Bases para la especificación reológica para concretos autocompactantes con arenas de distinto origen

dc.contributor.advisorLizarazo Marriaga, Juan Manuelspa
dc.contributor.authorAndrade Martínez, William Javierspa
dc.date.accessioned2021-06-24T18:04:16Z
dc.date.available2021-06-24T18:04:16Z
dc.date.issued2021
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEsta investigación tuvo como propósito establecer las bases para la especificación reológica de concretos autocompactantes (CAC), con materiales locales. Lo anterior se logró partiendo del análisis de 33 mezclas de concreto autocompactante elaboradas con 3 tipos de arena (La Sierra, Nacionales y Goliat) de uso comercial en Colombia. Se analizaron propiedades en estado fresco como temperatura, contenido de aire, densidad, flujo libre, bloqueo con Anillo J, capacidad de llenado a través de embudo V, capacidad de paso a través de Caja en L, esfuerzo de fluencia con reómetro ICAR y con Veleta Portátil, viscosidad plástica y en estado endurecido resistencia a compresión a 28 días. También se analizó la influencia del tiempo y la variación de la arena sobre las propiedades reológicas del CAC. Se establecieron correlaciones entre algunas propiedades, se determinó la tixotropía del CAC con cada arena y se evaluó la trabajabilidad mediante metodología estadística ANOVA, cajas simultáneas y la interpretación del coeficiente de correlación de Pearson. Al finalizar se presenta el análisis de la estabilidad estática mediante la interpretación gráfica de la resistencia del concreto a la segregación, la capacidad de paso y la velocidad de exudación. Esta investigación aportó la base metodológica para evaluar los concretos autocompactantes con materiales locales teniendo en cuenta el comportamiento y las correlaciones más relevantes e influyentes de las propiedades reológicas. (Texto tomado de la fuente).spa
dc.description.abstractThe purpose of the investigation was to establish the bases for the rheological specification of self-compacting concrete (SCC) with local materials. This study was based on the analysis of 33 SCC concrete mixtures made with 3 types of sands (La Sierra, Nacionales and Goliath) used in the commercial sector in Colombia. The properties in the fresh state were analyzed by temperature, air content, density, Slump flow, flow and blocking with J-Ring, filling ability with V-funnel, passing ability with L-Box test, ICAR Yield Stress, Potable vane Yield Stress, Bingham plastic viscosity and for hardened state was used strength test at 28 days. Also, the influence of time and the variation of the sand on the rheological properties of CAC was considered. The correlations were established between some properties, the thixotropy of the CAC with each sand was determined and the workability was evaluated by means of the statistical methodology ANOVA, simultaneous boxes and the interpretation of the Pearson correlation coefficient. At the end, the analysis of the static stability is presented through of graphic interpretation of the resistance of the concrete to segregation, passing ability, bleeding. This investigation provided the methodological basis for evaluating self-compacting concretes with local materials, taking into account the behavior and the most relevant and influential correlations of rheological properties.eng
dc.description.curricularareaArquitectura y Urbanismospa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Construcciónspa
dc.description.researchareaMaterialesspa
dc.format.extentxviii, 333 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79711
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de Arquitectura y Urbanismospa
dc.publisher.facultyFacultad de Artesspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Artes - Maestría en Construcciónspa
dc.relation.referencesACI Committee 237. (2007). Self-Consolidating Concrete. American Concrete Institute. American Concrete Institute. Retrieved from https://cutt.ly/CndTtUHspa
dc.relation.referencesACI, Committee 238. (2008). Report on Measurements of Workability and Rheology of Fresh Concrete. American Concrete Institute. American Concrete Institute. Retrieved from https://cutt.ly/AndYjIfspa
dc.relation.referencesAhari, R. S., Erdem, T. K., & Ramyar, K. (2015, May). Ahari, R. S., Erdem, T. K., & Ramyar, K. (2015). Thixotropy and structural breakdown properties of self consolidating concrete containing various supplementary cementitious materials. Cement Concrete Composites, 59, 26-37. Retrieved from https://doi.org/10.1016/j.cemconcomp.2015.03.009spa
dc.relation.referencesASOCRETO. (2010). Tecnología del concreto y sus componentes (Vol. I). Nomos Impresores.spa
dc.relation.referencesASTM C1621 / C1621M - 17. (s.f). Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring. Retrieved from https://www.astm.org/Standards/C1621spa
dc.relation.referencesBotella, R. M. (2005). Reología de suspensiones cerámicas (Vol. 17). Madrid: CSIC-CSIC Press.spa
dc.relation.referencesChen, J., Xie, H., Guo, J., Chen, B., & Liu, F. (2019, December ). Preliminarily experimental research on local pressure loss of fresh concrete during pumping. Measurement, 147.doi:https://doi.org/10.1016/j.measurement.2019.106897spa
dc.relation.referencesChoi, M. S., Lee, J. S., Ryu, K. S., Koh, K.-T., & Kwon, S. H. (2016, March). Estimation of rheological properties of UHPC using mini slump test. Construction and Building Materials, 632-639. doi:https://doi.org/10.1016/j.conbuildmat.2015.12.106spa
dc.relation.referencesClark, V. L., & Creswell, J. W. (2014). Understanding research: A consumers guide (Segunda ed ed.). Pearson Higher.spa
dc.relation.referencesCorinaldesi, V. (2012). Combined effect of expansive, shrinkage reducing and hydrophobic admixtures for durable self compacting concrete. (36), 758-764. doi:10.1016/j.conbuildmat.2012.04.129spa
dc.relation.referencesCorinaldesi, V., Monosi, S., & Ruello, M. L. (2012, May). Influence of inorganic pigments’ addition on the performance of coloured SCC. Construction and Building Materials, 30, 289-293.doi:https://doi.org/10.1016/j.conbuildmat.2011.12.037spa
dc.relation.referencesCu, Y. T., Tran, M. V., Ho, C. H., & Nguyen, P. H. (2020). Relationship between workability and rheological parameters of self-compacting concrete used for vertical pump up to supertall buildings. Journal of Building Engineering. doi:ttps://doi.org/10.1016/j.jobe.2020.101786spa
dc.relation.referencesDa Silva, M. A., Pepe, M., De Andrade, R. G., M, Pfeil, M. S., & Toledo Filho, R. D. (2017, September 30). Rheological and mechanical behavior of high strength steel fiber-river gravel self compacting concrete. Construction Building Materials, 150, 606-618.doi:https://doi.org/10.1016/j.conbuildmat.2017.06.030spa
dc.relation.referencesDa Silva, W. R., Fryda, H., Bousseau, J.-N., Andreani, P.-A., & Andersen, T. J. (2019). Evaluation of early-age concrete structural build-up for 3d concrete printing by oscillatory rheometry. In A. 2019:, International Conference on Applied Human Factors and Ergonomics (pp. 35-47). Retrieved from https://cutt.ly/Pnf4bfAspa
dc.relation.referencesDaczko, J. (2012). Self-consolidating concrete: Applying what we know (Primera ed.). CRC Press. Retrieved from https://cutt.ly/Jnf7lTZspa
dc.relation.referencesDe la Cruz, C. J. (2009). Desarrollo de hormigones autocompactables de resistencia media (HAC RM) en Colombia. Medellín: Universidad Nacional de Colombia . Retrieved from https://cutt.ly/mnf6vKmspa
dc.relation.referencesDe la Cruz, C., & Tamayo, A. (2018). Desarrollo de hormigones autocompactables de resistencia media (HAC-RM) en Colombia. Congresos de la Universitat Politècnica de València, HAC2018 - V Congreso Iberoamericano de Hormigón Autocompactable y Hormigones Especiales, 639-648. doi:DOI:10.4995/HAC2018.2018.5548spa
dc.relation.referencesDe Larrard, F., & Roussel, N. (2011). Flow Simulation of fresh concrete under a slipform machine. Road materials pavement design, 12(3), 547-566. Retrieved from DOI:10.1080/14680629.2011.9695260spa
dc.relation.referencesDinkgreve, M., Paredes, J., Denn, M. M., & Bonn, D. (2016). On different ways of measuring “the” yield stress. Journal of non-Newtonian fluid mechanics, 238, 233-241. Retrieved from https://doi.org/10.1016/j.jnnfm.2016.11.001spa
dc.relation.referencesDuarte, C. A., & Niño, J. R. (2004). Introducción a la mecánica de fluidos (Primera ed.). Universidad Nacional de Colombia.spa
dc.relation.referencesFerraris, C. F. (1999). Measurement of the rheological properties of high performance concrete: state of the art report. Journal of Research of the National Institute of Standards and Technology, 104(5), 461-478. doi: doi: 10.6028/jres.104.028spa
dc.relation.referencesFeys, D. K.-S. (2014). Development of a tribometer to characterize lubrication layer properties of self-consolidating concrete. Cement Concrete Composites, 40-52. doi:https://doi.org/10.1016/j.cemconcomp.2014.05.008spa
dc.relation.referencesFeys, D., De Schutter, G., Khayat, K. H., & Verhoeven, R. (2016). Changes in rheology of self consolidating concrete induced by pumping. Materials structures, 4657-4677. doi:DOI:10.1617/S11527-016-0815-7spa
dc.relation.referencesFeys, D., Khayat, K. H., & Khatib, R. (2015). How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure? Cement Concrete Composites, 38-46. doi:10.1016/j.cemconcomp.2015.11.002spa
dc.relation.referencesGarzón Amórtegui, J. F. (2014). Desarrollo y evaluación de un concreto autocompactante adicionado con ceniza volante colombiana. Revista Técnica, 18-29. Retrieved from https://cutt.ly/rnggIYWspa
dc.relation.referencesGermann Instruments . (2017). ICAR PLUS Concrete Rheometer Manual. In. Retrieved from https://cutt.ly/Xngu2zbspa
dc.relation.referencesGhoddousi, P., & Salehi, A. M. (2017). The evaluation of self compacting concrete robustness based on the rheology parameters. International Journal of Civil Engineering, 15(8), 1097-1106. doi:https://doi.org/10.1007/s40999-017-0239-yspa
dc.relation.referencesGmaslab. (2014). Análisis de difracción de rayos X (DRX). Retrieved from https://cutt.ly/inhgqcFspa
dc.relation.referencesGonzález Taboada, I., González Fonteboa, B., Eiras López, J., López, R., & G. (2017). Tools for the study of self-compacting recycled concrete fresh behaviour: Workability and rheology. Journal of Cleaner Production, 156, 1-18. doi:https://doi.org/10.1016/j.jclepro.2017.04.045spa
dc.relation.referencesGonzález Taboada, I., González Fonteboa, B., Martínez Abella, F., & Carro López, D. (2017). Self-compacting recycled concrete: Relationships between empirical and rheological parameters and proposal of a workability box. Construction Building Materials, 143, 537-546. doi:DOI:10.1016/j.conbuildmat.2017.03.156spa
dc.relation.referencesGonzález Taboada, I., González Fonteboa, B., Martínez Abella, F., & Roussel, N. (2017). Robustness of self-compacting recycled concrete: analysis of sensitivity parameters. Materials structures, 51(1), 1-10. doi:https://doi.org/10.1617/s11527-017-1136-1spa
dc.relation.referencesGüneyisi, E., Gesoglu, M., Algın, Z., & Yazıcı, H. (2016). Rheological and fresh properties of self compacting concretes containing coarse and fine recycled concrete aggregates. Construction Building Materials, 113, 622-630. doi:10.1016/j.conbuildmat.2016.03.073spa
dc.relation.referencesGüneyisi, E., Gesoglu, M., Naji, N., & İpek, S. (2015). Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel-Bulkley and modified Bingham models. Archives of civil mechanical engineering, 16( ), 9-19. Retrieved from https://cutt.ly/JnggiNYspa
dc.relation.referencesGutiérrez Pulido, H., & De la Vara Salazar, R. (2008). Análisis y diseño de experimentos (Segunda ed.). México D.F: M. G. Hill.spa
dc.relation.referencesHernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la Investigación (Sexta ed.). México D.F: M G. Hill. Retrieved from https://cutt.ly/znghvdOspa
dc.relation.referencesIbarrola, E. L. (2009). Introducción a los fluidos no newtonianos: Cátedra de Mecánica de los Fluidos - UNCor. Retrieved from https://cutt.ly/QnhdMm9spa
dc.relation.referencesIrving, S. (1995). Mecánica de fluidos. McGraw-Hill.spa
dc.relation.referencesKhan, M., Mourad, S. M., & Charif, A. (2016). Utilization of Supplementary Cementitious Materials in HPC: From rheology to pore structure. Journal of Civil Engineering, 889-899. doi:https://doi.org/10.1007/s12205-016-1781-xspa
dc.relation.referencesKhayat, K., Omran, A. F., Naji, S., Billberg, P., & Yahia, A. (2012). Field-oriented test methods to evaluate structural build-up at rest of flowable mortar and concrete. Materials structures, 45(10), 1547-1564. doi:10.1617/s11527-012-9856-8spa
dc.relation.referencesKim, J. S., Kwon, S. H., Jang, K. P., & Choi, M. S. (2018). Concrete pumping prediction considering different measurement of the rheological properties. Construction Building Materials, 171, 493-503. doi:https://doi.org/10.1016/j.conbuildmat.2018.03.194spa
dc.relation.referencesKoehler, E. P., Fowler, D. W., Ferraris, C. F., & Amziane, S. (2005). A new, portable rheometer for fresh self-consolidating concrete. ACI materials journal, 233. Retrieved from https://cutt.ly/fngPfYHspa
dc.relation.referencesLecompte, T., & Perrot, A. (2016). Non-linear modeling of yield stress increase due to SCC structural build-up at rest. Cement Concrete Research, 92, 92-97. doi:10.1016/j.cemconres.2016.11.020spa
dc.relation.referencesLong, W.-J., Khayat, K. H., Yahia, A., & Xing, F. (2017). Rheological approach in proportioning and evaluating prestressed self-consolidating concrete. Cement Concrete Composites, 82, 105-116. doi:https://doi.org/10.1016/j.cemconcomp.2017.05.008spa
dc.relation.referencesMechtcherine, V., Nerella, V. N., & Kasten, K. (2013). Testing pumpability of concrete using Sliding Pipe Rheometer. Construction Building Materials, 53, 312-323. doi:https://doi.org/10.1016/j.conbuildmat.2013.11.037spa
dc.relation.referencesMegid, W. A., & Khayat, K. H. (2019). Variations in surface quality of self-consolidation and highly workable concretes with formwork material. Construction Building Materials, 238. doi:https://doi.org/10.1016/j.conbuildmat.2019.117638spa
dc.relation.referencesMohan, M. K., Rahul, A., Van Tittelboom, K., & De Schutter, G. (2020). Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cement Concrete Research, 139. doi:https://doi.org/10.1016/j.cemconres.2020.106258spa
dc.relation.referencesNavidi, W. (2006). Estadística para ingenieros. McGraw Hill Interamericana.spa
dc.relation.referencesOkamura, H., & Ouchi, M. (1998). Self‐compacting high performance concrete. Electronic Concrete International, 1 (4), 378-383. doi:https://doi.org/10.1002/pse.2260010406spa
dc.relation.referencesOmran, A. F., & Khayat, K. H. (2014). Choice of thixotropic index to evaluate formwork pressure characteristics of self-consolidating concrete. ACI MATERIALS, 63, 89-97. doi:https://doi.org/10.1016/j.cemconres.2014.05.005spa
dc.relation.referencesOmran, A. F., & Naji, S. &. (2011). Portable Vane Test to Assess Structural Buildup at Rest of Self-Consolidating Concrete. Aci Materials Journal, 108(6 ). Retrieved from https://cutt.ly/cngC0lEspa
dc.relation.referencesOmran, A. F., Naji, S., & Khayat, K. H. (2011a). Portable Vane Test to Assess Structural Buildup at Rest of Self-Consolidating Concrete. ACI MATERIALS, 108(M67). Retrieved from https://cutt.ly/NngXDAospa
dc.relation.referencesOuchi, M., Hibino, M., & Okamura, H. (1997). Effect of superplasticizer on self-compactability of fresh concrete. 1574(1), 37-40. doi:https://doi.org/10.3141/1574-05spa
dc.relation.referencesOzawa, K., Sakata, N., & Okamura, H. (1994). Evaluation of self-compactability of fresh concrete using the funnel test. J-STAGE , 1994(490), 61-70. doi:https://doi.org/10.2208/jscej.1994.490_61spa
dc.relation.referencesÖzel, C., & Yücel, K. T. (2011). Effect of cement content, fibers, chemical admixtures and aggregate shape on rheological parameters of pumping concrete. Arab J for Scie Eng, 30, 1059-1074. doi:https://doi.org/10.1007/s13369-012-0345-8spa
dc.relation.referencesRoberts, G., Barnes, H., & Mackie, C. (2001). Using the microsoft excelsolvertool to perform non linear curve fitting, using a range of non-newtonian flow curves as examples. Applied Rheology, 11(5), 271-276. doi:https://doi.org/10.1515/arh-2001-0016spa
dc.relation.referencesRosental, M., & Iudin, P. (1959). Diccionario filosófico abreviado. (M. Rosental, & P. Iudin, Eds.) Uruguay: Ediciones pueblos unido.spa
dc.relation.referencesRoussel, N. (2012). Understanding the rheology of concrete. Woodhead Publishing.spa
dc.relation.referencesRubio-Hernández, F., Velázquez-Navarro, J., & Ordóñez-Belloc, L. (2012). Rheology of concrete: a study case based upon the use of the concrete equivalent mortar. Materials structures, 587-605. doi:https://doi.org/10.1617/s11527-012-9915-1spa
dc.relation.referencesSánchez de Guzmán, D. (2001). Tecnología del concreto y del mortero. Bogotá: Pontificia Universidad Javeriana.spa
dc.relation.referencesSanjayan, J., Jayathilakage, R., & Rajeev, P. (2020). Vibration induced active rheology control for 3D concrete printing. Cement Concrete Research, 140. doi:https://doi.org/10.1016/j.cemconres.2020.106293spa
dc.relation.referencesSecrieru, E., Fataei, S., Schröfl, C., & Mechtcherine, V. (2017). Study on concrete pumpability combining different laboratory tools and linkage to rheology. Construction Building Materials, 144, 451-461. Retrieved from 10.1016/j.conbuildmat.2017.03.199spa
dc.relation.referencesSecrieru, E., Mechtcherine, V., Schröfl, C., & Borin, D. (2016). Rheological characterisation and prediction of pumpability of strain-hardening cement-based-composites (SHCC) with and without addition of superabsorbent polymers (SAP) at various temperatur. 581-594. doi:10.1016/j.conbuildmat.2016.02.161spa
dc.relation.referencesSecrieru, E., Mohamed, W., Fataei, S., & Mechtcherine, V. (2019). Assessment and prediction of concrete flow and pumping pressure in pipeline. Cement Concrete Composites, 107. doi:https://doi.org/10.1016/j.cemconcomp.2019.103495spa
dc.relation.referencesShin, T. Y., Kim, J., & Han, S. (2017). Rheological properties considering the effect of aggregates on concrete slump flow. Materials structures, 50(6), 1-11. doi:DOI:10.1016/B978-0-12-817369-5.00002-7spa
dc.relation.referencesSiddique, R., & Jahandari, S. (2019). Self-Compacting Concrete: Materials, Properties and Applications. Woodhead Publishing Series in Civil and Structural Engineering.spa
dc.relation.referencesStreeter, V. L., Wylie, E. B., Bedford, K. W., & Saldarriaga, J. G. (1988). Mecánica de los fluidos.spa
dc.relation.referencesStreeter, V., Wylie, B., & Bedford, K. (1999). Mecánica de fluidos. España: Mc Graw Hill.spa
dc.relation.referencesTaibi, H., & Messelmi, F. (2017). Effect of yield stress on the behavior of rigid zones during the laminar flow of Herschel-Bulkley fluid. Alexandria Engineering Journal, 57(2), 1109-1115. doi:https://doi.org/10.1016/j.aej.2017.01.001spa
dc.relation.referencesTan, Y., Cao, G., Zhang, H., Wang, J., Deng, R., Xiao, X., & Wu, B. (2015). Study on the thixotropy of the fresh concrete using DEM. Procedia engineering, 102, 1944-1950. Retrieved from https://doi.org/10.1016/j.proeng.2015.06.138spa
dc.relation.referencesTattersall, G. H. (1954). Structural breakdown of cement paste at constant rate of shear. Nature, 175, 166. doi:https://doi.org/10.1038/175166a0spa
dc.relation.referencesTattersall, G. H., & Banfill, P. F. (1983). The rheology of fresh concrete. Boston : Pitman Advanced Pub. Program. Retrieved from https://cutt.ly/KnghBEaspa
dc.relation.referencesXie, H., Liu, F., Fan, Y., Yang, H., Chen, J., Zhang, J., & Zuo, C. (2013). Workability and proportion design of pumping concrete based on rheological parameters. Construction Building Materials, 44, 267-275. doi:https://doi.org/10.1016/j.conbuildmat.2013.02.051spa
dc.relation.referencesYun, K.-K., Choi, P., & Yeon, J. H. (2018). Rheological characteristics of wet-mix shotcrete mixtures with crushed aggregates and mineral admixtures. Journal of Civil Engineering, 22(7), 2469-2479. doi:https://doi.org/10.1007/s12205-017-0198-5spa
dc.relation.referencesZerbino, R., Barragán, B. E., Agulló Fité, L., García Vicente, T., & Gettu, R. (2006). Reología de hormigones autocompactables. Ciencia y Tecnología del Hormigón, 13, 51-64. Retrieved from https://cutt.ly/Knges0Espa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.lembConcreteeng
dc.subject.lembHormigónspa
dc.subject.lembAggregateseng
dc.subject.lembAgregadosspa
dc.subject.lembFluidseng
dc.subject.lembFluidosspa
dc.subject.proposalReologíaspa
dc.subject.proposalTixotropíaspa
dc.subject.proposalTrabajabilidadspa
dc.subject.proposalBinghamspa
dc.subject.proposalEsfuerzo de fluenciaspa
dc.subject.proposalViscosidadspa
dc.subject.proposalVeleta portátilspa
dc.subject.proposalConcreto autocompactantespa
dc.subject.proposalRheologyeng
dc.subject.proposalThixotropyeng
dc.subject.proposalWorkabilityeng
dc.subject.proposalYield Streeseng
dc.subject.proposalViscosityeng
dc.subject.proposalPortable vaneeng
dc.subject.proposalSCCeng
dc.subject.proposalSelf compacting concreteeng
dc.subject.unescoMateriales de construcciónspa
dc.subject.unescoBuilding materialseng
dc.subject.unescoTecnología de materialesspa
dc.subject.unescoMaterials engineeringeng
dc.subject.unescoRoca sedimentariaspa
dc.subject.unescoSedimentary rockseng
dc.titleBases para la especificación reológica para concretos autocompactantes con arenas de distinto origenspa
dc.title.translatedBases for the rheological specification for self compacting concretes with sands of different origineng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1075235488.2021.pdf
Tamaño:
6.49 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Construcción

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: