Development of a multicomponent wavefunction-in-DFT embedding methodology
dc.contributor.advisor | Reyes Velasco, Andrés | |
dc.contributor.author | Moncada Arias, Félix Santiago | |
dc.contributor.researchgroup | Química Cuántica y Computacional | spa |
dc.date.accessioned | 2021-12-15T23:45:27Z | |
dc.date.available | 2021-12-15T23:45:27Z | |
dc.date.issued | 2021-12 | |
dc.description | ilustraciones, graficas | spa |
dc.description.abstract | This thesis presents theoretical developments, computational implementations, and numerical applications of multicomponent methodologies that describe positron-molecule interactions. The theoretical developments combine wavefunction methodologies, such as the any particle molecular orbital propagator theory, with density functional theory (DFT) approaches for electrons and positrons. The projector operator embedding scheme of Manby et al. [J. Chem. Theory Comput., 8, 2564 (2012)] has been extended to a multicomponent formulation. The extended wavefunction embedded in DFT scheme reduces the computational cost of positron binding energy predictions obtained with third-order propagator theory at the complete basis set limit without affecting their quality. The stability of novel positron bound states with alkoxide and carboxylate anions is predicted with the extended embedding scheme. This thesis also reports the development of a new positron-electron correlation functional inspired by the Colle-Salvetti formulation of electron correlation. The proposed functional is parameterized to reproduce the annihilation rate and the energy of a positronium atom with a single parameter. DFT positron and positronium binding energies obtained with the new functional display good correlation with results reported employing wavefunction methodologies. In addition, this thesis contains a computational study of positron dihalide molecules, e+[X-Y-] with X,Y=F,Cl,Br, in which the positron binds two repelling halide anions. The covalent positron bonds between halide anions present similar features to one-electron bonds in dialkali cations with isoelectronic atomic cores. This study reveals that positron covalent bonding is not restricted to the e+[H-H-] molecule, previously reported. | eng |
dc.description.abstract | Esta tesis presenta el desarrollo teórico, la implementación computacional y aplicaciones numéricas de metodologías multicomponente que describen interacciones positrón-molécula. Los desarrollos teóricos combinan metodologías de función de onda, como la teoría del propagador para orbitales moleculares de cualquier partícula, con procedimientos de la teoría del funcional de la densidad (DFT) para electrones y positrones. El esquema de embebido empleando operadores de proyección de Manby et al. [J. Chem. Theory Comput., 8, 2564 (2012)] se ha extendido a una formulación multicomponente. El esquema extendido de función de onda embebida en DFT reduce el costo computacional de las predicciones de energías de enlace de positrón obtenidas con la teoría del propagador de tercer orden en el límite de conjunto de base completo sin afectar su calidad. La estabilidad de nuevos estados ligados de positrones con aniones alcóxido y carboxilato es predicha con el esquema extendido de embebido. Esta tesis también contiene el desarrollo de un nuevo funcional de correlación positrón-electrón inspirado en la formulación de correlación electrónica de Colle-Salvetti. El funcional propuesto está parametrizado para reproducir la tasa de aniquilación y la energía de un átomo de positronio con un solo parámetro. Las energías de unión de positrón y positronio obtenidas con el nuevo funcional muestran una buena correlación con resultados reportados con metodologías de función de onda. Además, esta tesis contiene un estudio computacional de moléculas de dihaluro de positrón, e+[X-Y-] con X,Y=F,Cl,Br, en las que el positrón une dos aniones haluro que se repelen entre sí. Los enlaces covalentes de positrón entre los aniones haluro muestran características similares a los enlaces de un electrón en los cationes dialcalinos con núcleos atómicos isoelectrónicos. Este estudio revela que el enlace covalente positrónico no está restringido a la molécula e+[H-H-] previamente reportada. (Texto tomado de la fuente) | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Química | spa |
dc.format.extent | xviii, 145 pagínas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80788 | |
dc.language.iso | eng | |
dc.publisher | Univesidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Química | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Química | spa |
dc.relation.references | P. A. M. Dirac, Proc. R. Soc. London. Ser. A 117, 610 (1928) | spa |
dc.relation.references | P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 361 (1930) | spa |
dc.relation.references | C. D. Anderson, Phys. Rev. 43, 491 (1933) | spa |
dc.relation.references | F. Joliot, J. Phys. le Radium 5, 299 (1934) | spa |
dc.relation.references | M. Deutsch, Phys. Rev. 82, 455 (1951) | spa |
dc.relation.references | S. Berko and H. N. Pendleton, Annu. Rev. Nucl. Part. Sci. 30, 543 (1980) | spa |
dc.relation.references | J. Thibaud, Phys. Rev. 45, 781 (1934) | spa |
dc.relation.references | S. Mohorovicic, Astron. Nachrichten 253, 93 (1934) | spa |
dc.relation.references | A. P. Mills, Phys. Rev. Lett. 46, 717 (1981) | spa |
dc.relation.references | D. B. Cassidy and A. P. Mills, Nature 449, 195 (2007) | spa |
dc.relation.references | O. E. Mogensen, Positron Annihilation in Chemistry (Springer-Verlag, Berlin,Heidelberg, 1995) | spa |
dc.relation.references | C. M. Surko and F. A. Gianturco, editors, New Directions in Antimatter Chemistry and Physics (Springer, Dordrecht, 2002) | spa |
dc.relation.references | Y. Jean, P. Mallon, and D. Schrader, editors, Principles and Applications of Positron and Positronium Chemistry (World Scientific, Singapore, 2003) | spa |
dc.relation.references | F. Tuomisto and I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013) | spa |
dc.relation.references | J. Cizek, J. Mater. Sci. Technol. 34, 577 (2018) | spa |
dc.relation.references | K. Hagiwara, T. Ougizawa, T. Inoue, K. Hirata, and Y. Kobayashi, Radiat. Phys. Chem. 58, 525 (2000) | spa |
dc.relation.references | C. Hugenschmidt, Surf. Sci. Rep. 71, 547 (2016) | spa |
dc.relation.references | S. J. Tao and J. H. Green, J. Phys. Chem. 73, 882 (1969) | spa |
dc.relation.references | S. V. Stepanov, V. M. Byakov, D. S. Zvezhinskiy, G. Duplatre, R. R. Nurmukhametov, and P. S. Stepanov, Adv. Phys. Chem. 2012, 1 (2012) | spa |
dc.relation.references | M. Charlton and G. Laricchia, J. Phys. B At. Mol. Opt. Phys. 23, 1045 (1990) | spa |
dc.relation.references | S. J. Brawley, S. Armitage, J. Beale, D. E. Leslie, A. I. Williams, and G. Laricchia, Science 330, 789 (2010) | spa |
dc.relation.references | S. N. Nahar and B. Antony, Atoms 8, 29 (2020) | spa |
dc.relation.references | L. D. Hulett, D. L. Donohue, J. Xu, T. A. Lewis, S. A. McLuckey, and G. L. Glish, Chem. Phys. Lett. 216, 236 (1993) | spa |
dc.relation.references | D. M. Schrader, F. M. Jacobsen, N.-P. Frandsen, and U. Mikkelsen, Phys. Rev. Lett. 69, 57 (1992) | spa |
dc.relation.references | G. F. Gribakin, J. A. Young, and C. M. Surko, Rev. Mod. Phys. 82, 2557 (2010) | spa |
dc.relation.references | J. R. Danielson, J. J. Gosselin, and C. M. Surko, Phys. Rev. Lett. 104, 233201 (2010) | spa |
dc.relation.references | J. R. Danielson, A. C. L. Jones, M. R. Natisin, and C. M. Surko, Phys. Rev. Lett. 109, 113201 (2012) | spa |
dc.relation.references | J. R. Danielson, A. C. L. Jones, J. J. Gosselin, M. R. Natisin, and C. M. Surko, Phys. Rev. A 85, 022709 (2012) | spa |
dc.relation.references | A. C. L. Jones, J. R. Danielson, M. R. Natisin, and C. M. Surko, Phys. Rev. Lett. 110, 223201 (2013) | spa |
dc.relation.references | S. J. Gilbert, L. D. Barnes, J. P. Sullivan, and C. M. Surko, Phys. Rev. Lett. 88, 4 (2002) | spa |
dc.relation.references | J. R. Danielson, D. H. E. Dubin, R. G. Greaves, and C. M. Surko, Rev. Mod. Phys. 87, 247 (2015) | spa |
dc.relation.references | D. B. Cassidy, Eur. Phys. J. D 72, 53 (2018) | spa |
dc.relation.references | Y. Nagashima, Phys. Rep. 545, 95 (2014) | spa |
dc.relation.references | C. Harabati, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 89, 022517 (2014) | spa |
dc.relation.references | X. Cheng, D. Babikov, and D. M. Schrader, Phys. Rev. A 85, 012503 (2012) | spa |
dc.relation.references | D. M. Schrader, Compounds of positrons with koino-atoms and molecules, in Physics with Many Positrons, edited by A. Dupasquier, A. P. Mills Jr, and R. S. Brusa, pp. 337–398, IOS Press, Amsterdam, 2010 | spa |
dc.relation.references | P. M. Kozlowski and L. Adamowicz, J. Phys. Chem. 100, 6266 (1996) | spa |
dc.relation.references | G. W. Drake and M. Grigorescu, J. Phys. B At. Mol. Opt. Phys. 38, 3377 (2005) | spa |
dc.relation.references | A. Ore, Phys. Rev. 83, 665 (1951) | spa |
dc.relation.references | V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and W. A. King, Phys. Rev. A 52, 4541 (1995) | spa |
dc.relation.references | G. G. Ryzhikh and J. Mitroy, Phys. Rev. Lett. 79, 4124 (1997) | spa |
dc.relation.references | J. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 35, 201 (2002) | spa |
dc.relation.references | X. Cheng, D. Babikov, and D. M. Schrader, Phys. Rev. A 83, 032504 (2011) | spa |
dc.relation.references | H. A. Kurtz and K. D. Jordan, Int. J. Quantum Chem. 14, 747 (1978) | spa |
dc.relation.references | A. Farazdel and P. E. Cade, Chem. Phys. Lett. 72, 131 (1980) | spa |
dc.relation.references | H. A. Kurtz and K. D. Jordan, J. Chem. Phys. 75, 1876 (1981) | spa |
dc.relation.references | C. Kao and P. E. Cade, J. Chem. Phys. 80, 3234 (1984) | spa |
dc.relation.references | W. R. Garrett, J. Chem. Phys. 73, 5721 (1980) | spa |
dc.relation.references | M. Tachikawa, I. Shimamura, R. Buenker, and M. Kimura, ”bound states of positron with molecules”, in New Directions in Antimatter Chemistry and Physics, edited by C. Surko and F. Gianturco, pp. 437–450, Springer, Dordrecht, 2001 | spa |
dc.relation.references | P. E. Adamson, X. F. Duan, L. W. Burggraf, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Phys. Chem. A 112, 1346 (2008) | spa |
dc.relation.references | J. Charry, M. T. d. N. Varella, and A. Reyes, Angew. Chemie Int. Ed. 57, 8859 (2018) | spa |
dc.relation.references | T. Yoshida, G. Miyako, N. Jiang, and D. M. Schrader, Phys. Rev. A - At. Mol. Opt. Phys. 54, 964 (1996) | spa |
dc.relation.references | T. Saito, M. Tachikawa, C. Ohe, K. Iguchi, and K. Suzuki, J. Phys. Chem. 100, 6057 (1996) | spa |
dc.relation.references | D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 108, 4756 (1998) | spa |
dc.relation.references | D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 1716 (1998) | spa |
dc.relation.references | D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 5931 (1998) | spa |
dc.relation.references | M. Mella, G. Morosi, and D. Bressanini, J. Chem. Phys. 111, 108 (1999) | spa |
dc.relation.references | M. Mella, D. Bressanini, and G. Morosi, J. Chem. Phys. 114, 10579 (2001) | spa |
dc.relation.references | M. Mella, S. Chiesa, and G. Morosi, J. Chem. Phys. 116, 2852 (2002) | spa |
dc.relation.references | Y. Kita, R. Maezono, M. Tachikawa, M. Towler, and R. J. Needs, J. Chem. Phys. 131, 134310 (2009) | spa |
dc.relation.references | Y. Yamada, Y. Kita, M. Tachikawa, M. D. Towler, and R. J. Needs, Eur. Phys. J. D 68, 63 (2014) | spa |
dc.relation.references | Y. Yamada, Y. Kita, and M. Tachikawa, Phys. Rev. A 89, 062711 (2014) | spa |
dc.relation.references | D. Bressanini, Phys. Rev. A 97, 012508 (2018) | spa |
dc.relation.references | S. Ito, D. Yoshida, Y. Kita, and M. Tachikawa, J. Chem. Phys. 153, 224305 (2020) | spa |
dc.relation.references | V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 60, 3641 (1999) | spa |
dc.relation.references | M. W. J. Bromley and J. Mitroy, Phys. Rev. A 66, 062504 (2002) | spa |
dc.relation.references | S. L. Saito, J. Chem. Phys. 122, 054302 (2005) | spa |
dc.relation.references | S. L. Saito, Theor. Chem. Acc. 115, 281 (2006) | spa |
dc.relation.references | R. J. Buenker, H.-P. Liebermann, M. Tachikawa, L. Pichl, and M. Kimura, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 247, 47 (2006) | spa |
dc.relation.references | M. W. J. Bromley and J. Mitroy, Phys. Rev. A 73, 032507 (2006) | spa |
dc.relation.references | F. A. Gianturco, J. Franz, R. J. Buenker, H. P. Liebermann, L. Pichl, J. M. Rost, M. Tachikawa, and M. Kimura, Phys. Rev. A 73, 022705 (2006) | spa |
dc.relation.references | J. Mitroy and M. W. J. Bromley, Phys. Rev. A 73, 052712 (2006) | spa |
dc.relation.references | R. J. Buenker, H. P. Liebermann, L. Pichl, M. Tachikawa, and M. Kimura, J. Chem. Phys. 126, 104305 (2007) | spa |
dc.relation.references | R. J. Buenker and H.-P. Liebermann, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 266, 483 (2008) | spa |
dc.relation.references | J. Mitroy, J. Y. Zhang, M. W. J. Bromley, and S. I. Young, Phys. Rev. A 78, 012715 (2008) | spa |
dc.relation.references | R. J. Buenker and H.-P. Liebermann, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 267, 763 (2009) | spa |
dc.relation.references | M. Tachikawa, Y. Kita, and R. J. Buenker, Phys. Chem. Chem. Phys. 13, 2701 (2011) | spa |
dc.relation.references | M. Tachikawa, Y. Kita, and R. J. Buenker, New J. Phys. 14, 035004 (2012) | spa |
dc.relation.references | T. Oyamada and M. Tachikawa, Eur. Phys. J. D 68, 231 (2014) | spa |
dc.relation.references | J. P. Coe and M. J. Paterson, Chem. Phys. Lett. 645, 106 (2016) | spa |
dc.relation.references | V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 86, 032503 (2012) | spa |
dc.relation.references | B. H. Ellis, S. Aggarwal, and A. Chakraborty, J. Chem. Theory Comput. 12, 188 (2016) | spa |
dc.relation.references | F. Pavosevic and S. Hammes-Schiffer, J. Chem. Phys. 150, 161102 (2019) | spa |
dc.relation.references | G. F. Gribakin and J. Ludlow, Phys. Rev. A 70, 032720 (2004) | spa |
dc.relation.references | J. A. Ludlow and G. F. Gribakin, Int. Rev. At. Mol. Phys. 1, 73 (2010) | spa |
dc.relation.references | K. Strasburger, J. Chem. Phys. 111, 10555 (1999) | spa |
dc.relation.references | S. Bubin and L. Adamowicz, J. Chem. Phys. 120, 6051 (2004) | spa |
dc.relation.references | K. Strasburger, Struct. Chem. 15, 415 (2004) | spa |
dc.relation.references | M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 113, 4004 (2009) | spa |
dc.relation.references | C. Swalina, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 136, 164105 (2012) | spa |
dc.relation.references | G. G. Ryzhikh, J. Mitroy, and K. Varga, J. Phys. B At. Mol. Opt. Phys. 31, 3965 (1998) | spa |
dc.relation.references | G. Ryzhikh and J. Mitroy, J. Phys. B At. Mol. Opt. Phys. 31, 4459 (1998) | spa |
dc.relation.references | J. Mitroy and G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 32, 1375 (1999) | spa |
dc.relation.references | J. Mitroy and G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 32, 3839 (1999) | spa |
dc.relation.references | J. Mitroy and G. G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 34, 2001 (2001) | spa |
dc.relation.references | J. Mitroy, Phys. Rev. A 70, 024502 (2004) | spa |
dc.relation.references | J. Mitroy and S. A. Novikov, Phys. Rev. A 70, 032511 (2004) | spa |
dc.relation.references | J. Mitroy, Phys. Rev. A 73, 054502 (2006) | spa |
dc.relation.references | J. Mitroy, J. At. Mol. Sci. 1, 275 (2010) | spa |
dc.relation.references | A. Zubiaga, F. Tuomisto, and M. J. Puska, Phys. Rev. A 89, 052707 (2014) | spa |
dc.relation.references | Y. Kita and M. Tachikawa, Chem. Phys. Lett. 482, 201 (2009) | spa |
dc.relation.references | K. Koyanagi, Y. Kita, and M. Tachikawa, Eur. Phys. J. D 66, 121 (2012) | spa |
dc.relation.references | J. Charry, J. Romero, M. T. d. N. Varella, and A. Reyes, Phys. Rev. A 89, 052709 | spa |
dc.relation.references | Y. Oba and M. Tachikawa, Int. J. Quantum Chem. 114, 1146 (2014) | spa |
dc.relation.references | M. Nummela, H. Raebiger, D. Yoshida, and M. Tachikawa, J. Phys. Chem. A 120, 4037 (2016) | spa |
dc.relation.references | A. Jain, Phys. Rev. A 41, 2437 (1990) | spa |
dc.relation.references | F. A. Gianturco, P. Paioletti, and J. A. Rodriguez-Ruiz, Z. Phys. D Atoms, Mol. Clust. 36, 51 (1996) | spa |
dc.relation.references | J. Mitroy and I. A. Ivanov, Phys. Rev. A - At. Mol. Opt. Phys. 65, 15 (2002) | spa |
dc.relation.references | J. Franz, Eur. Phys. J. D 71, 44 (2017) | spa |
dc.relation.references | A. R. Swann and G. F. Gribakin, J. Chem. Phys. 149, 244305 (2018) | spa |
dc.relation.references | A. R. Swann and G. F. Gribakin, Phys. Rev. Lett. 123, 113402 (2019) | spa |
dc.relation.references | Y. Sugiura, T. Takayanagi, Y. Kita, and M. Tachikawa, Eur. Phys. J. D 73, 162 (2019) | spa |
dc.relation.references | Y. Sugiura, H. Suzuki, T. Otomo, T. Miyazaki, T. Takayanagi, and M. Tachikawa, J. Comput. Chem. 41, 1576 (2020) | spa |
dc.relation.references | E. Boronski and R. M. Nieminen, Phys. Rev. B 34, 3820 (1986) | spa |
dc.relation.references | M. J. Puska, A. P. Seitsonen, and R. M. Nieminen, Phys. Rev. B 52, 10947 (1995) | spa |
dc.relation.references | E. Boronski and H. Stachowiak, Phys. Rev. B 57, 6215 (1998) | spa |
dc.relation.references | N. D. Drummond, P. Lopez Rios, C. J. Pickard, and R. J. Needs, Phys. Rev. B 82, 035107 (2010) | spa |
dc.relation.references | N. D. Drummond, P. Lopez Rios, R. J. Needs, and C. J. Pickard, Phys. Rev. Lett. 107, 207402 (2011) | spa |
dc.relation.references | B. Barbiellini, M. J. Puska, T. Korhonen, A. Harju, T. Torsti, and R. M. Nieminen, Phys. Rev. B 53, 16201 (1996) | spa |
dc.relation.references | J. Kuriplach and B. Barbiellini, Phys. Rev. B 89, 155111 (2014) | spa |
dc.relation.references | B. Barbiellini and J. Kuriplach, Phys. Rev. Lett. 114, 147401 (2015) | spa |
dc.relation.references | W. Zhang, B. Gu, J. Liu, and B. Ye, Comput. Mater. Sci. 105, 32 (2015) | spa |
dc.relation.references | M. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66, 841 (1994) | spa |
dc.relation.references | J. G. Harrison, J. Chem. Phys. 84, 1659 (1986) | spa |
dc.relation.references | D. Kanhere, A. Kshirsagar, and V. Bhamre, Chem. Phys. Lett. 160, 526 (1989) | spa |
dc.relation.references | K. Kim and J. G. Harrison, J. Phys. B At. Mol. Opt. Phys. 29, 595 (1996) | spa |
dc.relation.references | T. Baruah, R. K. Pathak, and A. Kshirsagar, Phys. Rev. A 55, 1518 (1997) | spa |
dc.relation.references | J. Romero, J. A. Charry, R. Flores-Moreno, M. T. d. N. Varella, and A. Reyes, J. Chem. Phys. 141, 114103 (2014) | spa |
dc.relation.references | F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller, J. Chem. Theory Comput. 8, 2564 (2012) | spa |
dc.relation.references | A. Reyes, F. Moncada, and J. Charry, Int. J. Quantum Chem. 119, e25705 (2019 | spa |
dc.relation.references | M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927) | spa |
dc.relation.references | Q. Peng, X. Zhang, L. Hung, E. A. Carter, and G. Lu, Phys. Rev. B 78, 054118 (2008) | spa |
dc.relation.references | S. Takahashi and K. Takatsuka, J. Chem. Phys. 124, 144101 (2006) | spa |
dc.relation.references | W. Kolos and L. Wolniewicz, Rev. Mod. Phys. 35, 473 (1963) | spa |
dc.relation.references | W. Kolos and L. Wolniewicz, J. Chem. Phys. 46, 1426 (1967) | spa |
dc.relation.references | P. M. Kozlowski and L. Adamowicz, J. Chem. Phys. 95, 6681 (1991) | spa |
dc.relation.references | D. B. Kinghorn and L. Adamowicz, J. Chem. Phys. 113, 4203 (2000) | spa |
dc.relation.references | M. Cafiero, S. Bubin, L. Adamowicz, M. Cafiero, and L. Adamowicz, Phys. Chem. Chem. Phys. 5, 1491 (2003) | spa |
dc.relation.references | S. Bubin, M. Pavanello, W.-C. Tung, K. L. Sharkey, and L. Adamowicz, Chem. Rev. 113, 36 (2013) | spa |
dc.relation.references | C. Swalina, M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 110, 9983 (2006) | spa |
dc.relation.references | A. Chakraborty, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 129, 014101 (2008) | spa |
dc.relation.references | M. Hoshino, H. Nishizawa, and H. Nakai, J. Chem. Phys. 135, 24111 (2011) | spa |
dc.relation.references | A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Theory Comput. 7, 2689 (2011) | spa |
dc.relation.references | C. Ko, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Chem. Phys. 135, 054106 (2011) | spa |
dc.relation.references | H. Nishizawa, M. Hoshino, Y. Imamura, and H. Nakai, Chem. Phys. Lett. 521, 142 (2012) | spa |
dc.relation.references | H. Nishizawa, Y. Imamura, Y. Ikabata, and H. Nakai, Chem. Phys. Lett. 533, 100 (2012) | spa |
dc.relation.references | E. Matyus and M. Reiher, J. Chem. Phys. 137, 024104 (2012) | spa |
dc.relation.references | E. Matyus, J. Phys. Chem. A 117, 7195 (2013) | spa |
dc.relation.references | A. Sirjoosingh, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Chem. Phys. 139, 034102 (2013) | spa |
dc.relation.references | A. Sirjoosingh, M. V. Pak, K. R. Brorsen, and S. Hammes-Schiffer, J. Chem. Phys. 142, 214107 (2015) | spa |
dc.relation.references | I. L. Thomas, Phys. Rev. 185, 90 (1969) | spa |
dc.relation.references | I. L. Thomas, Chem. Phys. Lett. 3, 705 (1969) | spa |
dc.relation.references | . L. Thomas and H. W. Joy, Phys. Rev. A 2, 1200 (1970) | spa |
dc.relation.references | I. L. Thomas, Phys. Rev. A 3, 565 (1971) | spa |
dc.relation.references | J. F. Capitani, R. F. Nalewajski, and R. G. Parr, J. Chem. Phys. 76, 568 (1982) | spa |
dc.relation.references | H. J. Monkhorst, Phys. Rev. A 36, 1544 (1987) | spa |
dc.relation.references | M. Tachikawa, K. Mori, H. Nakai, and K. Iguchi, Chem. Phys. Lett. 290, 437 (1998) | spa |
dc.relation.references | H. Nakai, Int. J. Quantum. Chem. 86, 511 (2002) | spa |
dc.relation.references | M. Tachikawa, K. Mori, K. Suzuki, and K. Iguchi, Int. J. Quantum Chem. 70, 491 (1998) | spa |
dc.relation.references | M. Tachikawa, Chem. Phys. Lett. 360, 494 (2002) | spa |
dc.relation.references | Y. Shigeta, H. Takahashi, S. Yamanaka, M. Mitani, H. Nagao, and K. Yamaguchi, Int. J. Quantum Chem. 70, 659 (1998) | spa |
dc.relation.references | S. P. Webb, T. Iordanov, and S. Hammes-Schiffer, J. Chem. Phys. 117, 4106 (2002) | spa |
dc.relation.references | M. Goli and S. Shahbazian, Theor. Chem. Acc. 129, 235 (2011) | spa |
dc.relation.references | P. Cassam-Chenai, B. Suo, and W. Liu, Phys. Rev. A 92, 012502 (2015) | spa |
dc.relation.references | P. Cassam-Chenai, B. Suo, and W. Liu, Theor. Chem. Acc. 136, 52 (2017) | spa |
dc.relation.references | S. A. Gonzalez, N. F. Aguirre, and A. Reyes, Int. J. Quantum Chem. 108, 1742 (2008) | spa |
dc.relation.references | T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 128, 164118 (2008) | spa |
dc.relation.references | H. Nakai and K. Sodeyama, J. Chem. Phys. 118, 1119 (2003) | spa |
dc.relation.references | C. Swalina, M. V. Pak, and S. Hammes-Schiffer, Chem. Phys. Lett. 404, 394 (2005) | spa |
dc.relation.references | T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 125, 144103 (2006) | spa |
dc.relation.references | M. Hoshino and H. Nakai, J. Chem. Phys. 124, 194110 (2006) | spa |
dc.relation.references | J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012) | spa |
dc.relation.references | Y. Tsukamoto, Y. Ikabata, J. Romero, A. Reyes, and H. Nakai, Phys. Chem. Chem. Phys. 18, 27422 (2016) | spa |
dc.relation.references | Y. Shigeta, Y. Ozaki, K. Kodama, H. Nagao, H. Kawabe, and K. Nishikawa, Int. J. Quantum Chem. 69, 629 (1998) | spa |
dc.relation.references | Y. Shigeta, H. Nagao, K. Nishikawa, and K. Yamaguchi, Int. J. Quantum Chem. 75, 875 (1999) | spa |
dc.relation.references | T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86, 2984 (2001) | spa |
dc.relation.references | T. Udagawa and M. Tachikawa, J. Chem. Phys. 125, 244105 (2006) | spa |
dc.relation.references | M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 111, 4522 (2007) | spa |
dc.relation.references | Y. Imamura, H. Kiryu, and H. Nakai, J. Comput. Chem. 29, 735 (2008) | spa |
dc.relation.references | T. Udagawa, T. Tsuneda, and M. Tachikawa, Phys. Rev. A 89, 052519 (2014) | spa |
dc.relation.references | Y. Yang, K. R. Brorsen, T. Culpitt, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 147, 114113 (2017) | spa |
dc.relation.references | A. Szabo and N. Ostlund, Modern quantum chemistry: introduction to advanced electronic structure theory (Dover Publications, 1996) | spa |
dc.relation.references | L. M. Pedraza-Gonzalez, J. A. Charry Martinez, W. D. Quintero, J. Ali-Torres, and A. Reyes, Phys. Chem. Chem. Phys. 19, 25324 (2017) | spa |
dc.relation.references | B. A. Pettitt, Chem. Phys. Lett. 130, 399 (1986) | spa |
dc.relation.references | H. Nakai, M. Hoshino, K. Miyamoto, and S. Hyodo, J. Chem. Phys. 122, 164101 (2005) | spa |
dc.relation.references | K. Miyamoto, M. Hoshino, and H. Nakai, J. Chem. Theory Comput. 2, 1544 (2006) | spa |
dc.relation.references | K. Sodeyama, H. Nishizawa, M. Hoshino, M. Kobayashi, and H. Nakai, Chem. Phys. Lett. 433, 409 (2007) | spa |
dc.relation.references | A. Reyes, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 123, 064104 (2005) | spa |
dc.relation.references | F. Moncada, E. Posada, R. Flores-Moreno, and A. Reyes, Chem. Phys. 400, 103 (2012) | spa |
dc.relation.references | P. Lowdin, Int. J. Quantum Chem. 55, 77 (1995) | spa |
dc.relation.references | S. A. Gonzalez and A. Reyes, Int. J. Quantum Chem. 110, 689 (2010) | spa |
dc.relation.references | H. H. Corzo and J. V. Ortiz, Adv. Quantum. Chem. 74, 267 (2017) | spa |
dc.relation.references | B. Auer and S. Hammes-Schiffer, J. Chem. Phys. 132, 084110 (2010) | spa |
dc.relation.references | A. Chakraborty, M. V. Pak, and S. Hammes-Schiffer, Phys. Rev. Lett. 101, 153001 (2008) | spa |
dc.relation.references | K. R. Brorsen, Y. Yang, and S. Hammes-Schiffer, J. Phys. Chem. Lett. 8, 3488 (2017) | spa |
dc.relation.references | D. Mejia-Rodriguez and A. de la Lande, J. Chem. Phys. 150, 174115 (2019) | spa |
dc.relation.references | A. D. Becke, J. Chem. Phys. 88, 1053 (1988) | spa |
dc.relation.references | Z. Tao, Y. Yang, and S. Hammes-Schiffer, J. Chem. Phys. 151, 124102 (2019) | spa |
dc.relation.references | A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 136, 174114 (2012) | spa |
dc.relation.references | T. Culpitt, K. R. Brorsen, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 145, 044106 (2016) | spa |
dc.relation.references | J. Arponen and E. Pajanne, Ann. Phys. 121, 343 (1979) | spa |
dc.relation.references | F. Moncada, D. Cruz, and A. Reyes, Chem. Phys. Lett. 539-540, 209 (2012) | spa |
dc.relation.references | E. Posada, F. Moncada, and A. Reyes, J. Phys. Chem. A 118, 9491 (2014) | spa |
dc.relation.references | B. Auer, M. V. Pak, and S. Hammes-Schiffer, J. Phys. Chem. C 114, 5582 (2010) | spa |
dc.relation.references | Y. Kanematsu and M. Tachikawa, J. Chem. Phys. 141, 185101 (2014) | spa |
dc.relation.references | T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 124, 014112 (2006) | spa |
dc.relation.references | F. Jensen, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 273 (2013) | spa |
dc.relation.references | B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L. Windus, J. Chem. Inf. Model. 59, 4814 (2019) | spa |
dc.relation.references | F. Moncada, S. A. Gonzalez, and A. Reyes, Mol. Phys. 108, 1545 (2010) | spa |
dc.relation.references | F. Moncada, R. Flores-Moreno, and A. Reyes, J. Mol. Model. 23, 90 (2017) | spa |
dc.relation.references | E. Posada, F. Moncada, and A. Reyes, J. Chem. Phys. 148, 084113 (2018) | spa |
dc.relation.references | M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993) | spa |
dc.relation.references | J. Romero, J. A. Charry, H. Nakai, and A. Reyes, Chem. Phys. Lett. 591, 82 (2014) | spa |
dc.relation.references | M. A. Marques, M. J. Oliveira, and T. Burnus, Comp. Phys. Comm. 183, 2227 (2012) | spa |
dc.relation.references | S. Scheiner, Biochim. Biophys. Acta Bioenerg. 1458, 28 (2000) | spa |
dc.relation.references | J. Bigeleisen, Theoretical Basis of Isotope Effects from an Autobiographical Perspective, in Isotope Effects In Chemistry and Biology, edited by A. Kohen and H.-H. Limbach, chap. 1, CRC Press, Boca Raton, Florida, 2005 | spa |
dc.relation.references | J. Tennyson, J. Chem. Phys. 145, 120901 (2016) | spa |
dc.relation.references | T. Carrington, J. Chem. Phys. 146, 120902 (2017) | spa |
dc.relation.references | T. K. Roy and R. B. Gerber, Phys. Chem. Chem. Phys. 15, 9468 (2013) | spa |
dc.relation.references | D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992) | spa |
dc.relation.references | D. Lauvergnat and A. Nauts, J. Chem. Phys. 116, 8560 (2002) | spa |
dc.relation.references | S. N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007) | spa |
dc.relation.references | E. Matyus, G. Czako, and A. G. Csaszar, J. Chem. Phys. 130, 134112 (2009) | spa |
dc.relation.references | M. Tachikawa and M. Shiga, J. Am. Chem. Soc. 127, 11908 (2005) | spa |
dc.relation.references | K. Karandashev, Z.-H. Xu, M. Meuwly, J. Van ́ıˇcek, and J. O. Richardson, Struc. Dyn. 4, 061501 (2017) | spa |
dc.relation.references | M. Machida, K. Kato, and M. Shiga, J. Chem. Phys. 148, 102324 (2018) | spa |
dc.relation.references | D. V. Moreno, S. A. Gonz ́alez, and A. Reyes, J. Phys. Chem. A 114, 9231 (2010) | spa |
dc.relation.references | D. V. Moreno, S. A. Gonzalez, and A. Reyes, J. Chem. Phys. 134, 024115 (2011) | spa |
dc.relation.references | J. Romero, A. Restrepo, and A. Reyes, Mol. Phys. 112, 518 (2014) | spa |
dc.relation.references | R. Flores-Moreno and A. M. K ̈oster, J. Chem. Phys. 128, 134105 (2008) | spa |
dc.relation.references | A. R. Ubbelohde and K. J. Gallagher, Acta Crystallogr. 8, 71 (1955) | spa |
dc.relation.references | J. A. Ibers, J. Chem. Phys. 41, 25 (1964) | spa |
dc.relation.references | Y. Noda, H. Kasatani, Y. Watanabe, H. Terauchi, and K. Gesi, J. Phys. Soc. Japan 59, 3249 (1990) | spa |
dc.relation.references | F. Moncada, L. S. Uribe, J. Romero, and A. Reyes, Int. J. Quantum Chem. 113, 1556 (2013) | spa |
dc.relation.references | E. P. L. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998) | spa |
dc.relation.references | A. Moser, K. Range, and D. M. York, J. Phys. Chem. B 114, 13911 (2010) | spa |
dc.relation.references | C. A. Deakyne, Int. J. Mass Spectrom. 227, 601 (2003) | spa |
dc.relation.references | C. Cramer, Essentials of Computational Chemistry Theories and Models (Wiley, 2005) | spa |
dc.relation.references | M. Diaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013) | spa |
dc.relation.references | L. Pedraza-Gonzalez, J. Romero, J. Ali-Torres, and A. Reyes, Phys. Chem. Chem. Phys. 18, 27185 (2016) | spa |
dc.relation.references | M. Goli and S. Shahbazian, Phys. Chem. Chem. Phys. 16, 6602 (2014) | spa |
dc.relation.references | M. Goli and S. Shahbazian, Phys. Chem. Chem. Phys. 17, 7023 (2015) | spa |
dc.relation.references | M. Goli and S. Shahbazian, Chem. Eur. J. 22, 2525 (2016) | spa |
dc.relation.references | D. G. Fleming, J. Manz, K. Sato, and T. Takayanagi, Angew. Chem. Int. Ed. 53, 13706 (2014) | spa |
dc.relation.references | D. G. Fleming, D. J. Arseneau, O. Sukhorukov, J. H. Brewer, S. L. Mielke, G. C. Schatz, B. C. Garrett, K. A. Peterson, and D. G. Truhlar, Science 331, 448 (2011) | spa |
dc.relation.references | F. Moncada, D. Cruz, and A. Reyes, Chem. Phys. Lett. 570, 16 (2013) | spa |
dc.relation.references | S. L. Mielke, D. W. Schwenke, G. C. Schatz, B. C. Garrett, and K. A. Peterson, J. Phys. Chem. A 113, 4479 (2009) | spa |
dc.relation.references | R. J. Bartlett, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 126 (2012) | spa |
dc.relation.references | J. V. Ortiz and I. Mart ́ın, J. Chem. Phys. 120, 7949 (2004) | spa |
dc.relation.references | J. Melin, J. V. Ortiz, I. Martin, A. M. Velasco, and C. Lavin, J. Chem. Phys. 122, 234317 (2005) | spa |
dc.relation.references | A. M. Velasco, C. Lavin, M. Diaz-Tinoco, and J. V. Ortiz, J. Quant. Spectrosc. Radiat. Transf. 187, 161 (2017) | spa |
dc.relation.references | H. H. Corzo, A. M. Velasco, C. Lavin, and J. V. Ortiz, J. Quant. Spectrosc. Radiat. Transf. 206, 323 (2018) | spa |
dc.relation.references | T. H. Dunning, J. Chem. Phys. 90, 1007 (1989) | spa |
dc.relation.references | F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012) | spa |
dc.relation.references | D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010) | spa |
dc.relation.references | W. C. Martin, Electron configuration and ionization energy of neutral atoms in the ground state, in Handbook of Chemistry and Physics, edited by W. M. Haynes, D. R. Lide, and T. J. Bruno, chap. 1, pp. 1–16, CRC Press, Boca Raton, Florida, 2017 | spa |
dc.relation.references | C. Ghanmi, H. Berriche, and H. Ben Ouada, J. Mol. Spectrosc. 235, 158 (2006) | spa |
dc.relation.references | C. Ghanmi, H. Bouzouita, N. Mabrouk, and H. Berriche, J. Mol. Struc. THEOCHEM 808, 1 (2007) | spa |
dc.relation.references | H. Berriche, Int. J. Quantum Chem. 113, 2405 (2013) | spa |
dc.relation.references | A. K. Bhatia and R. J. Drachman, Phys. Rev. A 28, 2523 (1983) | spa |
dc.relation.references | M. Goli and S. Shahbazian, ChemPhysChem 20, 831 (2019) | spa |
dc.relation.references | M. v. Hopffgarten and G. Frenking, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 43 (2012) | spa |
dc.relation.references | G. Senatore and K. R. Subbaswamy, Phys. Rev. B 34, 5754 (1986) | spa |
dc.relation.references | P. Cortona, Phys. Rev. B 44, 8454 (1991) | spa |
dc.relation.references | T. A. Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050 (1993) | spa |
dc.relation.references | T. Dresselhaus and J. Neugebauer, Theor. Chem. Acc. 134, 97 (2015) | spa |
dc.relation.references | Q. Sun and G. K. L. Chan, Acc. Chem. Res. 49, 2705 (2016) | spa |
dc.relation.references | A. Severo Pereira Gomes and C. R. Jacob, Annu. Reports Sect. C 108, 222 (2012) | spa |
dc.relation.references | T. A. Barnes, J. D. Goodpaster, F. R. Manby, and T. F. Miller, J. Chem. Phys. 139, 024103 (2013) | spa |
dc.relation.references | J. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller, J. Chem. Phys. 140, 18A507 (2014) | spa |
dc.relation.references | S. J. Bennie, M. Stella, T. F. Miller, and F. R. Manby, J. Chem. Phys. 143, 024105 (2015) | spa |
dc.relation.references | S. J. R. Lee, M. Welborn, F. R. Manby, and T. F. Miller, Acc. Chem. Res. 52, 1359 (2019) | spa |
dc.relation.references | A. W. Gotz, S. Maya Beyhan, and L. Visscher, J. Chem. Theory Comput. 5, 3161 (2009) | spa |
dc.relation.references | T. Heaton-Burgess and W. Yang, J. Chem. Phys. 129, 25 (2008) | spa |
dc.relation.references | S. Lehtola, C. Steigemann, M. J. Oliveira, and M. A. Marques, SoftwareX 7, 1 (2018) | spa |
dc.relation.references | J. Lehtola, M. Hakala, A. Sakko, and K. H ̈am ̈al ̈ainen, J. Comput. Chem. 33, 1572 (2012) | spa |
dc.relation.references | S. Lehtola and H. Jonsson, J. Chem. Theory Comput. 9, 5365 (2013) | spa |
dc.relation.references | . Pipek and P. G. Mezey, J. Chem. Phys. 90, 4916 (1989) | spa |
dc.relation.references | G. Knizia, J. Chem. Theory Comput. 9, 4834 (2013) | spa |
dc.relation.references | J. M. Martin, Chem. Phys. Lett. 259, 669 (1996) | spa |
dc.relation.references | D. Feller, K. A. Peterson, and J. Grant Hill, J. Chem. Phys. 135, 044102 (2011) | spa |
dc.relation.references | D. Feller, J. Chem. Phys. 138, 074103 (2013) | spa |
dc.relation.references | V. Vasilyev, Comput. Theor. Chem. 1115, 1 (2017) | spa |
dc.relation.references | G. F. Gribakin and J. Ludlow, J. Phys. B At. Mol. Opt. Phys. 35, 339 (2002) | spa |
dc.relation.references | D. E. Woon and T. H. Dunning, J. Chem. Phys. 100, 2975 (1994) | spa |
dc.relation.references | R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992) | spa |
dc.relation.references | D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993) | spa |
dc.relation.references | A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning, J. Chem. Phys. 110, 7667 (1999) | spa |
dc.relation.references | J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) | spa |
dc.relation.references | C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988) | spa |
dc.relation.references | A. D. Becke, J. Chem. Phys. 98, 5648 (1993) | spa |
dc.relation.references | P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994) | spa |
dc.relation.references | J. V. Ortiz, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 123 (2013) | spa |
dc.relation.references | D. G. Liakos, M. Sparta, M. K. Kesharwani, J. M. L. Martin, and F. Neese, J. Chem. Theory Comput. 11, 1525 (2015) | spa |
dc.relation.references | C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, and F. Neese, J. Chem. Phys. 144, 024109 (2016) | spa |
dc.relation.references | W. B. Schneider, G. Bistoni, M. Sparta, M. Saitow, C. Riplinger, A. A. Auer, and F. Neese, J. Chem. Theory Comput. 12, 4778 (2016) | spa |
dc.relation.references | T. M. Miller, Electron affinities, in Handbook of Chemistry and Physics, edited by W. M. Haynes, D. R. Lide, and T. J. Bruno, chap. 10, pp. 10–147, CRC Press, Boca Raton, Florida, 2017 | spa |
dc.relation.references | F. Goldfarb, C. Drag, W. Chaibi, S. Kr ̈oger, C. Blondel, and C. Delsart, J. Chem. Phys. 122, 014308 (2005) | spa |
dc.relation.references | S. T. Stokes, J. E. Bartmess, A. Buonaugurio, Y. Wang, S. N. Eustis, and K. H. Bowen, Chem. Phys. Lett. 732, 136638 (2019) | spa |
dc.relation.references | E. H. Kim, S. E. Bradforth, D. W. Arnold, R. B. Metz, and D. M. Neumark, J. Chem. Phys. 103, 7801 (1995) | spa |
dc.relation.references | D. M. Schrader and C. M. Wang, J. Phys. Chem. 80, 2507 (1976) | spa |
dc.relation.references | T. M. Ramond, G. E. Davico, R. L. Schwartz, and W. C. Lineberger, J. Chem. Phys. 112, 1158 (2000) | spa |
dc.relation.references | J. B. Kim, T. I. Yacovitch, C. Hock, and D. M. Neumark, Phys. Chem. Chem. Phys. 13, 17378 (2011) | spa |
dc.relation.references | X. B. Wang, H. K. Woo, L. S. Wang, B. Minofar, and P. Jungwirth, J. Phys. Chem. A 110, 5047 (2006) | spa |
dc.relation.references | H. K. Woo, X. B. Wang, B. Kiran, and L. S. Wang, J. Phys. Chem. A 109, 11395 (2005) | spa |
dc.relation.references | Y. Suzuki, S. Hagiwara, and K. Watanabe, Phys. Rev. Lett. 121, 133001 (2018) | spa |
dc.relation.references | R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1975) | spa |
dc.relation.references | R. Colle and O. Salvetti, Theor. Chim. Acta 53, 55 (1979) | spa |
dc.relation.references | K. R. Brorsen, P. E. Schneider, and S. Hammes-Schiffer, J. Chem. Phys. 149, 044110 (2018) | spa |
dc.relation.references | J. Harris, Phys. Rev. A 29, 1648 (1984) | spa |
dc.relation.references | Y. Imamura, G. E. Scuseria, and R. M. Martin, J. Chem. Phys. 116, 6458 (2002) | spa |
dc.relation.references | A. Nagy and C. Amovilli, Phys. Rev. A 82, 042510 (2010) | spa |
dc.relation.references | Wolfram Research, Inc., Mathematica, Version 9.0, 2012, Champaign, IL | spa |
dc.relation.references | F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005) | spa |
dc.relation.references | Y. J. Bagul, Int. J. Math. Sci. Engg. Appls. 11, 213 (2017) | spa |
dc.relation.references | S. L. Saito, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 171, 60 (2000) | spa |
dc.relation.references | M. D ́ıaz-Tinoco, H. H. Corzo, and J. V. Ortiz, J. Chem. Theory Comput. 14, 5881 (2018) | spa |
dc.relation.references | M. Tachikawa, H. Sainowo, K. Iguchi, and K. Suzuki, J. Chem. Phys. 101, 5925 (1994) | spa |
dc.relation.references | M. Barborini, J. A. Charry, M. Ditte, and A. Tkatchenko, Manuscript in preparation (2021) | spa |
dc.relation.references | M. Casula and S. Sorella, J. Chem. Phys. 119, 6500 (2003) | spa |
dc.relation.references | S. Fahy, X. W. Wang, and S. G. Louie, Phys. Rev. B 42, 3503 (1990) | spa |
dc.relation.references | M. S. Becker, A. A. Broyles, and T. Dunn, Phys. Rev. 175, 224 (1968) | spa |
dc.relation.references | N. H. Rosenbaum, J. C. Owrutsky, L. M. Tack, and R. J. Saykally, J. Chem. Phys. 84, 5308 (1986) | spa |
dc.relation.references | P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, J. Chem. Phys. 77, 5593 (1982) | spa |
dc.relation.references | J. Charry, L. Pedraza-Gonzalez, and A. Reyes, J. Chem. Phys. 146, 214103 (2017) | spa |
dc.relation.references | F. Moncada, L. Pedraza-Gonzalez, J. Charry, M. T. do N. Varella, and A. Reyes, Chem. Sci. 11, 44 (2020) | spa |
dc.relation.references | R. Flores-Moreno, E. Posada, F. Moncada, J. Romero, J. Charry, M. Diaz-Tinoco, S. A. Gonzalez, N. F. Aguirre, and A. Reyes, Int. J. Quantum Chem. 114, 50 (2014) | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 540 - Química y ciencias afines::541 - Química física | spa |
dc.subject.proposal | Positrons | eng |
dc.subject.proposal | Density functional theory | eng |
dc.subject.proposal | Exotic molecules | eng |
dc.subject.proposal | Propagator theory | eng |
dc.subject.proposal | Any particle molecular orbital | eng |
dc.subject.proposal | Multicomponent methods | eng |
dc.subject.proposal | Positron electron correlation | eng |
dc.subject.proposal | Colle-Salvetti correlation | eng |
dc.subject.proposal | Positron covalent bond | eng |
dc.subject.proposal | Quantum chemistry | eng |
dc.subject.proposal | Positrones | spa |
dc.subject.proposal | Teoría del funcional de la densidad | spa |
dc.subject.proposal | Moléculas exóticas | spa |
dc.subject.proposal | Teoría del propagador | spa |
dc.subject.proposal | Orbital molecular para cualquier partícula | spa |
dc.subject.proposal | Métodos multicomponente | spa |
dc.subject.proposal | Correlación positrón electrón | spa |
dc.subject.proposal | Correlación Colle-Salvetti | spa |
dc.subject.proposal | Enlace covalente positrónico | spa |
dc.subject.proposal | Química cuántica | spa |
dc.subject.unesco | Onda electromagnética | spa |
dc.subject.unesco | Mecánica de las ondas | spa |
dc.subject.unesco | Electromagnetic waves | eng |
dc.subject.unesco | Wave mechanics | eng |
dc.subject.unesco | Partícula elemental | spa |
dc.title | Development of a multicomponent wavefunction-in-DFT embedding methodology | eng |
dc.title.translated | Desarrollo de una metodología de función de onda multicomponente embebida en DFT | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Convocatoria Doctorados Nacionales 2016 | spa |
oaire.fundername | Ministerio de Ciencia Tecnología e Innovación - Minciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1019037142-2021.pdf
- Tamaño:
- 4.75 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias - Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: