthy, B. A., Gore, J. C., and Yankeelov, T. E. (2011). Integration of diffusion-weighted mri data and a simple mathematical model to predict breast tumor cellularity during neoadjuvant chemotherapy. Magnetic Resonance in Medicine, 66(6):1689–1696.spa
dc.relation.references[Ayati et al., 2010] Ayati, B. P., Edwards, C. M., Webb, G. F., and Wikswo, J. P. (2010). A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biology direct, 5:1–17.spa
dc.relation.references[Barbolosi et al., 2016] Barbolosi, D., Ciccolini, J., Lacarelle, B., Barl´esi, F., and Andr´e, N. (2016). Computational oncology—mathematical modelling of drug regimens for precision medicine. Nature reviews Clinical oncology, 13(4):242–254.spa
dc.relation.references[Barkaoui et al., 2017] Barkaoui, A., Ben Kahla, R., Merzouki, T., and Hambli, R. (2017). Age and gender effects on bone mass density variation: finite elements simulation. Biomechanics and modeling in mechanobiology, 16(2):521–535.spa
dc.relation.references[Belfatto et al., 2015] Belfatto, A., Riboldi, M., Ciardo, D., Cecconi, A., Lazzari, R., Jereczek-Fossa, B. A., Orecchia, R., Baroni, G., and Cerveri, P. (2015). Adaptive mathematical model of tumor response to radiotherapy based on cbct data. IEEE journal of biomedical and health informatics, 20(3):802–809.spa
dc.relation.references[Bender et al., 2015] Bender, B. C., Schindler, E., and Friberg, L. E. (2015). Population pharmacokinetic–pharmacodynamic modelling in oncology: a tool for predicting clinical response. British journal of clinical pharmacology, 79(1):56–71.spa
dc.relation.references[Bethge et al., 2015] Bethge, A., Schumacher, U., and Wedemann, G. (2015). Simulation of metastatic progression using a computer model including chemotherapy and radiation therapy. Journal of biomedical informatics, 57:74–87.spa
dc.relation.references[Bokhari et al., 2012] Bokhari, K., Hameed, M., Ajmal, M., and Togoo, R. A. (2012). Benign osteoblastoma involving maxilla: a case report and review of the literature. Case Reports in Dentistry, 2012.spa
dc.relation.references[Bonfoh et al., 2008] Bonfoh, N., Bilasse, M., and Lipinski, P. (2008). Mod´elisation du remodelage osseux. Revue de, 1(10):717–726.spa
dc.relation.references[Botesteanu et al., 2016] Botesteanu, D.-A., Lipkowitz, S., Lee, J.-M., and Levy, D. (2016). Mathematical models of breast and ovarian cancers. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 8(4):337–362.spa
dc.relation.references[Bowen et al., 1984] Bowen, J. R., Foster, B. K., and Hartzell, C. R. (1984). Legg-calv´e-perthes disease. Clinical orthopaedics and related research, (185):97–108.spa
dc.relation.references[Brigle and Rogers, 2017] Brigle, K. and Rogers, B. (2017). Pathobiology and diagnosis of multiple myeloma. 33(3):225–236.spa
dc.relation.references[Burr, 2002] Burr, D. B. (2002). Targeted and nontargeted remodeling. Bone, 30(1):2–4.spa
dc.relation.references[Cher et al., 2003] Cher, M. L., Biliran Jr, H. R., Bhagat, S., Meng, Y., Che, M., Lockett, J., Abrams, J., Fridman, R., Zachareas, M., and Sheng, S. (2003). Maspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis. Proceedings of the National Academy of Sciences, 100(13):7847–7852.spa
dc.relation.references[Claret et al., 2009] Claret, L., Girard, P., Hoff, P. M., Van Cutsem, E., Zuideveld, K. P., Jorga, K., Fagerberg, J., and Bruno, R. (2009). Model-based prediction of phase iii overall survival in colorectal cancer on the basis of phase ii tumor dynamics. Journal of Clinical Oncology, 27(25):4103–4108.spa
dc.relation.references[Coelho et al., 2016] Coelho, R. M., Lemos, J. M., Alho, I., Valerio, D., Ferreira, A. R., Costa, L., and Vinga, S. (2016). Dynamic modeling of bone metastasis, microenvironment and therapy: Integrating parathyroid hormone (pth) effect, anti-resorptive and anti-cancer therapy. Journal of Theoretical Biology, 391:1–12.spa
dc.relation.references[Coleman, 2001] Coleman, R. (2001). Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer treatment reviews, 27(3):165–176.spa
dc.relation.references[Coleman, 2006] Coleman, R. E. (2006). Clinical features of metastatic bone disease and risk of skeletal morbidity. Clinical cancer research, 12(20):6243s–6249s.spa
dc.relation.references[Corre et al., 2020] Corre, I., Verrecchia, F., Crenn, V., Redini, F., and Trichet, V. (2020). The osteosarcoma microenvironment: a complex but targetable ecosystem. Cells, 9(4):976.spa
dc.relation.references[Dallas et al., 2002] Dallas, S. L., Rosser, J. L., Mundy, G. R., and Bonewald, L. F. (2002). Proteolysis of latent transforming growth factor-β (tgf-β)- binding protein-1 by osteoclasts: a cellular mechanism for release of tgf-β from bone matrix. Journal of Biological Chemistry, 277(24):21352–21360.spa
dc.relation.references[Datta et al., 2008] Datta, H., Ng, W., Walker, J., Tuck, S., and Varanasi, S. (2008). The cell biology of bone metabolism. Journal of clinical pathology, 61(5):577–587.spa
dc.relation.references[Davies et al., 2004] Davies, C. d. L., Lundstrøm, L. M., Frengen, J., Eikenes, L., Bruland, Ø. S., Kaalhus, O., Hjelstuen, M. H., and Brekken, C. (2004). Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts. Cancer research, 64(2):547– 553.spa
dc.relation.references[De Buck et al., 2014] De Buck, S. S., Jakab, A., Boehm, M., Bootle, D., Juric, D., Quadt, C., and Goggin, T. K. (2014). Population pharmacokinetics and pharmacodynamics of byl 719, a phosphoinositide 3-kinase antagonist, in adult patients with advanced solid malignancies. British journal of clinical pharmacology, 78(3):543–555.spa
dc.relation.references[Della Corte et al., 2020] Della Corte, A., Giorgio, I., and Scerrato, D. (2020). A review of recent developments in mathematical modeling of bone remodeling. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 234(3):273–281.spa
dc.relation.references[Deutsch et al., 2004] Deutsch, A., B¨orner, U., and B¨ar, M. (2004). Cellular automaton modeling of pattern formation in interacting cell systems. In Advances in Parallel Computing, volume 13, pages 695–704. Elsevier.spa
dc.relation.references[Dingli et al., 2009] Dingli, D., Offord, C., Myers, R., Peng, K.-W., Carr, T. W., Josic, K., Russell, S. J., and Bajzer, Z. (2009). Dynamics of multiple myeloma tumor therapy with a recombinant measles virus. Cancer gene therapy, 16(12):873–882.spa
dc.relation.references[Durie, 2021] Durie, D. B. G. (2021). Bone disease.spa
dc.relation.references[Ferlay et al., 2021] Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Pi˜neros, M., Znaor, A., and Bray, F. (2021). Cancer statistics for the year 2020: An overview. International journal of cancer, 149(4):778–789.spa
dc.relation.references[Ferlay et al., 2018] Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Pi˜neros, M., Znaor, A., Soerjomataram, I., and Bray, F. (2018). Global cancer observatory: cancer today. lyon, france: international agency for research on cancer.spa
dc.relation.references[Fornetti et al., 2018] Fornetti, J., Welm, A. L., and Stewart, S. A. (2018). Understanding the bone in cancer metastasis. Journal of Bone and Mineral Research, 33(12):2099–2113.spa
dc.relation.references[Garz´on-Alvarado, 2012] Garz´on-Alvarado, D. A. (2012). A mathematical model for describing the metastasis of cancer in bone tissue. Computer methods in biomechanics and biomedical engineering, 15(4):333–346.spa
dc.relation.references[Gerber and Ferrara, 2000] Gerber, H.-P. and Ferrara, N. (2000). Angiogenesis and bone growth. Trends in cardiovascular medicine, 10(5):223–228.spa
dc.relation.references[Goltzman, 1997] Goltzman, D. (1997). Mechanisms of the development of osteoblastic metastases. Cancer: Interdisciplinary International Journal of the American Cancer Society, 80(S8):1581–1587.spa
dc.relation.references[Gu et al., 2006] Gu, G., Nars, M., Hentunen, T. A., Metsikk¨o, K., and V¨a¨an¨anen, H. K. (2006). Isolated primary osteocytes express functional gap junctions in vitro. Cell and tissue research, 323:263–271.spa
dc.relation.references[Guise et al., 2006] Guise, T. A., Mohammad, K. S., Clines, G., Stebbins, E. G., Wong, D. H., Higgins, L. S., Vessella, R., Corey, E., Padalecki, S., Suva, L., et al. (2006). Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clinical cancer research, 12(20):6213s–6216s.spa
dc.relation.references[G¨unther and Schinke, 2000] G¨unther, T. and Schinke, T. (2000). Mouse genetics have uncovered new paradigms in bone biology. Trends in Endocrinology & Metabolism, 11(5):189–193.spa
dc.relation.references[Hadjidakis and Androulakis, 2006] Hadjidakis, D. J. and Androulakis, I. I. (2006). Bone remodeling. Annals of the New York academy of sciences, 1092(1):385–396.spa
dc.relation.references[Honore et al., 2000] Honore, P., Luger, N. M., Sabino, M. A. C., Schwei, M. J., Rogers, S. D., Mach, D. B., O’keefe, P. F., Ramnaraine, M. L., Clohisy, D. R., and Mantyh, P. W. (2000). Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nature medicine, 6(5):521–528.spa
dc.relation.references[Huybrechts et al., 2020] Huybrechts, Y., Mortier, G., Boudin, E., and Van Hul, W. (2020). Wnt signaling and bone: lessons from skeletal dysplasias and disorders. Frontiers in Endocrinology, 11:165.spa
dc.relation.references[Hajek. R and Adam, 2011] Hajek. R, M. Krejcı, L. P. and Adam, Z. (2011). Multiple myeloma. Klinicka onkologie : casopis Ceske a Slovenske onkologicke spolecnosti, 24.spa
dc.relation.references[Ihde et al., 2011] Ihde, L. L., Forrester, D. M., Gottsegen, C. J., Masih, S., Patel, D. B., Vachon, L. A., White, E. A., and Matcuk Jr, G. R. (2011). Sclerosing bone dysplasias: review and differentiation from other causes of osteosclerosis. Radiographics, 31(7):1865–1882.spa
dc.relation.references[Joshua et al., 2019] Joshua, D. E., Bryant, C., Dix, C., Gibson, J., and Ho, J. (2019). Biology and therapy of multiple myeloma. Medical Journal of Australia, 210(8):375–380.spa
dc.relation.references[K¨ahk¨onen et al., 2021] K¨ahk¨onen, T. E., Halleen, J. M., and Bernoulli, J. (2021). Osteoimmuno-oncology: Therapeutic opportunities for targeting immune cells in bone metastasis. Cells, 10(6):1529.spa
dc.relation.references[Kameo et al., 2020] Kameo, Y., Miya, Y., Hayashi, M., Nakashima, T., and Adachi, T. (2020). In silico experiments of bone remodeling explore metabolic diseases and their drug treatment. Science advances, 6(10):eaax0938.spa
dc.relation.references[Keller et al., 2001] Keller, E. T., Zhang, J., Cooper, C. R., Smith, P. C., McCauley, L. K., Pienta, K. J., and Taichman, R. S. (2001). Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer and Metastasis Reviews, 20:333–349.spa
dc.relation.references[Kennecke et al., 2010] Kennecke, H., Yerushalmi, R., Woods, R., Cheang, M. C. U., Voduc, D., Speers, C. H., Nielsen, T. O., and Gelmon, K. (2010). Metastatic behavior of breast cancer subtypes. Journal of clinical oncology, 28(20):3271–3277.spa
dc.relation.references[Kim et al., 2018] Kim, C., Gao, R., Sei, E., Brandt, R., Hartman, J., Hatschek, T., Crosetto, N., Foukakis, T., and Navin, N. E. (2018). Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell, 173(4):879–893.spa
dc.relation.references[Kimmel, 2010] Kimmel, M. (2010). Evolution and cancer: a mathematical biology approach.spa
dc.relation.references[Komarova et al., 2003a] Komarova, S. V., Smith, R. J., Dixon, S. J., Sims, S. M., and Wahl, L. M. (2003a). Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone, 33(2):206–215.spa
dc.relation.references[Koyama et al., 2021] Koyama, L. K. S., Nagano, C. P., Vanini, J. V., Figueredo Jr, J. M., de Matos, L. L., Cernea, C. R., Coutinho-Camillo, C. M., and Louren¸co, S. V. (2021). Oral squamous cell carcinoma bone invasion: Possible roles of e-cadherin in osteoclastogenesis and bone infiltration. ORL, 83(5):354–361.spa
dc.relation.references[Kreps and Addison, 2021] Kreps, L. M. and Addison, C. L. (2021). Targeting intercellular communication in the bone microenvironment to prevent disseminated tumor cell escape from dormancy and bone metastatic tumor growth. International Journal of Molecular Sciences, 22(6):2911.spa
dc.relation.references[Kronik et al., 2010] Kronik, N., Kogan, Y., Elishmereni, M., Halevi-Tobias, K., Vuk-Pavlovi´c, S., and Agur, Z. (2010). Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models. PloS one, 5(12):e15482.spa
dc.relation.references[Kular et al., 2012] Kular, J., Tickner, J., Chim, S. M., and Xu, J. (2012). An overview of the regulation of bone remodelling at the cellular level. Clinical biochemistry, 45(12):863–873.spa
dc.relation.references[Lamoureux et al., 2008] Lamoureux, F., Picarda, G., Rousseau, J., Gourden, C., Battaglia, S., Charrier, C., Pitard, B., Heymann, D., and Redini, F. (2008). Therapeutic efficacy of soluble receptor activator of nuclear factor- κb-fc delivered by nonviral gene transfer in a mouse model of osteolytic osteosarcoma. Molecular Cancer Therapeutics, 7(10):3389–3398.spa
dc.relation.references[Lamoureux et al., 2007] Lamoureux, F., Richard, P., Wittrant, Y., Battaglia, S., Pilet, P., Trichet, V., Blanchard, F., Gouin, F., Pitard, B., Heymann, D., et al. (2007). Therapeutic relevance of osteoprotegerin gene therapy in osteosarcoma: blockade of the vicious cycle between tumor cell proliferation and bone resorption. Cancer research, 67(15):7308–7318.spa
dc.relation.references[Martin and Ng, 1994] Martin, T. and Ng, K. (1994). Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. Journal of cellular biochemistry, 56(3):357–366.spa
dc.relation.references[Medina, 2018] Medina, M. A. (2018). Mathematical modeling of cancer metabolism. Critical reviews in oncology/hematology, 124:37–40.spa
dc.relation.references[Momtazi-Borojeni et al., 2019] Momtazi-Borojeni, A. A., Nik, M. E., Jaafari, M. R., Banach, M., and Sahebkar, A. (2019). Potential anti-tumor effect of a nanoliposomal antipcsk9 vaccine in mice bearing colorectal cancer. Archives of Medical Science, 15(3):559–569.spa
dc.relation.references[Mundy, 2002] Mundy, G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Reviews Cancer, 2(8):584–593.spa
dc.relation.references[Murray, 2002] Murray, J. D. (2002). Mathematical biology: I. An introduction. Springer.spa
dc.relation.references[Navet et al., 2018] Navet, B., Ando, K., Vargas-Franco, J. W., Brion, R., Amiaud, J., Mori, K., Yagita, H., Mueller, C. G., Verrecchia, F., Dumars, C., et al. (2018). The intrinsic and extrinsic implications of rankl/rank signaling in osteosarcoma: from tumor initiation to lung metastases. Cancers, 10(11):398.spa
dc.relation.references[Nørregaard et al., 2021] Nørregaard, K. S., J¨urgensen, H. J., G˚ardsvoll, H., Engelholm, L. H., Behrendt, N., and Søe, K. (2021). Osteosarcoma and metastasis associated bone degradation—a tale of osteoclast and malignant cell cooperativity. International Journal of Molecular Sciences, 22(13):6865.spa
dc.relation.references[Ollier et al., 2017] Ollier, E., Mazzocco, P., Ricard, D., Kaloshi, G., Idbaih, A., Alentorn, A., Psimaras, D., Honnorat, J., Delattre, J.-Y., Grenier, E., et al. (2017). Analysis of temozolomide resistance in low-grade gliomas using a mechanistic mathematical model. Fundamental & clinical pharmacology, 31(3):347–358.spa
dc.relation.references[Ovejero et al., 2022] Ovejero, D., Garcia-Giralt, N., Mart´ınez-Gil, N., Rabionet, R., Balcells, S., Grinberg, D., P´erez-Jurado, L. A., Nogu´es, X., and Etxebarria-Foronda, I. (2022). Clinical description and genetic analysis of a novel familial skeletal dysplasia characterized by high bone mass and lucent bone lesions. Bone, 161:116450.spa
dc.relation.references[Oyajobi, 2007] Oyajobi, B. O. (2007). Multiple myeloma/hypercalcemia. Arthritis research & therapy, 9(1):1–6.spa
dc.relation.references[Panaroni et al., 2017] Panaroni, C., Yee, A. J., and Raje, N. S. (2017). Myeloma and bone disease. Current osteoporosis reports, 15(5):483–498.spa
dc.relation.references[Panetta et al., 2008] Panetta, J. C., Schaiquevich, P., Santana, V. M., and Stewart, C. F. (2008). Using pharmacokinetic and pharmacodynamic modeling and simulation to evaluate importance of schedule in topotecan therapy for pediatric neuroblastoma. Clinical Cancer Research, 14(1):318–325.spa
dc.relation.references[Pang et al., 2019] Pang, X., Gong, K., Zhang, X., Wu, S., Cui, Y., and Qian, B.-Z. (2019). Osteopontin as a multifaceted driver of bone metastasis and drug resistance. Pharmacological research, 144:235–244.spa
dc.relation.references[Parfitt, 1994] Parfitt, A. M. (1994). Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. Journal of cellular biochemistry, 55(3):273–286.spa
dc.relation.references[Perron and Furnon, ] Perron, L. and Furnon, V. Or-toolsspa
dc.relation.references[Raggatt and Partridge, 2010] Raggatt, L. J. and Partridge, N. C. (2010). Cellular and molecular mechanisms of bone remodeling. Journal of biological chemistry, 285(33):25103–25108.spa
dc.relation.references[Ramtani et al., 2023] Ramtani, S., Sanchez, J. F., Boucetta, A., Kraft, R., Vaca-Gonzalez, J. J., and Garz´on-Alvarado, D. A. (2023a). A coupled mathematical model between bone remodeling and tumors: a study of different scenarios using komarova’s model. Biomechanics and Modeling in Mechanobiology, pages 1–21.spa
dc.relation.references[Ramtani et al., 2023b] Ramtani, S., Toudji, L., Boucetta, A., Boukharouba, T., and Garzon-Alvarado, D. A. (2023b). Komarova’s bone remodeling type model revisited within the context of a new parameter affecting both production and removal activities of osteoblasts and osteoclasts. Journal of Mechanics in Medicine and Biology.spa
dc.relation.references[Rapisarda et al., 2019] Rapisarda, A. C., Della Corte, A., Drobnicki, R., Di Cosmo, F., and Rosa, L. (2019). A model for bone mechanics and remodeling including cell populations dynamics. Zeitschrift f¨ur angewandte Mathematik und Physik, 70(1):1–17.spa
dc.relation.references[Ren et al., 2015] Ren, G., Esposito, M., and Kang, Y. (2015). Bone metastasis and the metastatic niche. Journal of molecular medicine, 93:1203–1212.spa
dc.relation.references[Ribba et al., 2014] Ribba, B., Holford, N. H., Magni, P., Troc´oniz, I., Gueorguieva, I., Girard, P., Sarr, C., Elishmereni, M., Kloft, C., and Friberg, L. E. (2014). A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis. CPT: pharmacometrics & systems pharmacology, 3(5):1–10.spa
dc.relation.references[Ribba et al., 2012] Ribba, B., Kaloshi, G., Peyre, M., Ricard, D., Calvez, V., Tod, M., ˇCajavec-Bernard, B., Idbaih, A., Psimaras, D., Dainese, L., et al. (2012). A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapya tumor growth inhibition model for low-grade glioma. Clinical Cancer Research, 18(18):5071–5080.spa
dc.relation.references[Rockne et al., 2010] Rockne, R., Rockhill, J., Mrugala, M., Spence, A., Kalet, I., Hendrickson, K., Lai, A., Cloughesy, T., Alvord, E., and Swanson, K. (2010). Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Physics in Medicine & Biology, 55(12):3271.spa
dc.relation.references[Ron and Holmgren, 2007] Ron, X. Y. and Holmgren, E. (2007). Endpoints for agents that slow tumor growth. Contemporary clinical trials, 28(1):18– 24.spa
dc.relation.references[Rowe et al., 2018] Rowe, P., Koller, A., and Sharma, S. (2018). Physiology, bone remodeling.spa
dc.relation.references[Ryser et al., 2010] Ryser, M. D., Komarova, S. V., and Nigam, N. (2010). The cellular dynamics of bone remodeling: a mathematical model. Siam journal on applied mathematics, 70(6):1899–1921.spa
dc.relation.references[Schaffler and Kennedy, 2012] Schaffler, M. B. and Kennedy, O. D. (2012). Osteocyte signaling in bone. Current osteoporosis reports, 10:118–125.spa
dc.relation.references[Simmons et al., 2017] Simmons, A., Burrage, P. M., Nicolau Jr, D. V., Lakhani, S. R., and Burrage, K. (2017). Environmental factors in breast cancer invasion: a mathematical modelling review. Pathology, 49(2):172– 180.spa
dc.relation.references[Sindhi and Erdek, 2019] Sindhi, V. and Erdek, M. (2019). Interventional treatments for metastatic bone cancer pain. Pain management, 9(3):307– 315.spa
dc.relation.references[Smith et al., 2005] Smith, M. R., Lee, W. C., Brandman, J., Wang, Q., Botteman, M., and Pashos, C. L. (2005). Gonadotropin-releasing hormone agonists and fracture risk: a claims-based cohort study of men with nonmetastatic prostate cancer. Journal of Clinical Oncology, 23(31):7897–7903.spa
dc.relation.references[Song et al., 2021] Song, C.-X., Liu, S.-Y., Zhu, W.-T., Xu, S.-Y., and Ni, G.- X. (2021). Excessive mechanical stretch-mediated osteoblasts promote the catabolism and apoptosis of chondrocytes via the wnt/β-catenin signaling pathway. Molecular Medicine Reports, 24(2):1–10.spa
dc.relation.references[Sung et al., 2021] Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3):209–249.spa
dc.relation.references[Swanson et al., 2008] Swanson, K., Rostomily, R., and Alvord, E. (2008). A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. British journal of cancer, 98(1):113–119.spa
dc.relation.references[Teitelbaum, 2000] Teitelbaum, S. L. (2000). Bone resorption by osteoclasts. Science, 289(5484):1504–1508.spa
dc.relation.references[Ulam et al., 1952] Ulam, S. et al. (1952). Random processes and transformations. In Proceedings of the international congress on mathematics, volume 2, pages 264–275. Citeseer.spa
dc.relation.references[Valentim et al., 2023] Valentim, C. A., Rabi, J. A., and David, S. A. (2023). Cellular-automaton model for tumor growth dynamics: Virtualization of different scenarios. Computers in Biology and Medicine, 153:106481.spa
dc.relation.references[Von Neumann et al., 1951] Von Neumann, J. et al. (1951). The general and logical theory of automata. 1951, pages 1–41.spa
dc.relation.references[Wang et al., 2009] Wang, C. H., Rockhill, J. K., Mrugala, M., Peacock, D. L., Lai, A., Jusenius, K., Wardlaw, J. M., Cloughesy, T., Spence, A. M., Rockne, R., et al. (2009). Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer research, 69(23):9133–9140.spa
dc.relation.references[Weinans et al., 1992] Weinans, H., Huiskes, R., and Grootenboer, H. (1992). The behavior of adaptive bone-remodeling simulation models. Journal of biomechanics, 25(12):1425–1441.spa
dc.relation.references[Weinans et al., 1994] Weinans, H., Huiskes, R., and Grootenboer, H. (1994). Effects of fit and bonding characteristics of femoral stems on adaptive bone remodeling.spa
dc.relation.references[Weis et al., 2015] Weis, J. A., Miga, M. I., Arlinghaus, L. R., Li, X., Abramson, V., Chakravarthy, A. B., Pendyala, P., and Yankeelov, T. E. (2015). Predicting the response of breast cancer to neoadjuvant therapy using a mechanically coupled reaction–diffusion model. Cancer research, 75(22):4697– 4707.spa
dc.relation.references[Weis et al., 2013] Weis, J. A., Miga, M. I., Arlinghaus, L. R., Li, X., Chakravarthy, A. B., Abramson, V., Farley, J., and Yankeelov, T. E. (2013). A mechanically coupled reaction–diffusion model for predicting the response of breast tumors to neoadjuvant chemotherapy. Physics in Medicine & Biology, 58(17):5851.spa
dc.relation.references[Wozniak and Giabbanelli, 2021] Wozniak, M. K. and Giabbanelli, P. J. (2021). Comparing implementations of cellular automata as images: A novel approach to verification by combining image processing and machine learning. In Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, pages 13–25.spa
dc.relation.references[Yang et al., 2022] Yang, P., Qu, Y., Wang, M., Chu, B., Chen, W., Zheng, Y., Niu, T., and Qian, Z. (2022). Pathogenesis and treatment of multiple myeloma. MedComm, 3(2):e146.spa
dc.relation.references[Zanoletti et al., 2015] Zanoletti, E., Lovato, A., Stritoni, P., Martini, A., Mazzoni, A., and Marioni, G. (2015). A critical look at persistent problems in the diagnosis, staging and treatment of temporal bone carcinoma. Cancer treatment reviews, 41(10):821–826.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsmieloma múltiplespa
dc.subject.decsMultiple Myelomaeng
dc.subject.decsmodelos teóricosspa
dc.subject.decssimulación por ordenadorspa
dc.subject.decsComputer Simulationeng
dc.subject.proposalRemodelación óseaspa
dc.subject.proposalCrecimiento tumoralspa
dc.subject.proposalTumorspa
dc.subject.proposalModelo de Komarovaspa
dc.subject.proposalOsteoclastosspa
dc.subject.proposalOsteoblastosspa
dc.subject.proposalBone remodelingeng
dc.subject.proposalTumor Growtheng
dc.subject.proposalTumoreng
dc.subject.proposalCoupling tumor–boneeng
dc.subject.proposalKomarova’s modeleng
dc.subject.proposalOsteoclastseng
dc.subject.proposalOsteoblastseng
dc.subject.proposalCoplamiento tumor huesospa
dc.titleModelo y simulación de dinámica de crecimiento de mielomaspa
dc.title.translatedModel and Simulation of dynamics of myeloma growtheng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014274230 .2024.pdf
Tamaño:
7.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: