Development of a multicomponent wavefunction-in-DFT embedding methodology

dc.contributor.advisorReyes Velasco, Andrés
dc.contributor.authorMoncada Arias, Félix Santiago
dc.contributor.researchgroupQuímica Cuántica y Computacionalspa
dc.date.accessioned2021-12-15T23:45:27Z
dc.date.available2021-12-15T23:45:27Z
dc.date.issued2021-12
dc.descriptionilustraciones, graficasspa
dc.description.abstractThis thesis presents theoretical developments, computational implementations, and numerical applications of multicomponent methodologies that describe positron-molecule interactions. The theoretical developments combine wavefunction methodologies, such as the any particle molecular orbital propagator theory, with density functional theory (DFT) approaches for electrons and positrons. The projector operator embedding scheme of Manby et al. [J. Chem. Theory Comput., 8, 2564 (2012)] has been extended to a multicomponent formulation. The extended wavefunction embedded in DFT scheme reduces the computational cost of positron binding energy predictions obtained with third-order propagator theory at the complete basis set limit without affecting their quality. The stability of novel positron bound states with alkoxide and carboxylate anions is predicted with the extended embedding scheme. This thesis also reports the development of a new positron-electron correlation functional inspired by the Colle-Salvetti formulation of electron correlation. The proposed functional is parameterized to reproduce the annihilation rate and the energy of a positronium atom with a single parameter. DFT positron and positronium binding energies obtained with the new functional display good correlation with results reported employing wavefunction methodologies. In addition, this thesis contains a computational study of positron dihalide molecules, e+[X-Y-] with X,Y=F,Cl,Br, in which the positron binds two repelling halide anions. The covalent positron bonds between halide anions present similar features to one-electron bonds in dialkali cations with isoelectronic atomic cores. This study reveals that positron covalent bonding is not restricted to the e+[H-H-] molecule, previously reported.eng
dc.description.abstractEsta tesis presenta el desarrollo teórico, la implementación computacional y aplicaciones numéricas de metodologías multicomponente que describen interacciones positrón-molécula. Los desarrollos teóricos combinan metodologías de función de onda, como la teoría del propagador para orbitales moleculares de cualquier partícula, con procedimientos de la teoría del funcional de la densidad (DFT) para electrones y positrones. El esquema de embebido empleando operadores de proyección de Manby et al. [J. Chem. Theory Comput., 8, 2564 (2012)] se ha extendido a una formulación multicomponente. El esquema extendido de función de onda embebida en DFT reduce el costo computacional de las predicciones de energías de enlace de positrón obtenidas con la teoría del propagador de tercer orden en el límite de conjunto de base completo sin afectar su calidad. La estabilidad de nuevos estados ligados de positrones con aniones alcóxido y carboxilato es predicha con el esquema extendido de embebido. Esta tesis también contiene el desarrollo de un nuevo funcional de correlación positrón-electrón inspirado en la formulación de correlación electrónica de Colle-Salvetti. El funcional propuesto está parametrizado para reproducir la tasa de aniquilación y la energía de un átomo de positronio con un solo parámetro. Las energías de unión de positrón y positronio obtenidas con el nuevo funcional muestran una buena correlación con resultados reportados con metodologías de función de onda. Además, esta tesis contiene un estudio computacional de moléculas de dihaluro de positrón, e+[X-Y-] con X,Y=F,Cl,Br, en las que el positrón une dos aniones haluro que se repelen entre sí. Los enlaces covalentes de positrón entre los aniones haluro muestran características similares a los enlaces de un electrón en los cationes dialcalinos con núcleos atómicos isoelectrónicos. Este estudio revela que el enlace covalente positrónico no está restringido a la molécula e+[H-H-] previamente reportada. (Texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.format.extentxviii, 145 pagínasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80788
dc.language.isoeng
dc.publisherUnivesidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesP. A. M. Dirac, Proc. R. Soc. London. Ser. A 117, 610 (1928)spa
dc.relation.referencesP. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 361 (1930)spa
dc.relation.referencesC. D. Anderson, Phys. Rev. 43, 491 (1933)spa
dc.relation.referencesF. Joliot, J. Phys. le Radium 5, 299 (1934)spa
dc.relation.referencesM. Deutsch, Phys. Rev. 82, 455 (1951)spa
dc.relation.referencesS. Berko and H. N. Pendleton, Annu. Rev. Nucl. Part. Sci. 30, 543 (1980)spa
dc.relation.referencesJ. Thibaud, Phys. Rev. 45, 781 (1934)spa
dc.relation.referencesS. Mohorovicic, Astron. Nachrichten 253, 93 (1934)spa
dc.relation.referencesA. P. Mills, Phys. Rev. Lett. 46, 717 (1981)spa
dc.relation.referencesD. B. Cassidy and A. P. Mills, Nature 449, 195 (2007)spa
dc.relation.referencesO. E. Mogensen, Positron Annihilation in Chemistry (Springer-Verlag, Berlin,Heidelberg, 1995)spa
dc.relation.referencesC. M. Surko and F. A. Gianturco, editors, New Directions in Antimatter Chemistry and Physics (Springer, Dordrecht, 2002)spa
dc.relation.referencesY. Jean, P. Mallon, and D. Schrader, editors, Principles and Applications of Positron and Positronium Chemistry (World Scientific, Singapore, 2003)spa
dc.relation.referencesF. Tuomisto and I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013)spa
dc.relation.referencesJ. Cizek, J. Mater. Sci. Technol. 34, 577 (2018)spa
dc.relation.referencesK. Hagiwara, T. Ougizawa, T. Inoue, K. Hirata, and Y. Kobayashi, Radiat. Phys. Chem. 58, 525 (2000)spa
dc.relation.referencesC. Hugenschmidt, Surf. Sci. Rep. 71, 547 (2016)spa
dc.relation.referencesS. J. Tao and J. H. Green, J. Phys. Chem. 73, 882 (1969)spa
dc.relation.referencesS. V. Stepanov, V. M. Byakov, D. S. Zvezhinskiy, G. Duplatre, R. R. Nurmukhametov, and P. S. Stepanov, Adv. Phys. Chem. 2012, 1 (2012)spa
dc.relation.referencesM. Charlton and G. Laricchia, J. Phys. B At. Mol. Opt. Phys. 23, 1045 (1990)spa
dc.relation.referencesS. J. Brawley, S. Armitage, J. Beale, D. E. Leslie, A. I. Williams, and G. Laricchia, Science 330, 789 (2010)spa
dc.relation.referencesS. N. Nahar and B. Antony, Atoms 8, 29 (2020)spa
dc.relation.referencesL. D. Hulett, D. L. Donohue, J. Xu, T. A. Lewis, S. A. McLuckey, and G. L. Glish, Chem. Phys. Lett. 216, 236 (1993)spa
dc.relation.referencesD. M. Schrader, F. M. Jacobsen, N.-P. Frandsen, and U. Mikkelsen, Phys. Rev. Lett. 69, 57 (1992)spa
dc.relation.referencesG. F. Gribakin, J. A. Young, and C. M. Surko, Rev. Mod. Phys. 82, 2557 (2010)spa
dc.relation.referencesJ. R. Danielson, J. J. Gosselin, and C. M. Surko, Phys. Rev. Lett. 104, 233201 (2010)spa
dc.relation.referencesJ. R. Danielson, A. C. L. Jones, M. R. Natisin, and C. M. Surko, Phys. Rev. Lett. 109, 113201 (2012)spa
dc.relation.referencesJ. R. Danielson, A. C. L. Jones, J. J. Gosselin, M. R. Natisin, and C. M. Surko, Phys. Rev. A 85, 022709 (2012)spa
dc.relation.referencesA. C. L. Jones, J. R. Danielson, M. R. Natisin, and C. M. Surko, Phys. Rev. Lett. 110, 223201 (2013)spa
dc.relation.referencesS. J. Gilbert, L. D. Barnes, J. P. Sullivan, and C. M. Surko, Phys. Rev. Lett. 88, 4 (2002)spa
dc.relation.referencesJ. R. Danielson, D. H. E. Dubin, R. G. Greaves, and C. M. Surko, Rev. Mod. Phys. 87, 247 (2015)spa
dc.relation.referencesD. B. Cassidy, Eur. Phys. J. D 72, 53 (2018)spa
dc.relation.referencesY. Nagashima, Phys. Rep. 545, 95 (2014)spa
dc.relation.referencesC. Harabati, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 89, 022517 (2014)spa
dc.relation.referencesX. Cheng, D. Babikov, and D. M. Schrader, Phys. Rev. A 85, 012503 (2012)spa
dc.relation.referencesD. M. Schrader, Compounds of positrons with koino-atoms and molecules, in Physics with Many Positrons, edited by A. Dupasquier, A. P. Mills Jr, and R. S. Brusa, pp. 337–398, IOS Press, Amsterdam, 2010spa
dc.relation.referencesP. M. Kozlowski and L. Adamowicz, J. Phys. Chem. 100, 6266 (1996)spa
dc.relation.referencesG. W. Drake and M. Grigorescu, J. Phys. B At. Mol. Opt. Phys. 38, 3377 (2005)spa
dc.relation.referencesA. Ore, Phys. Rev. 83, 665 (1951)spa
dc.relation.referencesV. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and W. A. King, Phys. Rev. A 52, 4541 (1995)spa
dc.relation.referencesG. G. Ryzhikh and J. Mitroy, Phys. Rev. Lett. 79, 4124 (1997)spa
dc.relation.referencesJ. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 35, 201 (2002)spa
dc.relation.referencesX. Cheng, D. Babikov, and D. M. Schrader, Phys. Rev. A 83, 032504 (2011)spa
dc.relation.referencesH. A. Kurtz and K. D. Jordan, Int. J. Quantum Chem. 14, 747 (1978)spa
dc.relation.referencesA. Farazdel and P. E. Cade, Chem. Phys. Lett. 72, 131 (1980)spa
dc.relation.referencesH. A. Kurtz and K. D. Jordan, J. Chem. Phys. 75, 1876 (1981)spa
dc.relation.referencesC. Kao and P. E. Cade, J. Chem. Phys. 80, 3234 (1984)spa
dc.relation.referencesW. R. Garrett, J. Chem. Phys. 73, 5721 (1980)spa
dc.relation.referencesM. Tachikawa, I. Shimamura, R. Buenker, and M. Kimura, ”bound states of positron with molecules”, in New Directions in Antimatter Chemistry and Physics, edited by C. Surko and F. Gianturco, pp. 437–450, Springer, Dordrecht, 2001spa
dc.relation.referencesP. E. Adamson, X. F. Duan, L. W. Burggraf, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Phys. Chem. A 112, 1346 (2008)spa
dc.relation.referencesJ. Charry, M. T. d. N. Varella, and A. Reyes, Angew. Chemie Int. Ed. 57, 8859 (2018)spa
dc.relation.referencesT. Yoshida, G. Miyako, N. Jiang, and D. M. Schrader, Phys. Rev. A - At. Mol. Opt. Phys. 54, 964 (1996)spa
dc.relation.referencesT. Saito, M. Tachikawa, C. Ohe, K. Iguchi, and K. Suzuki, J. Phys. Chem. 100, 6057 (1996)spa
dc.relation.referencesD. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 108, 4756 (1998)spa
dc.relation.referencesD. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 1716 (1998)spa
dc.relation.referencesD. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 5931 (1998)spa
dc.relation.referencesM. Mella, G. Morosi, and D. Bressanini, J. Chem. Phys. 111, 108 (1999)spa
dc.relation.referencesM. Mella, D. Bressanini, and G. Morosi, J. Chem. Phys. 114, 10579 (2001)spa
dc.relation.referencesM. Mella, S. Chiesa, and G. Morosi, J. Chem. Phys. 116, 2852 (2002)spa
dc.relation.referencesY. Kita, R. Maezono, M. Tachikawa, M. Towler, and R. J. Needs, J. Chem. Phys. 131, 134310 (2009)spa
dc.relation.referencesY. Yamada, Y. Kita, M. Tachikawa, M. D. Towler, and R. J. Needs, Eur. Phys. J. D 68, 63 (2014)spa
dc.relation.referencesY. Yamada, Y. Kita, and M. Tachikawa, Phys. Rev. A 89, 062711 (2014)spa
dc.relation.referencesD. Bressanini, Phys. Rev. A 97, 012508 (2018)spa
dc.relation.referencesS. Ito, D. Yoshida, Y. Kita, and M. Tachikawa, J. Chem. Phys. 153, 224305 (2020)spa
dc.relation.referencesV. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 60, 3641 (1999)spa
dc.relation.referencesM. W. J. Bromley and J. Mitroy, Phys. Rev. A 66, 062504 (2002)spa
dc.relation.referencesS. L. Saito, J. Chem. Phys. 122, 054302 (2005)spa
dc.relation.referencesS. L. Saito, Theor. Chem. Acc. 115, 281 (2006)spa
dc.relation.referencesR. J. Buenker, H.-P. Liebermann, M. Tachikawa, L. Pichl, and M. Kimura, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 247, 47 (2006)spa
dc.relation.referencesM. W. J. Bromley and J. Mitroy, Phys. Rev. A 73, 032507 (2006)spa
dc.relation.referencesF. A. Gianturco, J. Franz, R. J. Buenker, H. P. Liebermann, L. Pichl, J. M. Rost, M. Tachikawa, and M. Kimura, Phys. Rev. A 73, 022705 (2006)spa
dc.relation.referencesJ. Mitroy and M. W. J. Bromley, Phys. Rev. A 73, 052712 (2006)spa
dc.relation.referencesR. J. Buenker, H. P. Liebermann, L. Pichl, M. Tachikawa, and M. Kimura, J. Chem. Phys. 126, 104305 (2007)spa
dc.relation.referencesR. J. Buenker and H.-P. Liebermann, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 266, 483 (2008)spa
dc.relation.referencesJ. Mitroy, J. Y. Zhang, M. W. J. Bromley, and S. I. Young, Phys. Rev. A 78, 012715 (2008)spa
dc.relation.referencesR. J. Buenker and H.-P. Liebermann, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 267, 763 (2009)spa
dc.relation.referencesM. Tachikawa, Y. Kita, and R. J. Buenker, Phys. Chem. Chem. Phys. 13, 2701 (2011)spa
dc.relation.referencesM. Tachikawa, Y. Kita, and R. J. Buenker, New J. Phys. 14, 035004 (2012)spa
dc.relation.referencesT. Oyamada and M. Tachikawa, Eur. Phys. J. D 68, 231 (2014)spa
dc.relation.referencesJ. P. Coe and M. J. Paterson, Chem. Phys. Lett. 645, 106 (2016)spa
dc.relation.referencesV. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 86, 032503 (2012)spa
dc.relation.referencesB. H. Ellis, S. Aggarwal, and A. Chakraborty, J. Chem. Theory Comput. 12, 188 (2016)spa
dc.relation.referencesF. Pavosevic and S. Hammes-Schiffer, J. Chem. Phys. 150, 161102 (2019)spa
dc.relation.referencesG. F. Gribakin and J. Ludlow, Phys. Rev. A 70, 032720 (2004)spa
dc.relation.referencesJ. A. Ludlow and G. F. Gribakin, Int. Rev. At. Mol. Phys. 1, 73 (2010)spa
dc.relation.referencesK. Strasburger, J. Chem. Phys. 111, 10555 (1999)spa
dc.relation.referencesS. Bubin and L. Adamowicz, J. Chem. Phys. 120, 6051 (2004)spa
dc.relation.referencesK. Strasburger, Struct. Chem. 15, 415 (2004)spa
dc.relation.referencesM. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 113, 4004 (2009)spa
dc.relation.referencesC. Swalina, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 136, 164105 (2012)spa
dc.relation.referencesG. G. Ryzhikh, J. Mitroy, and K. Varga, J. Phys. B At. Mol. Opt. Phys. 31, 3965 (1998)spa
dc.relation.referencesG. Ryzhikh and J. Mitroy, J. Phys. B At. Mol. Opt. Phys. 31, 4459 (1998)spa
dc.relation.referencesJ. Mitroy and G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 32, 1375 (1999)spa
dc.relation.referencesJ. Mitroy and G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 32, 3839 (1999)spa
dc.relation.referencesJ. Mitroy and G. G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 34, 2001 (2001)spa
dc.relation.referencesJ. Mitroy, Phys. Rev. A 70, 024502 (2004)spa
dc.relation.referencesJ. Mitroy and S. A. Novikov, Phys. Rev. A 70, 032511 (2004)spa
dc.relation.referencesJ. Mitroy, Phys. Rev. A 73, 054502 (2006)spa
dc.relation.referencesJ. Mitroy, J. At. Mol. Sci. 1, 275 (2010)spa
dc.relation.referencesA. Zubiaga, F. Tuomisto, and M. J. Puska, Phys. Rev. A 89, 052707 (2014)spa
dc.relation.referencesY. Kita and M. Tachikawa, Chem. Phys. Lett. 482, 201 (2009)spa
dc.relation.referencesK. Koyanagi, Y. Kita, and M. Tachikawa, Eur. Phys. J. D 66, 121 (2012)spa
dc.relation.referencesJ. Charry, J. Romero, M. T. d. N. Varella, and A. Reyes, Phys. Rev. A 89, 052709spa
dc.relation.referencesY. Oba and M. Tachikawa, Int. J. Quantum Chem. 114, 1146 (2014)spa
dc.relation.referencesM. Nummela, H. Raebiger, D. Yoshida, and M. Tachikawa, J. Phys. Chem. A 120, 4037 (2016)spa
dc.relation.referencesA. Jain, Phys. Rev. A 41, 2437 (1990)spa
dc.relation.referencesF. A. Gianturco, P. Paioletti, and J. A. Rodriguez-Ruiz, Z. Phys. D Atoms, Mol. Clust. 36, 51 (1996)spa
dc.relation.referencesJ. Mitroy and I. A. Ivanov, Phys. Rev. A - At. Mol. Opt. Phys. 65, 15 (2002)spa
dc.relation.referencesJ. Franz, Eur. Phys. J. D 71, 44 (2017)spa
dc.relation.referencesA. R. Swann and G. F. Gribakin, J. Chem. Phys. 149, 244305 (2018)spa
dc.relation.referencesA. R. Swann and G. F. Gribakin, Phys. Rev. Lett. 123, 113402 (2019)spa
dc.relation.referencesY. Sugiura, T. Takayanagi, Y. Kita, and M. Tachikawa, Eur. Phys. J. D 73, 162 (2019)spa
dc.relation.referencesY. Sugiura, H. Suzuki, T. Otomo, T. Miyazaki, T. Takayanagi, and M. Tachikawa, J. Comput. Chem. 41, 1576 (2020)spa
dc.relation.referencesE. Boronski and R. M. Nieminen, Phys. Rev. B 34, 3820 (1986)spa
dc.relation.referencesM. J. Puska, A. P. Seitsonen, and R. M. Nieminen, Phys. Rev. B 52, 10947 (1995)spa
dc.relation.referencesE. Boronski and H. Stachowiak, Phys. Rev. B 57, 6215 (1998)spa
dc.relation.referencesN. D. Drummond, P. Lopez Rios, C. J. Pickard, and R. J. Needs, Phys. Rev. B 82, 035107 (2010)spa
dc.relation.referencesN. D. Drummond, P. Lopez Rios, R. J. Needs, and C. J. Pickard, Phys. Rev. Lett. 107, 207402 (2011)spa
dc.relation.referencesB. Barbiellini, M. J. Puska, T. Korhonen, A. Harju, T. Torsti, and R. M. Nieminen, Phys. Rev. B 53, 16201 (1996)spa
dc.relation.referencesJ. Kuriplach and B. Barbiellini, Phys. Rev. B 89, 155111 (2014)spa
dc.relation.referencesB. Barbiellini and J. Kuriplach, Phys. Rev. Lett. 114, 147401 (2015)spa
dc.relation.referencesW. Zhang, B. Gu, J. Liu, and B. Ye, Comput. Mater. Sci. 105, 32 (2015)spa
dc.relation.referencesM. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66, 841 (1994)spa
dc.relation.referencesJ. G. Harrison, J. Chem. Phys. 84, 1659 (1986)spa
dc.relation.referencesD. Kanhere, A. Kshirsagar, and V. Bhamre, Chem. Phys. Lett. 160, 526 (1989)spa
dc.relation.referencesK. Kim and J. G. Harrison, J. Phys. B At. Mol. Opt. Phys. 29, 595 (1996)spa
dc.relation.referencesT. Baruah, R. K. Pathak, and A. Kshirsagar, Phys. Rev. A 55, 1518 (1997)spa
dc.relation.referencesJ. Romero, J. A. Charry, R. Flores-Moreno, M. T. d. N. Varella, and A. Reyes, J. Chem. Phys. 141, 114103 (2014)spa
dc.relation.referencesF. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller, J. Chem. Theory Comput. 8, 2564 (2012)spa
dc.relation.referencesA. Reyes, F. Moncada, and J. Charry, Int. J. Quantum Chem. 119, e25705 (2019spa
dc.relation.referencesM. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927)spa
dc.relation.referencesQ. Peng, X. Zhang, L. Hung, E. A. Carter, and G. Lu, Phys. Rev. B 78, 054118 (2008)spa
dc.relation.referencesS. Takahashi and K. Takatsuka, J. Chem. Phys. 124, 144101 (2006)spa
dc.relation.referencesW. Kolos and L. Wolniewicz, Rev. Mod. Phys. 35, 473 (1963)spa
dc.relation.referencesW. Kolos and L. Wolniewicz, J. Chem. Phys. 46, 1426 (1967)spa
dc.relation.referencesP. M. Kozlowski and L. Adamowicz, J. Chem. Phys. 95, 6681 (1991)spa
dc.relation.referencesD. B. Kinghorn and L. Adamowicz, J. Chem. Phys. 113, 4203 (2000)spa
dc.relation.referencesM. Cafiero, S. Bubin, L. Adamowicz, M. Cafiero, and L. Adamowicz, Phys. Chem. Chem. Phys. 5, 1491 (2003)spa
dc.relation.referencesS. Bubin, M. Pavanello, W.-C. Tung, K. L. Sharkey, and L. Adamowicz, Chem. Rev. 113, 36 (2013)spa
dc.relation.referencesC. Swalina, M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 110, 9983 (2006)spa
dc.relation.referencesA. Chakraborty, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 129, 014101 (2008)spa
dc.relation.referencesM. Hoshino, H. Nishizawa, and H. Nakai, J. Chem. Phys. 135, 24111 (2011)spa
dc.relation.referencesA. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Theory Comput. 7, 2689 (2011)spa
dc.relation.referencesC. Ko, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Chem. Phys. 135, 054106 (2011)spa
dc.relation.referencesH. Nishizawa, M. Hoshino, Y. Imamura, and H. Nakai, Chem. Phys. Lett. 521, 142 (2012)spa
dc.relation.referencesH. Nishizawa, Y. Imamura, Y. Ikabata, and H. Nakai, Chem. Phys. Lett. 533, 100 (2012)spa
dc.relation.referencesE. Matyus and M. Reiher, J. Chem. Phys. 137, 024104 (2012)spa
dc.relation.referencesE. Matyus, J. Phys. Chem. A 117, 7195 (2013)spa
dc.relation.referencesA. Sirjoosingh, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Chem. Phys. 139, 034102 (2013)spa
dc.relation.referencesA. Sirjoosingh, M. V. Pak, K. R. Brorsen, and S. Hammes-Schiffer, J. Chem. Phys. 142, 214107 (2015)spa
dc.relation.referencesI. L. Thomas, Phys. Rev. 185, 90 (1969)spa
dc.relation.referencesI. L. Thomas, Chem. Phys. Lett. 3, 705 (1969)spa
dc.relation.references. L. Thomas and H. W. Joy, Phys. Rev. A 2, 1200 (1970)spa
dc.relation.referencesI. L. Thomas, Phys. Rev. A 3, 565 (1971)spa
dc.relation.referencesJ. F. Capitani, R. F. Nalewajski, and R. G. Parr, J. Chem. Phys. 76, 568 (1982)spa
dc.relation.referencesH. J. Monkhorst, Phys. Rev. A 36, 1544 (1987)spa
dc.relation.referencesM. Tachikawa, K. Mori, H. Nakai, and K. Iguchi, Chem. Phys. Lett. 290, 437 (1998)spa
dc.relation.referencesH. Nakai, Int. J. Quantum. Chem. 86, 511 (2002)spa
dc.relation.referencesM. Tachikawa, K. Mori, K. Suzuki, and K. Iguchi, Int. J. Quantum Chem. 70, 491 (1998)spa
dc.relation.referencesM. Tachikawa, Chem. Phys. Lett. 360, 494 (2002)spa
dc.relation.referencesY. Shigeta, H. Takahashi, S. Yamanaka, M. Mitani, H. Nagao, and K. Yamaguchi, Int. J. Quantum Chem. 70, 659 (1998)spa
dc.relation.referencesS. P. Webb, T. Iordanov, and S. Hammes-Schiffer, J. Chem. Phys. 117, 4106 (2002)spa
dc.relation.referencesM. Goli and S. Shahbazian, Theor. Chem. Acc. 129, 235 (2011)spa
dc.relation.referencesP. Cassam-Chenai, B. Suo, and W. Liu, Phys. Rev. A 92, 012502 (2015)spa
dc.relation.referencesP. Cassam-Chenai, B. Suo, and W. Liu, Theor. Chem. Acc. 136, 52 (2017)spa
dc.relation.referencesS. A. Gonzalez, N. F. Aguirre, and A. Reyes, Int. J. Quantum Chem. 108, 1742 (2008)spa
dc.relation.referencesT. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 128, 164118 (2008)spa
dc.relation.referencesH. Nakai and K. Sodeyama, J. Chem. Phys. 118, 1119 (2003)spa
dc.relation.referencesC. Swalina, M. V. Pak, and S. Hammes-Schiffer, Chem. Phys. Lett. 404, 394 (2005)spa
dc.relation.referencesT. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 125, 144103 (2006)spa
dc.relation.referencesM. Hoshino and H. Nakai, J. Chem. Phys. 124, 194110 (2006)spa
dc.relation.referencesJ. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)spa
dc.relation.referencesY. Tsukamoto, Y. Ikabata, J. Romero, A. Reyes, and H. Nakai, Phys. Chem. Chem. Phys. 18, 27422 (2016)spa
dc.relation.referencesY. Shigeta, Y. Ozaki, K. Kodama, H. Nagao, H. Kawabe, and K. Nishikawa, Int. J. Quantum Chem. 69, 629 (1998)spa
dc.relation.referencesY. Shigeta, H. Nagao, K. Nishikawa, and K. Yamaguchi, Int. J. Quantum Chem. 75, 875 (1999)spa
dc.relation.referencesT. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86, 2984 (2001)spa
dc.relation.referencesT. Udagawa and M. Tachikawa, J. Chem. Phys. 125, 244105 (2006)spa
dc.relation.referencesM. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 111, 4522 (2007)spa
dc.relation.referencesY. Imamura, H. Kiryu, and H. Nakai, J. Comput. Chem. 29, 735 (2008)spa
dc.relation.referencesT. Udagawa, T. Tsuneda, and M. Tachikawa, Phys. Rev. A 89, 052519 (2014)spa
dc.relation.referencesY. Yang, K. R. Brorsen, T. Culpitt, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 147, 114113 (2017)spa
dc.relation.referencesA. Szabo and N. Ostlund, Modern quantum chemistry: introduction to advanced electronic structure theory (Dover Publications, 1996)spa
dc.relation.referencesL. M. Pedraza-Gonzalez, J. A. Charry Martinez, W. D. Quintero, J. Ali-Torres, and A. Reyes, Phys. Chem. Chem. Phys. 19, 25324 (2017)spa
dc.relation.referencesB. A. Pettitt, Chem. Phys. Lett. 130, 399 (1986)spa
dc.relation.referencesH. Nakai, M. Hoshino, K. Miyamoto, and S. Hyodo, J. Chem. Phys. 122, 164101 (2005)spa
dc.relation.referencesK. Miyamoto, M. Hoshino, and H. Nakai, J. Chem. Theory Comput. 2, 1544 (2006)spa
dc.relation.referencesK. Sodeyama, H. Nishizawa, M. Hoshino, M. Kobayashi, and H. Nakai, Chem. Phys. Lett. 433, 409 (2007)spa
dc.relation.referencesA. Reyes, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 123, 064104 (2005)spa
dc.relation.referencesF. Moncada, E. Posada, R. Flores-Moreno, and A. Reyes, Chem. Phys. 400, 103 (2012)spa
dc.relation.referencesP. Lowdin, Int. J. Quantum Chem. 55, 77 (1995)spa
dc.relation.referencesS. A. Gonzalez and A. Reyes, Int. J. Quantum Chem. 110, 689 (2010)spa
dc.relation.referencesH. H. Corzo and J. V. Ortiz, Adv. Quantum. Chem. 74, 267 (2017)spa
dc.relation.referencesB. Auer and S. Hammes-Schiffer, J. Chem. Phys. 132, 084110 (2010)spa
dc.relation.referencesA. Chakraborty, M. V. Pak, and S. Hammes-Schiffer, Phys. Rev. Lett. 101, 153001 (2008)spa
dc.relation.referencesK. R. Brorsen, Y. Yang, and S. Hammes-Schiffer, J. Phys. Chem. Lett. 8, 3488 (2017)spa
dc.relation.referencesD. Mejia-Rodriguez and A. de la Lande, J. Chem. Phys. 150, 174115 (2019)spa
dc.relation.referencesA. D. Becke, J. Chem. Phys. 88, 1053 (1988)spa
dc.relation.referencesZ. Tao, Y. Yang, and S. Hammes-Schiffer, J. Chem. Phys. 151, 124102 (2019)spa
dc.relation.referencesA. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 136, 174114 (2012)spa
dc.relation.referencesT. Culpitt, K. R. Brorsen, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 145, 044106 (2016)spa
dc.relation.referencesJ. Arponen and E. Pajanne, Ann. Phys. 121, 343 (1979)spa
dc.relation.referencesF. Moncada, D. Cruz, and A. Reyes, Chem. Phys. Lett. 539-540, 209 (2012)spa
dc.relation.referencesE. Posada, F. Moncada, and A. Reyes, J. Phys. Chem. A 118, 9491 (2014)spa
dc.relation.referencesB. Auer, M. V. Pak, and S. Hammes-Schiffer, J. Phys. Chem. C 114, 5582 (2010)spa
dc.relation.referencesY. Kanematsu and M. Tachikawa, J. Chem. Phys. 141, 185101 (2014)spa
dc.relation.referencesT. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 124, 014112 (2006)spa
dc.relation.referencesF. Jensen, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 273 (2013)spa
dc.relation.referencesB. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L. Windus, J. Chem. Inf. Model. 59, 4814 (2019)spa
dc.relation.referencesF. Moncada, S. A. Gonzalez, and A. Reyes, Mol. Phys. 108, 1545 (2010)spa
dc.relation.referencesF. Moncada, R. Flores-Moreno, and A. Reyes, J. Mol. Model. 23, 90 (2017)spa
dc.relation.referencesE. Posada, F. Moncada, and A. Reyes, J. Chem. Phys. 148, 084113 (2018)spa
dc.relation.referencesM. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993)spa
dc.relation.referencesJ. Romero, J. A. Charry, H. Nakai, and A. Reyes, Chem. Phys. Lett. 591, 82 (2014)spa
dc.relation.referencesM. A. Marques, M. J. Oliveira, and T. Burnus, Comp. Phys. Comm. 183, 2227 (2012)spa
dc.relation.referencesS. Scheiner, Biochim. Biophys. Acta Bioenerg. 1458, 28 (2000)spa
dc.relation.referencesJ. Bigeleisen, Theoretical Basis of Isotope Effects from an Autobiographical Perspective, in Isotope Effects In Chemistry and Biology, edited by A. Kohen and H.-H. Limbach, chap. 1, CRC Press, Boca Raton, Florida, 2005spa
dc.relation.referencesJ. Tennyson, J. Chem. Phys. 145, 120901 (2016)spa
dc.relation.referencesT. Carrington, J. Chem. Phys. 146, 120902 (2017)spa
dc.relation.referencesT. K. Roy and R. B. Gerber, Phys. Chem. Chem. Phys. 15, 9468 (2013)spa
dc.relation.referencesD. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992)spa
dc.relation.referencesD. Lauvergnat and A. Nauts, J. Chem. Phys. 116, 8560 (2002)spa
dc.relation.referencesS. N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007)spa
dc.relation.referencesE. Matyus, G. Czako, and A. G. Csaszar, J. Chem. Phys. 130, 134112 (2009)spa
dc.relation.referencesM. Tachikawa and M. Shiga, J. Am. Chem. Soc. 127, 11908 (2005)spa
dc.relation.referencesK. Karandashev, Z.-H. Xu, M. Meuwly, J. Van ́ıˇcek, and J. O. Richardson, Struc. Dyn. 4, 061501 (2017)spa
dc.relation.referencesM. Machida, K. Kato, and M. Shiga, J. Chem. Phys. 148, 102324 (2018)spa
dc.relation.referencesD. V. Moreno, S. A. Gonz ́alez, and A. Reyes, J. Phys. Chem. A 114, 9231 (2010)spa
dc.relation.referencesD. V. Moreno, S. A. Gonzalez, and A. Reyes, J. Chem. Phys. 134, 024115 (2011)spa
dc.relation.referencesJ. Romero, A. Restrepo, and A. Reyes, Mol. Phys. 112, 518 (2014)spa
dc.relation.referencesR. Flores-Moreno and A. M. K ̈oster, J. Chem. Phys. 128, 134105 (2008)spa
dc.relation.referencesA. R. Ubbelohde and K. J. Gallagher, Acta Crystallogr. 8, 71 (1955)spa
dc.relation.referencesJ. A. Ibers, J. Chem. Phys. 41, 25 (1964)spa
dc.relation.referencesY. Noda, H. Kasatani, Y. Watanabe, H. Terauchi, and K. Gesi, J. Phys. Soc. Japan 59, 3249 (1990)spa
dc.relation.referencesF. Moncada, L. S. Uribe, J. Romero, and A. Reyes, Int. J. Quantum Chem. 113, 1556 (2013)spa
dc.relation.referencesE. P. L. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998)spa
dc.relation.referencesA. Moser, K. Range, and D. M. York, J. Phys. Chem. B 114, 13911 (2010)spa
dc.relation.referencesC. A. Deakyne, Int. J. Mass Spectrom. 227, 601 (2003)spa
dc.relation.referencesC. Cramer, Essentials of Computational Chemistry Theories and Models (Wiley, 2005)spa
dc.relation.referencesM. Diaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)spa
dc.relation.referencesL. Pedraza-Gonzalez, J. Romero, J. Ali-Torres, and A. Reyes, Phys. Chem. Chem. Phys. 18, 27185 (2016)spa
dc.relation.referencesM. Goli and S. Shahbazian, Phys. Chem. Chem. Phys. 16, 6602 (2014)spa
dc.relation.referencesM. Goli and S. Shahbazian, Phys. Chem. Chem. Phys. 17, 7023 (2015)spa
dc.relation.referencesM. Goli and S. Shahbazian, Chem. Eur. J. 22, 2525 (2016)spa
dc.relation.referencesD. G. Fleming, J. Manz, K. Sato, and T. Takayanagi, Angew. Chem. Int. Ed. 53, 13706 (2014)spa
dc.relation.referencesD. G. Fleming, D. J. Arseneau, O. Sukhorukov, J. H. Brewer, S. L. Mielke, G. C. Schatz, B. C. Garrett, K. A. Peterson, and D. G. Truhlar, Science 331, 448 (2011)spa
dc.relation.referencesF. Moncada, D. Cruz, and A. Reyes, Chem. Phys. Lett. 570, 16 (2013)spa
dc.relation.referencesS. L. Mielke, D. W. Schwenke, G. C. Schatz, B. C. Garrett, and K. A. Peterson, J. Phys. Chem. A 113, 4479 (2009)spa
dc.relation.referencesR. J. Bartlett, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 126 (2012)spa
dc.relation.referencesJ. V. Ortiz and I. Mart ́ın, J. Chem. Phys. 120, 7949 (2004)spa
dc.relation.referencesJ. Melin, J. V. Ortiz, I. Martin, A. M. Velasco, and C. Lavin, J. Chem. Phys. 122, 234317 (2005)spa
dc.relation.referencesA. M. Velasco, C. Lavin, M. Diaz-Tinoco, and J. V. Ortiz, J. Quant. Spectrosc. Radiat. Transf. 187, 161 (2017)spa
dc.relation.referencesH. H. Corzo, A. M. Velasco, C. Lavin, and J. V. Ortiz, J. Quant. Spectrosc. Radiat. Transf. 206, 323 (2018)spa
dc.relation.referencesT. H. Dunning, J. Chem. Phys. 90, 1007 (1989)spa
dc.relation.referencesF. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012)spa
dc.relation.referencesD. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010)spa
dc.relation.referencesW. C. Martin, Electron configuration and ionization energy of neutral atoms in the ground state, in Handbook of Chemistry and Physics, edited by W. M. Haynes, D. R. Lide, and T. J. Bruno, chap. 1, pp. 1–16, CRC Press, Boca Raton, Florida, 2017spa
dc.relation.referencesC. Ghanmi, H. Berriche, and H. Ben Ouada, J. Mol. Spectrosc. 235, 158 (2006)spa
dc.relation.referencesC. Ghanmi, H. Bouzouita, N. Mabrouk, and H. Berriche, J. Mol. Struc. THEOCHEM 808, 1 (2007)spa
dc.relation.referencesH. Berriche, Int. J. Quantum Chem. 113, 2405 (2013)spa
dc.relation.referencesA. K. Bhatia and R. J. Drachman, Phys. Rev. A 28, 2523 (1983)spa
dc.relation.referencesM. Goli and S. Shahbazian, ChemPhysChem 20, 831 (2019)spa
dc.relation.referencesM. v. Hopffgarten and G. Frenking, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 43 (2012)spa
dc.relation.referencesG. Senatore and K. R. Subbaswamy, Phys. Rev. B 34, 5754 (1986)spa
dc.relation.referencesP. Cortona, Phys. Rev. B 44, 8454 (1991)spa
dc.relation.referencesT. A. Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050 (1993)spa
dc.relation.referencesT. Dresselhaus and J. Neugebauer, Theor. Chem. Acc. 134, 97 (2015)spa
dc.relation.referencesQ. Sun and G. K. L. Chan, Acc. Chem. Res. 49, 2705 (2016)spa
dc.relation.referencesA. Severo Pereira Gomes and C. R. Jacob, Annu. Reports Sect. C 108, 222 (2012)spa
dc.relation.referencesT. A. Barnes, J. D. Goodpaster, F. R. Manby, and T. F. Miller, J. Chem. Phys. 139, 024103 (2013)spa
dc.relation.referencesJ. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller, J. Chem. Phys. 140, 18A507 (2014)spa
dc.relation.referencesS. J. Bennie, M. Stella, T. F. Miller, and F. R. Manby, J. Chem. Phys. 143, 024105 (2015)spa
dc.relation.referencesS. J. R. Lee, M. Welborn, F. R. Manby, and T. F. Miller, Acc. Chem. Res. 52, 1359 (2019)spa
dc.relation.referencesA. W. Gotz, S. Maya Beyhan, and L. Visscher, J. Chem. Theory Comput. 5, 3161 (2009)spa
dc.relation.referencesT. Heaton-Burgess and W. Yang, J. Chem. Phys. 129, 25 (2008)spa
dc.relation.referencesS. Lehtola, C. Steigemann, M. J. Oliveira, and M. A. Marques, SoftwareX 7, 1 (2018)spa
dc.relation.referencesJ. Lehtola, M. Hakala, A. Sakko, and K. H ̈am ̈al ̈ainen, J. Comput. Chem. 33, 1572 (2012)spa
dc.relation.referencesS. Lehtola and H. Jonsson, J. Chem. Theory Comput. 9, 5365 (2013)spa
dc.relation.references. Pipek and P. G. Mezey, J. Chem. Phys. 90, 4916 (1989)spa
dc.relation.referencesG. Knizia, J. Chem. Theory Comput. 9, 4834 (2013)spa
dc.relation.referencesJ. M. Martin, Chem. Phys. Lett. 259, 669 (1996)spa
dc.relation.referencesD. Feller, K. A. Peterson, and J. Grant Hill, J. Chem. Phys. 135, 044102 (2011)spa
dc.relation.referencesD. Feller, J. Chem. Phys. 138, 074103 (2013)spa
dc.relation.referencesV. Vasilyev, Comput. Theor. Chem. 1115, 1 (2017)spa
dc.relation.referencesG. F. Gribakin and J. Ludlow, J. Phys. B At. Mol. Opt. Phys. 35, 339 (2002)spa
dc.relation.referencesD. E. Woon and T. H. Dunning, J. Chem. Phys. 100, 2975 (1994)spa
dc.relation.referencesR. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992)spa
dc.relation.referencesD. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993)spa
dc.relation.referencesA. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning, J. Chem. Phys. 110, 7667 (1999)spa
dc.relation.referencesJ. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)spa
dc.relation.referencesC. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988)spa
dc.relation.referencesA. D. Becke, J. Chem. Phys. 98, 5648 (1993)spa
dc.relation.referencesP. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994)spa
dc.relation.referencesJ. V. Ortiz, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 123 (2013)spa
dc.relation.referencesD. G. Liakos, M. Sparta, M. K. Kesharwani, J. M. L. Martin, and F. Neese, J. Chem. Theory Comput. 11, 1525 (2015)spa
dc.relation.referencesC. Riplinger, P. Pinski, U. Becker, E. F. Valeev, and F. Neese, J. Chem. Phys. 144, 024109 (2016)spa
dc.relation.referencesW. B. Schneider, G. Bistoni, M. Sparta, M. Saitow, C. Riplinger, A. A. Auer, and F. Neese, J. Chem. Theory Comput. 12, 4778 (2016)spa
dc.relation.referencesT. M. Miller, Electron affinities, in Handbook of Chemistry and Physics, edited by W. M. Haynes, D. R. Lide, and T. J. Bruno, chap. 10, pp. 10–147, CRC Press, Boca Raton, Florida, 2017spa
dc.relation.referencesF. Goldfarb, C. Drag, W. Chaibi, S. Kr ̈oger, C. Blondel, and C. Delsart, J. Chem. Phys. 122, 014308 (2005)spa
dc.relation.referencesS. T. Stokes, J. E. Bartmess, A. Buonaugurio, Y. Wang, S. N. Eustis, and K. H. Bowen, Chem. Phys. Lett. 732, 136638 (2019)spa
dc.relation.referencesE. H. Kim, S. E. Bradforth, D. W. Arnold, R. B. Metz, and D. M. Neumark, J. Chem. Phys. 103, 7801 (1995)spa
dc.relation.referencesD. M. Schrader and C. M. Wang, J. Phys. Chem. 80, 2507 (1976)spa
dc.relation.referencesT. M. Ramond, G. E. Davico, R. L. Schwartz, and W. C. Lineberger, J. Chem. Phys. 112, 1158 (2000)spa
dc.relation.referencesJ. B. Kim, T. I. Yacovitch, C. Hock, and D. M. Neumark, Phys. Chem. Chem. Phys. 13, 17378 (2011)spa
dc.relation.referencesX. B. Wang, H. K. Woo, L. S. Wang, B. Minofar, and P. Jungwirth, J. Phys. Chem. A 110, 5047 (2006)spa
dc.relation.referencesH. K. Woo, X. B. Wang, B. Kiran, and L. S. Wang, J. Phys. Chem. A 109, 11395 (2005)spa
dc.relation.referencesY. Suzuki, S. Hagiwara, and K. Watanabe, Phys. Rev. Lett. 121, 133001 (2018)spa
dc.relation.referencesR. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1975)spa
dc.relation.referencesR. Colle and O. Salvetti, Theor. Chim. Acta 53, 55 (1979)spa
dc.relation.referencesK. R. Brorsen, P. E. Schneider, and S. Hammes-Schiffer, J. Chem. Phys. 149, 044110 (2018)spa
dc.relation.referencesJ. Harris, Phys. Rev. A 29, 1648 (1984)spa
dc.relation.referencesY. Imamura, G. E. Scuseria, and R. M. Martin, J. Chem. Phys. 116, 6458 (2002)spa
dc.relation.referencesA. Nagy and C. Amovilli, Phys. Rev. A 82, 042510 (2010)spa
dc.relation.referencesWolfram Research, Inc., Mathematica, Version 9.0, 2012, Champaign, ILspa
dc.relation.referencesF. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)spa
dc.relation.referencesY. J. Bagul, Int. J. Math. Sci. Engg. Appls. 11, 213 (2017)spa
dc.relation.referencesS. L. Saito, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 171, 60 (2000)spa
dc.relation.referencesM. D ́ıaz-Tinoco, H. H. Corzo, and J. V. Ortiz, J. Chem. Theory Comput. 14, 5881 (2018)spa
dc.relation.referencesM. Tachikawa, H. Sainowo, K. Iguchi, and K. Suzuki, J. Chem. Phys. 101, 5925 (1994)spa
dc.relation.referencesM. Barborini, J. A. Charry, M. Ditte, and A. Tkatchenko, Manuscript in preparation (2021)spa
dc.relation.referencesM. Casula and S. Sorella, J. Chem. Phys. 119, 6500 (2003)spa
dc.relation.referencesS. Fahy, X. W. Wang, and S. G. Louie, Phys. Rev. B 42, 3503 (1990)spa
dc.relation.referencesM. S. Becker, A. A. Broyles, and T. Dunn, Phys. Rev. 175, 224 (1968)spa
dc.relation.referencesN. H. Rosenbaum, J. C. Owrutsky, L. M. Tack, and R. J. Saykally, J. Chem. Phys. 84, 5308 (1986)spa
dc.relation.referencesP. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, J. Chem. Phys. 77, 5593 (1982)spa
dc.relation.referencesJ. Charry, L. Pedraza-Gonzalez, and A. Reyes, J. Chem. Phys. 146, 214103 (2017)spa
dc.relation.referencesF. Moncada, L. Pedraza-Gonzalez, J. Charry, M. T. do N. Varella, and A. Reyes, Chem. Sci. 11, 44 (2020)spa
dc.relation.referencesR. Flores-Moreno, E. Posada, F. Moncada, J. Romero, J. Charry, M. Diaz-Tinoco, S. A. Gonzalez, N. F. Aguirre, and A. Reyes, Int. J. Quantum Chem. 114, 50 (2014)spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.proposalPositronseng
dc.subject.proposalDensity functional theoryeng
dc.subject.proposalExotic moleculeseng
dc.subject.proposalPropagator theoryeng
dc.subject.proposalAny particle molecular orbitaleng
dc.subject.proposalMulticomponent methodseng
dc.subject.proposalPositron electron correlationeng
dc.subject.proposalColle-Salvetti correlationeng
dc.subject.proposalPositron covalent bondeng
dc.subject.proposalQuantum chemistryeng
dc.subject.proposalPositronesspa
dc.subject.proposalTeoría del funcional de la densidadspa
dc.subject.proposalMoléculas exóticasspa
dc.subject.proposalTeoría del propagadorspa
dc.subject.proposalOrbital molecular para cualquier partículaspa
dc.subject.proposalMétodos multicomponentespa
dc.subject.proposalCorrelación positrón electrónspa
dc.subject.proposalCorrelación Colle-Salvettispa
dc.subject.proposalEnlace covalente positrónicospa
dc.subject.proposalQuímica cuánticaspa
dc.subject.unescoOnda electromagnéticaspa
dc.subject.unescoMecánica de las ondasspa
dc.subject.unescoElectromagnetic waveseng
dc.subject.unescoWave mechanicseng
dc.subject.unescoPartícula elementalspa
dc.titleDevelopment of a multicomponent wavefunction-in-DFT embedding methodologyeng
dc.title.translatedDesarrollo de una metodología de función de onda multicomponente embebida en DFTspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleConvocatoria Doctorados Nacionales 2016spa
oaire.fundernameMinisterio de Ciencia Tecnología e Innovación - Mincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019037142-2021.pdf
Tamaño:
4.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: