Opciones de descarbonización del transporte terrestre en ciudades de Colombia: escenarios a partir de un modelo de dinámica de sistemas

dc.contributor.advisorOlaya, Yris
dc.contributor.advisorArango Aramburo, Santiago
dc.contributor.authorValencia Hernández, Verónica
dc.contributor.cvlacValencia Hernández, Verónica [0001730199]spa
dc.contributor.googlescholarVerónica Valencia Hernándezspa
dc.contributor.orcidValencia Hernández, Verónica [0000000255558883]spa
dc.contributor.orcidArango Aramburo, Santiago [0000-0002-5009-0986]spa
dc.contributor.orcidOlaya Morales, Yris [0000-0001-5210-4731]spa
dc.contributor.researchgateValencia Hernández, Verónica [Veronica-Valencia-5]spa
dc.contributor.researchgroupCiencias de la Decisionspa
dc.date.accessioned2023-01-31T13:51:46Z
dc.date.available2023-01-31T13:51:46Z
dc.date.issued2022
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa crisis climática y la mala calidad del aire urbano han puesto la descarbonización del sector transporte en la agenda de la mayoría de los gobiernos. Sin embargo, la descarbonización del transporte generalmente se aborda a partir de la sustitución de tecnologías de vehículos, dejando de lado el potencial de los cambios modales en el camino hacia la reducción de emisiones. Este trabajo tiene como propósito evaluar posibles vías de descarbonización del transporte terrestre urbano para Bogotá D.C. y el Área Metropolitana del Valle de Aburrá -dos regiones de Colombia, un país en desarrollo- incluyendo el análisis del cambio tecnológico en vehículos y la dinámica de los viajes. Para ello se construyó un modelo de simulación usando Dinámica de Sistemas e integrando elementos del modelo de difusión de Bass y de modelos de elección discreta. Los resultados indican que bajo las condiciones actuales alrededor de un tercio del total de vehículos de Bogotá y del AMVA podrían ser vehículos eléctricos para 2050, porcentaje de mercado que si bien evitaría un total de 57 Mt de CO2eq y 6 t de PM entre las dos regiones hasta 2050, es bajo considerando el crecimiento del número de vehículos y la lenta renovación del parque antiguo de vehículos de combustión interna. Los resultados también sugieren que: 1) los precios de los combustibles, que afectan el desempeño de la economía en Colombia, es la variable con incertidumbre con mayor potencial de impactar la velocidad de difusión de vehículos de propulsión alternativa, velocidad favorecida en un escenario de bonanza económica, 2) la política más efectiva en reducción de emisiones es la chatarrización de vehículos pesados, pero es muy costosa de ejecutar, a cambio, las políticas con una mejor relación de costo y emisiones abatidas son: restringir las ventas de vehículos de combustión interna a partir de 2030, adicionar infraestructura de carga pública de vehículos eléctricos, nuevos buses solo cero y bajas emisiones, y aumentar la inversión en infraestructura de transporte no motorizado. (Texto tomado de la fuente)spa
dc.description.abstractThe climate crisis and poor urban air quality have put the transport sector decarbonization on the agenda of most governments. However, the decarbonization of transport is generally approached through the substitution of vehicle technologies, leaving aside the potential of modal changes in the path to reducing emissions. This work evaluates possible ways of decarbonizing urban land transport for Bogotá D.C. and the Metropolitan Area of Valle de Aburrá -two regions of Colombia, a developing country- including the analysis of technological change and travel dynamics. For this, a simulation model was built using System Dynamics and integrating elements of the Bass diffusion model and discrete choice models. The results indicate that under current conditions around a third of all vehicles in Bogotá and AMVA could be electric vehicles by 2050, a market percentage that even thought would avoid a total of 57 Mt of CO2eq and 6 t of PM between the two regions until 2050, is low considering the growth in the number of vehicles and the slow renewal of the old fleet of internal combustion vehicles. The results also suggest that: 1) fuel prices, which affect the performance of the economy in Colombia, is the uncertainty variable with the most potential to impact the speed of diffusion of alternative fuel vehicles, a speed favored in an economic boom scenario, 2) the most effective policy to reduce emissions is the scrapping of heavy vehicles, but it is expensive to execute, in return, the policies with the best cost and reduced emissions ratio are: restricting sales of internal combustion vehicles from 2030, adding public electric vehicles charging infrastructure, new buses only zero and low emissions, and increasing investment in non-motorized transport infrastructure.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemasspa
dc.description.methodsDinámica de Sistemasspa
dc.description.researchareaInvestigación de Operacionesspa
dc.description.sponsorshipProyecto "Estrategia de transformación del sector energético colombiano en el horizonte de 2030" financiado en la convocatoria 778 de Minciencias Ecosistema Científico. Contrato FP44842-210-2018spa
dc.description.technicalinfoLos archivos del modelo y el detalle de las ecuaciones en Powersim Studio 10 pueden encontrarse en: https://drive.google.com/drive/folders/12qHr8kMoWxbKIwEliwl3S1mNToHUPJNSspa
dc.description.technicalinfoModel files and detailed equations in Powersim Studio 10 can be found at: https://drive.google.com/drive/folders/12qHr8kMoWxbKIwEliwl3S1mNToHUPJNSeng
dc.format.extentxxvii, 278 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83202
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemasspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAasness, M. A., & Odeck, J. (2015). The increase of electric vehicle usage in Norway—incentives and adverse effects. European Transport Research Review, 7(4), 1–8.spa
dc.relation.referencesAcevedo-Navas, C., & Morales-Nieto, A. (2020). Decision Process to Purchase Electric Vehicles in Bogota. Pensamiento & Gestión, 49, 244–275.spa
dc.relation.referencesAgaton, C. B., Collera, A. A., & Guno, C. S. (2020). Socio-economic and environmental analyses of sustainable public transport in the Philippines. Sustainability, 12(11), 4720.spa
dc.relation.referencesAguirre, D., Garcia, J. R., & Duarte, O. (2018). Market Penetration Analysis of Electric and CNG Technologies in Colombian Freight Transportation. International Journal on Energy Conversion (IRECON), 6(2) doi:10.15866/irecon.v6i2.15091.spa
dc.relation.referencesAhmad, I., & Dewan, K. K. (2007). Electric vehicle: a futuristic approach to reduce pollution (A case study of Delhi). World Review of Intermodal Transportation Research, 1(3), 300–312.spa
dc.relation.referencesAjanovic, A., & Haas, R. (2016). Dissemination of electric vehicles in urban areas: Major factors for success. Energy, 115, 1451–1458. https://doi.org/10.1016/j.energy.2016.05.040spa
dc.relation.referencesAl-Alawi, B. M., & Bradley, T. H. (2013). Review of hybrid, plug-in hybrid, and electric vehicle market modeling studies. Renewable and Sustainable Energy Reviews, 21, 190–203.spa
dc.relation.referencesAlcaldía de Bogotá. (2017). Movilidad en Cifras 2015. https://www.movilidadbogota.gov.co/web/SIMUR/ARCHIVOS/Movilidad_Cifras_2015_V4_marzo2017.pdfspa
dc.relation.referencesAlcaldía de Bogotá. (2019). Como será el metro de Bogotá. https://bogota.gov.co/mi-ciudad/movilidad/como-sera-el-metro-de-bogotaspa
dc.relation.referencesAlcaldía de Bogotá. (2020). Encuesta de Movilidad 2019 Indicadores Preliminares. https://www.movilidadbogota.gov.co/web/sites/default/files/Paginas/22-04-2020/20191216_presentacion_encuesta_v2.pdfspa
dc.relation.referencesÁlvarez, C. A., & Dyner, I. (2021). Impacto de políticas de movilidad sostenible en el AMVA mediante dinámica de sistemas.spa
dc.relation.referencesAmbrosino, G., Nelson, J. D., Boero, M., & Pettinelli, I. (2016). Enabling intermodal urban transport through complementary services: From Flexible Mobility Services to the Shared Use Mobility Agency: Workshop 4. Developing inter-modal transport systems. Research in Transportation Economics, 59, 179–184. https://doi.org/10.1016/j.retrec.2016.07.015spa
dc.relation.referencesAMVA. (2007). Plan Integral de Desarrollo Metropolitano METRÓPOLI 2008-2020. https://www.metropol.gov.co/planeacion/Documents/plan-metropoli-2008-2020.pdfspa
dc.relation.referencesAMVA. (2015). Plan Maestro Metropolitano de la Bicicleta del Valle de Aburrá. https://encicla.metropol.gov.co/Documents/5PMB2030.pdfspa
dc.relation.referencesAMVA. (2017). Encuesta origen destino. https://www.metropol.gov.co/observatorio/Paginas/encuestaorigendestino.aspxspa
dc.relation.referencesAMVA. (2018a). Resultados de la encuesta movilidad origen y destino 2017. https://www.metropol.gov.co/noticias/resultados-de-la-encuesta-movilidad-origen-y-destino-2017spa
dc.relation.referencesAMVA. (2018b). SITVA, Sistema Integrado de Transporte del Valle de Aburrá. https://www.metropol.gov.co/la-movilidad/transporte-público/sitvaspa
dc.relation.referencesAMVA. (2020). Plan Maestro de Movilidad para el Valle de Aburrá. https://www.metropol.gov.co/movilidad/PlanMaestro/Plan Maestro de Movilidad.pdfspa
dc.relation.referencesANDEMOS. (2018). ANDEMOS advierte sobre el envejecimiento de la población vehicular en Colombia. https://www.andemos.org/index.php/2018/07/27/andemos-advierte-sobre-el-envejecimiento-de-la-poblacion-vehicular-en-colombia/spa
dc.relation.referencesANDEMOS. (2021). Cifras y Estadisticas. https://www.andemos.org/index.php/cifras-y-estadisticas-version-2/spa
dc.relation.referencesANDI. (2019). Las motocicletas en Colombia: aliadas del desarrollo del país Estudio del sector, 2019, Vol. 2.spa
dc.relation.referencesAngel, R. (2018). Evaluación de factores socioeconómicos y técnicos que afectan la aplicación del vehículo eléctrico en Colombia. Universidad de La Sabana.spa
dc.relation.referencesANIF. (2014). Dinámica del Gas Natural Vehicular y Conversión de Vehículos. www.anif.cospa
dc.relation.referencesAntioquia datos. (2015). Densidad Vial por categoría en los Municipios de Antioquia. Anuario Estadístico de Antioquia 2016. https://www.antioquiadatos.gov.co/index.php/20-13-2-densidad-vial-por-categoria-en-los-municipios-de-antioquia-2015spa
dc.relation.referencesArdila, L. A. (2014). Evaluación de estrategias para incentivar un transporte particular bajo en carbono en Colombia. 174. http://www.bdigital.unal.edu.co/39661/spa
dc.relation.referencesArgonne National Laboratory. (2021). Comprehensive Total Cost of Ownership Quantification for Vehicles with Different Size Classes and Powertrains. Energy Systems Division. https://publications.anl.gov/anlpubs/2021/05/167399.pdfspa
dc.relation.referencesArias-Gaviria, J., Valencia-Hernandez, V., Arango-Aramburo, S., & Olaya, Y. (2021). The Chicken and the Egg Dilemma for Charging Infrastructure and Electric Vehicle Diffusion: A Developing World Case Study.spa
dc.relation.referencesAriza, J. L., & Ceballos, E. C. (2021). Factores que inciden en el interés de los consumidores en la adquisición de vehículos híbridos y eléctricos en la ciudad de Bogotá.spa
dc.relation.referencesAuteco. (2022). Auteco Mobility. https://www.autecomobility.com/Sistema/buscavazia?ft=bicicletas-y-motos-starker+https%3Aspa
dc.relation.referencesAutofact. (2022). Conversión a gas natural vehicular: todo lo que debes saber. https://www.autofact.com.co/blog/mi-carro/actividades/conversion-gas-vehicularspa
dc.relation.referencesBabar, A. H. K., & Ali, Y. (2021). Enhancement of electric vehicles’ market competitiveness using fuzzy quality function deployment. Technological Forecasting and Social Change, 167, 120738.spa
dc.relation.referencesBabar, A. H. K., Ali, Y., & Khan, A. U. (2021). Moving toward green mobility: overview and analysis of electric vehicle selection, Pakistan a case in point. Environment, Development and Sustainability, 23(7), 10994–11011.spa
dc.relation.referencesBallard Power. (2021). Bus Transit - Fuel Cell Electric Buses. https://www.ballard.com/markets/transit-busspa
dc.relation.referencesBanrep. (2005). La infraestructura del transporte vial y la movilización de carga en Colombia. https://repositorio.banrep.gov.co/bitstream/handle/20.500.12134/3194/dtser_64.pdfspa
dc.relation.referencesBarlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review, 12(3), 183–210. https://doi.org/10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4spa
dc.relation.referencesBass, F. M. (1969). A new product growth for model consumer durables. Management Science, 15(5), 215–227.spa
dc.relation.referencesBedoya, L. F. (2017). Efectos del desarrollo tecnológico de las baterías en el Sistema Interconectado Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/60848spa
dc.relation.referencesBellocchi, S., Gambini, M., Manno, M., Stilo, T., & Vellini, M. (2018). Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: The Italian case. Energy, 161, 172–182. https://doi.org/10.1016/j.energy.2018.07.068spa
dc.relation.referencesBerkson, J. (1944). Application of the logistic function to bio-assay. Journal of the American Statistical Association, 39(227), 357–365.spa
dc.relation.referencesBloombergNEF. (2017). Electric Cars to Reach Price Parity by 2025. https://about.bnef.com/blog/electric-cars-reach-price-parity-2025/spa
dc.relation.referencesBloombergNEF. (2020). Battery Pack Prices Cited Below $100/kWh for the First Time in 2020, While Market Average Sits at $137/kWh. https://about.bnef.com/blog/battery-pack-prices-cited-below-100-kwh-for-the-first-time-in-2020-while-market-average-sits-at-137-kwh/#:~:text=This indicates that on average,prices will be %24101%2FkWh.spa
dc.relation.referencesBloombergNEF. (2021a). Battery Pack Prices Fall to an Average of $132/kWh, But Rising Commodity Prices Start to Bite. https://about.bnef.com/blog/battery-pack-prices-fall-to-an-average-of-132-kwh-but-rising-commodity-prices-start-to-bite/spa
dc.relation.referencesBloombergNEF. (2021b). Bloomberg New Energy Finance. https://about.newenergyfinance.com/spa
dc.relation.referencesBloombergNEF. (2021c). Electric Vehicle Outlook 2021. https://about.bnef.com/electric-vehicle-outlook/spa
dc.relation.referencesBogotá cómovamos. (2019). Movilidad - Parque automotor en Bogotá, 2008 - 2018. https://bogotacomovamos.org/datos/movilidad/spa
dc.relation.referencesBraz da Silva, M., & Moura, F. (2016). Electric vehicle diffusion in the Portuguese automobile market. International Journal of Sustainable Transportation, 10(2), 49–64.spa
dc.relation.referencesBrundtland, G. H., Khalid, M., Agnelli, S., Al-Athel, S., & Chidzero, B. (1987). Our common future. New York, 8.spa
dc.relation.referencesCadavid, L., & Franco, C. J. (2016). Policy Analysis for the diffusion of Natural Gas Vehicles: The Colombian Case. IEEE Latin America Transactions, 14(9), 4082–4088. https://doi.org/10.1109/TLA.2016.7785937spa
dc.relation.referencesCámara de Comercio de Bogotá, & Universidad de los Andes. (2016). Observatorio de Movilidad - Reporte Anual de Movilidad 2015. https://bibliotecadigital.ccb.org.co/handle/11520/18119spa
dc.relation.referencesCascetta, E. (2009). Transportation systems analysis: models and applications (Vol. 29). Springer Science & Business Media.spa
dc.relation.referencesCelsia. (2019). La movilidad eléctrica alcanza un nuevo hito, Celsia y Haceb presentan el primer cargador para vehículos eléctricos 100% colombiano. . https://www.celsia.com/es/blog-celsia/la-movilidad-electrica-alcanza-un-nuevo-hito-celsia-y-haceb-presentan-el-primer-cargador-para-vehiculos-electricos-100-colombiano/spa
dc.relation.referencesCleanTechnica. (2021). Electric Vehicles Have Much Lower Maintenance Costs. https://cleantechnica.com/2021/06/29/electric-vehicles-have-much-lower-maintenance-costs/spa
dc.relation.referencesCONPES 3344. (2005). Lineamientos para la formulación de la política de prevención y control de la contaminación del aire.spa
dc.relation.referencesCONPES 3700. (2011). Estrategia Institucional para la Articulación de Políticas y Acciones en Materia de Cambio Climático en Colombia » Observatorio Ambiental de Bogotá. https://oab.ambientebogota.gov.co/?post type=dlm download&p=3936spa
dc.relation.referencesCONPES 3918. (2018). CONPES 3918 Estrategia para la implementación de los Objetivos de Desarrollo Sostenible (ODS) en Colombia.spa
dc.relation.referencesCONPES 3934. (2018). CONPES 3934 Política de crecimiento verde. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/3934.pdfspa
dc.relation.referencesCONPES 3943. (2018). CONPES 3943 Política para el mejoramiento de la calidad del aire. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/3943.pdfspa
dc.relation.referencesCunanan, C., Tran, M.-K., Lee, Y., Kwok, S., Leung, V., & Fowler, M. (2021). A review of heavy-duty vehicle powertrain technologies: Diesel engine vehicles, battery electric vehicles, and hydrogen fuel cell electric vehicles. Clean Technologies, 3(2), 474–489.spa
dc.relation.referencesDANE. (2018). Proyecciones de población. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacionspa
dc.relation.referencesDANE. (2022). Cuentas nacionales departamentales: PIB por departamento. https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentalesspa
dc.relation.referencesDargay, J., Gately, D., & Sommer, M. (2007). Vehicle ownership and income growth, worldwide: 1960-2030. The Energy Journal, 28(4).spa
dc.relation.referencesde Dios Ortúzar, J. (2012). Modelos de demanda de transporte. Ediciones UC.spa
dc.relation.referencesDecreto 1521. (1998). Decreto 1521 de 1998 por el cual se reglamenta el almacenamiento, manejo, transporte y distribución de combustibles líquidos derivados del petróleo, para estaciones de servicio. https://minvivienda.gov.co/sites/default/files/normativa/1521 - 1998.pdfspa
dc.relation.referencesDecreto 1605. (2002). Decreto 1605 por el cual se define el esquema de vigilancia y control al que están sometidas las actividades relacionadas con el Gas Natural Comprimido para uso vehicular y se dictan otras disposiciones. https://www.suin-juriscol.gov.co/viewDocument.asp?id=1317438spa
dc.relation.referencesDecreto 298. (2016). Decreto 298 por el cual se establece la organización y funcionamiento del Sistema Nacional de Cambio Climático y se dictan otras disposiciones. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=68173spa
dc.relation.referencesDecreto 4570. (2005). Decreto 4570 por el cual se modifica el Arancel de Aduanas. https://www.suin-juriscol.gov.co/viewDocument.asp?ruta=Decretos/1547319spa
dc.relation.referencesDecreto 802. (2004). Decreto 802 por medio del cual se establecen algunas disposiciones para incentivar el consumo del Gas Natural Comprimido para uso Vehicular, GNCV. https://www.suin-juriscol.gov.co/viewDocument.asp?id=1168663spa
dc.relation.referencesDelgado, R., Cadena, A. I., Espinosa, M., Peña, C., & Salazar, M. (2014). A case study on Colombian mitigation actions. Climate and Development, 6(sup1), 12–24. https://doi.org/10.1080/17565529.2013.857587spa
dc.relation.referencesDepartment of Energy United States of America. (2017). Fuel Cell System Cost-2017.spa
dc.relation.referencesDhakal, S. (2003). Implications of transportation policies on energy and environment in Kathmandu Valley, Nepal. Energy Policy, 31(14), 1493–1507.spa
dc.relation.referencesDias, M. V. X., Haddad, J., Horta Nogueira, L., Costa Bortoni, E. da, Passos da Cruz, R. A., Akira Yamachita, R., & Goncalves, J. L. (2014). The impact on electricity demand and emissions due to the introduction of electric cars in the São Paulo Power System. Energy Policy, 65, 298–304. https://doi.org/10.1016/j.enpol.2013.09.052spa
dc.relation.referencesDollinger, M., & Fischerauer, G. (2021). Model-Based Range Prediction for Electric Cars and Trucks under Real-World Conditions. Energies, 14(18), 5804.spa
dc.relation.referencesDufey, A., & Stange, D. (2011). Estudio regional sobre la economía de los biocombustibles en 2010: temas clave para los países de América Latina y el Caribe.spa
dc.relation.referencesEarl, T., Mathieu, L., Cornelis, S., Kenny, S., Ambel, C. C., & Nix, J. (2018). Analysis of long haul battery electric trucks in EU Marketplace and technology, economic, environmental, and policy perspectives. European Federation for Transport and Environment, 17–18. https://ec.europa.eu/inea/en/ten-t/ten-t-projectsspa
dc.relation.referencesEC. (2014). Frequently Asked Questions on Directive 2006/66/EU on Batteries and Accumulators and Waste Batteries and Accumulators.spa
dc.relation.referencesEccarius, T., & Lu, C.-C. (2020). Powered two-wheelers for sustainable mobility: A review of consumer adoption of electric motorcycles. International Journal of Sustainable Transportation, 14(3), 215–231. https://doi.org/10.1080/15568318.2018.1540735spa
dc.relation.referencesEl Confidencial. (2021). El coche de hidrógeno que destroza a los Tesla. https://www.elconfidencial.com/tecnologia/novaceno/2021-06-01/coche-toyota-hidrogeno-tesla-movilidad_3110067/spa
dc.relation.referencesEl Tiempo. (2016). Nuevos trenes del Metro de Medellín. https://www.eltiempo.com/colombia/medellin/nuevos-trenes-del-metro-de-medellin-28010spa
dc.relation.referencesElectrive. (2020). Scania launches BEV & PHEV truck series. https://www.electrive.com/2020/11/27/scania-announces-market-launch-of-bev-phev-trucks/spa
dc.relation.referencesElectromaps. (2022). Listado de puntos de recarga en Colombia. https://www.electromaps.com/puntos-de-recarga/colombiaspa
dc.relation.referencesEnel Codensa. (2019). Comunicado de Prensa. ¿Cómo recargar un vehículo eléctrico? https://www.enel.com.co/content/dam/enel-co/español/7-prensa/2019/diciembre/Como-recargar-un-vehiculo-electrico.pdfspa
dc.relation.referencesEngerer, H., & Horn, M. (2010). Natural gas vehicles: An option for Europe. Energy Policy, 38(2), 1017–1029.spa
dc.relation.referencesEPA. (2020). Emission Factors for Greenhouse Gas Inventories. U.S Environmental Protection Agency. https://www.epa.gov/sites/default/files/2020-04/documents/ghg-emission-factors-hub.pdfspa
dc.relation.referencesEPM. (2015). EPM inauguró dos Ecoestaciones para la carga de vehículos eléctricos. https://www.epm.com.co/site/home/sala-de-prensa/noticias-y-novedades/en-su-apuesta-por-la-movilidad-sostenible-epm-inauguro-las-dos-primeras-ecoestaciones-para-la-carga-publica-de-vehiculos-electricosspa
dc.relation.referencesEPM. (2017a). Funcionamiento Eco Estaciones. https://www.epm.com.co/site/clientes_usuarios/clientes-y-usuarios/nuestros-servicios/funcionamiento-ecoestacionesspa
dc.relation.referencesEPM. (2017b). Mitos sobre el Gas Natural Vehicular. https://cu.epm.com.co/clientesyusuarios/gas/constructor-y-urbanizador/gas-natural-vehicular/gas-natural-vehicular/mitos-sobre-el-gas-natural-vehicularspa
dc.relation.referencesEPM. (2022). Tarifas de Energía EPM. https://cu.epm.com.co/clientesyusuarios/energia/tarifas-energiaspa
dc.relation.referencesEspinosa, M., Cadena, Á. I., & Behrentz, E. (2019). Challenges in greenhouse gas mitigation in developing countries: A case study of the Colombian transport sector. Energy Policy, 124, 111–122. https://doi.org/10.1016/j.enpol.2018.09.039spa
dc.relation.referencesEuropean Environment Agency. (2019). EMEP/EEA air pollutant emission inventory guidebook 2019. https://www.eea.europa.eu/publications/EMEPCORINAIRspa
dc.relation.referencesEurostat. (2019). Glossary: Transport mode - Statistics Explained. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Transport_modespa
dc.relation.referencesEVAdoption. (2018). Statistics of the Week: Comparing Vehicle Ranges for Gas, BEV and PHEV Models. https://evadoption.com/statistics-of-the-week-comparing-vehicle-ranges-for-gas-bevs-and-phevs/spa
dc.relation.referencesFCH Heavy-duty trucks. (2017). FCH Heavy-duty trucks Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities.spa
dc.relation.referencesFerguson, E. (2018). Travel demand management and public policy. Routledge.spa
dc.relation.referencesForbes. (2016). Are Hydrogen Fuel Cell Cars Becoming... Normal? https://www.forbes.com/sites/lauriewinkless/2016/06/01/are-hydrogen-fuel-cell-cars-becoming-normal/?sh=4c225700683aspa
dc.relation.referencesForrester, J. W. (1958). Industrial Dynamics. A major breakthrough for decision makers. Harvard Business Review, 36(4), 37–66.spa
dc.relation.referencesFranco, C. J., & Figueroa, D. A. (2008). Modelado de la penetración de vehículos particulares con fuentes alternativas de energía al mercado colombiano. Avances En Sistemas e Informática, 5(3), 101–108. https://revistas.unal.edu.co/index.php/avances/article/view/10103spa
dc.relation.referencesGaddam, H. K., & Rao, K. R. (2019). Speed–density functional relationship for heterogeneous traffic data: a statistical and theoretical investigation. Journal of Modern Transportation, 27(1), 61–74.spa
dc.relation.referencesGalván, J., Cantillo, V., & Arellana, J. (2016). Factors influencing demand for buses powered by alternative energy sources. Journal of Public Transportation, 19(2), 2.spa
dc.relation.referencesGeroski, P. A. (2000). Models of technology diffusion. Research Policy, 29(4–5), 603–625.spa
dc.relation.referencesGobmx. (2016). Manifestación de impacto ambiental modalidad particular, para una estación de servicio, franquicia Pemex "Gasberrys, S.A.P.I. de C.V. http://104.209.210.233/gobmx/2018/3er_T/A73/FI_201809/d/RE-09MPA02531117-DGGC.pdfspa
dc.relation.referencesGoldman, T., & Gorham, R. (2006). Sustainable urban transport: Four innovative directions. Technology in Society, 28(1), 261–273. https://doi.org/10.1016/j.techsoc.2005.10.007spa
dc.relation.referencesGómez-Mesino, E., García-Quintero, A. F., & Grimaldo-Guerrero, J. W. (2020). Prospective towards implementation of electric vehicles in Colombia. IOP Conference Series: Materials Science and Engineering, 844(1), 12014.spa
dc.relation.referencesGompertz, B. (1825). XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philosophical Transactions of the Royal Society of London, 115, 513–583.spa
dc.relation.referencesGonzález Palencia, J. C., Furubayashi, T., & Nakata, T. (2012). Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials. Energy, 48(1), 548–565. https://doi.org/https://doi.org/10.1016/j.energy.2012.09.041spa
dc.relation.referencesGonzález Palencia, J. C., Furubayashi, T., & Nakata, T. (2014). Techno-economic assessment of lightweight and zero emission vehicles deployment in the passenger car fleet of developing countries. Applied Energy, 123, 129–142.spa
dc.relation.referencesGreen Fleet Magazine. (2015). The Economics of Natural Gas Vehicles - Natural Gas. https://www.greenfleetmagazine.com/156256/the-economics-of-natural-gas-vehiclesspa
dc.relation.referencesGrupo Vanti. (2022). Precio histórico del Gas Natural Vehicular. https://www.grupovanti.com/gas-natural-vehicular-gnv/precio-historico-del-gas-natural-vehicular/spa
dc.relation.referencesGüldas, Y. (2019). Adoption and diffusion of electric trucks in urban freight transport.spa
dc.relation.referencesGutiérrez, M., Cantillo, V., Arellana, J., & Ortúzar, J. de D. (2021). Estimating bicycle demand in an aggressive environment. International Journal of Sustainable Transportation, 15(4), 259–272.spa
dc.relation.referencesGuzman, L. A., Arellana, J., & Alvarez, V. (2020). Confronting congestion in urban areas: Developing Sustainable Mobility Plans for public and private organizations in Bogotá. Transportation Research Part A: Policy and Practice, 134, 321–335.spa
dc.relation.referencesGuzman, L. A., & Orjuela, J. P. (2017). Linking a transport dynamic model with an emissions model to aid air pollution evaluations of transport policies in Latin America. Transportmetrica B: Transport Dynamics, 5(3), 265–280. https://doi.org/10.1080/21680566.2016.1169954spa
dc.relation.referencesGuzman, L. A., Oviedo, D., Arellana, J., & Cantillo-García, V. (2021). Buying a car and the street: Transport justice and urban space distribution. Transportation Research Part D: Transport and Environment, 95, 102860.spa
dc.relation.referencesH2Valleys. (2022). Hydrogen cost and sales prices. https://www.h2v.eu/analysis/statistics/financing/hydrogen-cost-and-sales-pricesspa
dc.relation.referencesHackbarth, A., & Madlener, R. (2013). Consumer preferences for alternative fuel vehicles: A discrete choice analysis. Transportation Research Part D: Transport and Environment, 25, 5–17.spa
dc.relation.referencesHaddad, M., & Mansour, C. (2019). Energy and Emission Modelling for Climate Change Mitigation from Road Transportation in the Middle East: A Case Study from Lebanon. In Climate Change and Energy Dynamics in the Middle East (pp. 47–78). Springer.spa
dc.relation.referencesHaddad, M. G., Mansour, C. J., & Afif, C. (2018). Future trends and mitigation options for energy consumption and greenhouse gas emissions in a developing country of the Middle East Region: A case study of Lebanon’s road transport sector. Environmental Modeling & Assessment, 23(3), 263–276.spa
dc.relation.referencesHagen, J. X., Pardo, C., & Valente, J. B. (2016). Motivations for motorcycle use for Urban travel in Latin America: A qualitative study. Transport Policy, 49, 93–104.spa
dc.relation.referencesHaider, S. W., Zhuang, G., & Ali, S. (2019). Identifying and bridging the attitude-behavior gap in sustainable transportation adoption. Journal of Ambient Intelligence and Humanized Computing, 10(9), 3723–3738.spa
dc.relation.referencesHeaps, C. G. (2012). Long-range energy alternatives planning (LEAP) system. Somerville, MA, USA: Stockholm Environment Institute.spa
dc.relation.referencesHenderson, J. (2020). EVs are not the answer: a mobility justice critique of electric vehicle transitions. Annals of the American Association of Geographers, 110(6), 1993–2010.spa
dc.relation.referencesHerrera, M. M., Rosero, J., & Casas, O. (2017). Systemic analysis of the adoption of electric vehicle technologies in Colombia. Int. Rev. Mech. Eng, 11(4).spa
dc.relation.referencesHerrera, M. M., Hernández, A., & Velandia, C. (2019). Vista de una revisión de las contribuciones de la dinámica de sistemas en la transición de vehículos eléctricos. https://revistas.uniminuto.edu/index.php/Inventum/article/view/2204/1969spa
dc.relation.referencesHinestroza, L. M. (2014). Formulación de un marco regulatorio para la integración óptima del vehículo eléctrico con el sector eléctrico y la movilidad urbana de Bogotá D.C. https://repositorio.unal.edu.co/handle/unal/48559spa
dc.relation.referencesHinestroza, Rosero, & Puerto. (2015). EVs mass adoption in Colombia — A first approach model. 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), 1285–1290. https://doi.org/10.1109/EEEIC.2015.7165355spa
dc.relation.referencesHofstede Insights. (2022). Hofstede Insights Organisational Culture Consulting. https://www.hofstede-insights.com/spa
dc.relation.referencesHonti, G., Dörgő, G., & Abonyi, J. (2019). Review and structural analysis of system dynamics models in sustainability science. Journal of Cleaner Production, 240, 118015. https://doi.org/10.1016/j.jclepro.2019.118015spa
dc.relation.referencesHuang, S. K., Kuo, L., & Chou, K.-L. (2018). The impacts of government policies on green utilization diffusion and social benefits – A case study of electric motorcycles in Taiwan. Energy Policy, 119, 473–486. https://doi.org/10.1016/j.enpol.2018.04.061spa
dc.relation.referencesHyundai Motor Europe. (2020). Electric Vehicle Charging Times. https://www.hyundai.com/eu/electrification/owning-an-electric-vehicle/everyday-e-mobility/charging-times.htmlspa
dc.relation.referencesIANGV. (2020). Current Natural Gas Vehicle Statistics. https://www.iangv.org/current-ngv-stats/spa
dc.relation.referencesIANGV. (2021). NGV Global - CNG, LNG, Natural Gas Vehicles, Alternative Fuel, Marine LNG | Information about natural gas vehicles. http://www.iangv.org/spa
dc.relation.referencesICCT. (2016). Electric vehicles: Literature review of technology costs and carbon emissions. International Council on Clean Transportation.spa
dc.relation.referencesICCT. (2017). Emerging best practices for electric vehicle charging infrastructure.spa
dc.relation.referencesICCT. (2021). Evaluating electric vehicle costs and benefits in China in the 2020–2035 time frame. https://theicct.org/publication/evaluating-electric-vehicle-costs-and-benefits-in-china-in-the-2020-2035-time-frame/spa
dc.relation.referencesIDEAM. (2018). Informe del estado de la calidad del aire en Colombia 2017. Primera Edición. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023844/Informe_ECalidadl_Aire_2017.pdfspa
dc.relation.referencesIDEAM. (2019). Informe estado de la calidad del aire en Colombia. http://www.andi.com.co/Uploads/Informe estado calidad del aire 2018.pdfspa
dc.relation.referencesIDEAM, & PNUD. (2016). Inventario Nacional y Departamental de Gases Efecto Invernadero.spa
dc.relation.referencesIEA. (2018). Data and Statistics. Carbon intensity of industry energy consumption, World 1990-2017.spa
dc.relation.referencesIEA. (2019). Tracking Transport – Analysis.spa
dc.relation.referencesIEA. (2020a). Global EV Outlook 2020 - Entering the decade of electric drive?spa
dc.relation.referencesIEA. (2020b). Tracking Transport 2020, IEA, Paris. https://www.iea.org/reports/tracking-transport-2020spa
dc.relation.referencesIEA. (2021). Trends and developments in electric vehicle markets – Global EV Outlook 2021 . https://www.iea.org/reports/global-ev-outlook-2021/trends-and-developments-in-electric-vehicle-markets#abstractspa
dc.relation.referencesIEA. (2022). Global EV Outlook 2022. https://www.iea.org/reports/global-ev-outlook-2022spa
dc.relation.referencesIlhak, M. I., Tangoz, S., Akansu, S. O., & Kahraman, N. (2019). Alternative Fuels for Internal Combustion Engines. In The Future of Internal Combustion Engines. IntechOpen London, UK.spa
dc.relation.referencesINRIX. (2021). 2021 INRIX Global Traffic Scorecard. https://inrix.com/scorecard/spa
dc.relation.referencesIQAir. (2022). Empowering the World to Breathe Cleaner Air. https://www.iqair.com/spa
dc.relation.referencesIUC. (2019). Sector 3 - Transporte sostenible. https://iuc-la.eu/wp-content/uploads/2020/03/ES_TVER_4_Sector_3_-_Transporte_e_mobilidade_sustentáveis.pdfspa
dc.relation.referencesJensen, A. F., Cherchi, E., Mabit, S. L., & Ortúzar, J. de D. (2017). Predicting the potential market for electric vehicles. Transportation Science, 51(2), 427–440.spa
dc.relation.referencesJiang, Y. (2019). Implications of Changes in Consumer Attitudes and Preferences on Alternative Fuel Vehicle Adoption: A System Dynamics and Choice Modelling Approach. The Australian National University (Australia).spa
dc.relation.referencesJochem, P., Gómez Vilchez, J. J., Ensslen, A., Schäuble, J., & Fichtner, W. (2018). Methods for forecasting the market penetration of electric drivetrains in the passenger car market. Transport Reviews, 38(3), 322–348.spa
dc.relation.referencesJones, L. R., Cherry, C. R., Vu, T. A., & Nguyen, Q. N. (2013). The effect of incentives and technology on the adoption of electric motorcycles: A stated choice experiment in Vietnam. Transportation Research Part A: Policy and Practice, 57, 1–11. https://doi.org/10.1016/j.tra.2013.09.003spa
dc.relation.referencesJorquera, H., Montoya, L. D., & Rojas, N. Y. (2019). Urban air pollution. In Urban Climates in Latin America (pp. 137–165). Springer.spa
dc.relation.referencesKampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2), 362–367.spa
dc.relation.referencesKeith, D. R., Struben, J. J. R., & Naumov, S. (2020). The Diffusion of Alternative Fuel Vehicles: A Generalised Model and Future Research Agenda. Journal of Simulation, 14(4), 260–277. https://doi.org/10.1080/17477778.2019.1708219spa
dc.relation.referencesKesicki, F., & Ekins, P. (2012). Marginal abatement cost curves: a call for caution. Climate Policy, 12(2), 219–236.spa
dc.relation.referencesKim, J., Seung, H., Lee, J., & Ahn, J. (2020). Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions. Energy Economics, 86, 104666.spa
dc.relation.referencesKishita, Y., Mizuno, Y., Fukushige, S., & Umeda, Y. (2020). Scenario structuring methodology for computer-aided scenario design: An application to envisioning sustainable futures. Technological Forecasting and Social Change, 160, 120207. https://doi.org/10.1016/j.techfore.2020.120207spa
dc.relation.referencesKlasen, J. rg, & Neumann, D. (2011). An agent-based method for planning innovations. International Journal of Innovation and Sustainable Development, 5(2–3), 159–184.spa
dc.relation.referencesKleen, G., & Padgett, E. (2021). Durability-Adjusted Fuel Cell System Cost. DOE Hydrogen Program Record.spa
dc.relation.referencesKong, D., Xia, Q., Xue, Y., & Zhao, X. (2020). Effects of multi policies on electric vehicle diffusion under subsidy policy abolishment in China: A multi-actor perspective. Applied Energy, 266, 114887. https://doi.org/10.1016/j.apenergy.2020.114887spa
dc.relation.referencesKrishnan, V. V., & Koshy, B. I. (2021). Evaluating the Factors Influencing Purchase Intention of Electric Vehicles in Households Owning Conventional Vehicles. Case Studies on Transport Policy.spa
dc.relation.referencesKumar, R. R., Guha, P., & Chakraborty, A. (2022). Comparative assessment and selection of electric vehicle diffusion models: A global outlook. Energy, 238, 121932.spa
dc.relation.referencesLa República. (2021a). Estos son los costos básicos que debe tener en cuenta al tener una motocicleta. https://www.larepublica.co/finanzas-personales/esto-son-los-costos-basicos-que-debe-tener-en-cuenta-al-tener-una-motocicleta-3240762spa
dc.relation.referencesLa República. (2021b). Para 2030, la meta de producción con hidrógeno verde de Colombia sería de 1 GW. https://www.larepublica.co/economia/para-2030-la-meta-de-produccion-con-hidrogeno-verde-de-colombia-seria-de-1-gw-3213345spa
dc.relation.referencesLangbroek, J. H. M., Franklin, J. P., & Susilo, Y. O. (2017). Electric vehicle users and their travel patterns in Greater Stockholm. Transportation Research Part D: Transport and Environment, 52, 98–111.spa
dc.relation.referencesLee, D. H., Park, S. Y., Hong, J. C., Choi, S. J., & Kim, J. W. (2013). Analysis of the energy and environmental effects of green car deployment by an integrating energy system model with a forecasting model. Applied Energy, 103, 306–316.spa
dc.relation.referencesLee, D. H., Park, S. Y., Kim, J. W., & Lee, S. K. (2013). Analysis on the feedback effect for the diffusion of innovative technologies focusing on the green car. Technological Forecasting and Social Change, 80(3), 498–509.spa
dc.relation.referencesLee, J., Baig, F., Talpur, M. A. H., & Shaikh, S. (2021). Public Intentions to Purchase Electric Vehicles in Pakistan. Sustainability, 13(10), 5523.spa
dc.relation.referencesLemoine, P. D., Cordovez, J. M., Zambrano, J. M., Sarmiento, O. L., Meisel, J. D., Valdivia, J. A., & Zarama, R. (2016). Using agent based modeling to assess the effect of increased Bus Rapid Transit system infrastructure on walking for transportation. Preventive Medicine, 88, 39–45.spa
dc.relation.referencesLeung, V. (2011). Slow diffusion of LPG vehicles in China—lessons from Shanghai, Guangzhou and Hong Kong. Energy Policy, 39(6), 3720–3731.spa
dc.relation.referencesLey 1083. (2006). Ley 1083 por medio de la cual se establecen algunas normas sobre planeación urbana sostenible y se dictan otras disposiciones. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=20869spa
dc.relation.referencesLey 1811. (2016). Ley 1811 por la cual se otorgan incentivos para promover el uso de la bicicleta en el territorio nacional y se modifica el Código Nacional de Tránsito. https://www.suin-juriscol.gov.co/viewDocument.asp?id=30027024spa
dc.relation.referencesLey 1819. (2016). Ley 1819 por medio de la cual se adopta una reforma tributaria estructural, se fortalecen los mecanismos para la lucha contra la evasión y la elusión fiscal, y se dictan otras disposiciones. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=79140spa
dc.relation.referencesLey 1844. (2017). Ley 1844 de 2017 por medio de la cual se aprueba el “Acuerdo de París”, adoptado el 12 de diciembre de 2015, en París, Francia. http://www.suin-juriscol.gov.co/viewDocument.asp?ruta=Leyes/30032607spa
dc.relation.referencesLey 1931. (2018). Ley 1931 de 2018 por la cual se establecen directrices para la gestión del cambio climático. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=87765spa
dc.relation.referencesLey 1964. (2019). Ley 1964 por medio de la cual se promueve el uso de vehículos eléctricos en Colombia y se dictan otras disposiciones. 6.spa
dc.relation.referencesLey 2128. (2021). Ley 2128 de 2021 por medio de la cual se promueve el abastecimiento, continuidad, confiabilidad y cobertura del gas combustible en el país. https://dapre.presidencia.gov.co/normativa/normativa/LEY 2128 DEL 4 DE AGOSTO DE 2021.pdfspa
dc.relation.referencesLey 2169. (2021). Ley 2169 por medio de la cual se impulsa el desarrollo bajo en carbono del país mediante el establecimiento de metas y medidas mínimas en materia de carbono neutralidad y resiliencia climática y se dictan otras disposiciones. https://dapre.presidencia.gov.co/normativa/normativa/LEY 2169 DEL 22 DE DICIEMBRE DE 2021.pdfspa
dc.relation.referencesLiu, D., & Xiao, B. (2018). Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model. Energy Policy, 120, 8–23. https://doi.org/10.1016/j.enpol.2018.04.073spa
dc.relation.referencesLiu, R., Li, M. H., & Zhang, H. N. (2017). Opportunities and challenges of electric vehicles development in mitigating climate change in China. IOP Conference Series: Earth and Environmental Science, 86(1), 12010.spa
dc.relation.referencesLiu, Y., & Cirillo, C. (2018). A generalized dynamic discrete choice model for green vehicle adoption. Transportation Research Part A: Policy and Practice, 114, 288–302.spa
dc.relation.referencesLopes, M. M., Moura, F., & Martinez, L. M. (2014). A rule-based approach for determining the plausible universe of electric vehicle buyers in the Lisbon Metropolitan Area. Transportation Research Part A: Policy and Practice, 59, 22–36.spa
dc.relation.referencesLopez, N. S., Soliman, J., Biona, J. B. M., & Fulton, L. (2020). Cost-benefit analysis of alternative vehicles in the Philippines using immediate and distant future scenarios. Transportation Research Part D: Transport and Environment, 82, 102308.spa
dc.relation.referencesLópez Valencia, N. A. (2020). Modelo para representar la demanda de vehículos particulares eléctricos en Bogotá. Universidad de La Sabana.spa
dc.relation.referencesLopez-Arboleda, E., Sarmiento, A. T., & Cardenas, L. M. (2019). Systematic review of integrated sustainable transportation models for electric passenger vehicle diffusion. Sustainability, 11(9), 2513.spa
dc.relation.referencesLopez-Arboleda, E., Sarmiento, A. T., & Cardenas, L. M. (2020). Understanding synergies between electric-vehicle market dynamics and sustainability: Case study of Colombia. Journal of Cleaner Production, 321, 128834.spa
dc.relation.referencesLopez-Arboleda, E., Sarmiento, A. T., & Cardenas, L. M. (2021). Systemic approach for integration of sustainability in evaluation of public policies for adoption of electric vehicles. Systemic Practice and Action Research, 34(4), 399–417.spa
dc.relation.referencesLoustric, I., & Matyas, M. (2020). Exploring city propensity for the market success of micro-electric vehicles. European Transport Research Review, 12(1), 1–13.spa
dc.relation.referencesLuce, R. D. (1959). Individual choice behavior, John Wiley and Sons. New York.spa
dc.relation.referencesMadera, J. M. (2019). Escenarios para el cambio de vehículos con motor de combustión interna a vehículos eléctricos en el transporte de carga en Colombia. https://repositorio.unal.edu.co/handle/unal/77132spa
dc.relation.referencesMansour, C. J., & Haddad, M. G. (2017). Well-to-wheel assessment for informing transition strategies to low-carbon fuel-vehicles in developing countries dependent on fuel imports: A case-study of road transport in Lebanon. Energy Policy, 107, 167–181.spa
dc.relation.referencesMansour, C., Haddad, M., & Zgheib, E. (2018). Assessing consumption, emissions and costs of electrified vehicles under real driving conditions in a developing country with an inadequate road transport system. Transportation Research Part D: Transport and Environment, 63, 498–513.spa
dc.relation.referencesMarín, S. (2019). Evaluación de políticas para reducir emisiones de gases de efecto invernadero en el transporte de carga carretera en Colombia. https://repositorio.unal.edu.co/handle/unal/77445spa
dc.relation.referencesMarschak, J. (1959). Binary choice constraints on random utility indicators. Cowles Foundation for Research in Economics, Yale University.spa
dc.relation.referencesMartínez-Jaramillo, J. E., Arango-Aramburo, S., Álvarez-Uribe, K. C., & Jaramillo-Álvarez, P. (2017). Assessing the impacts of transport policies through energy system simulation: The case of the Medellin Metropolitan Area, Colombia. Energy Policy, 101, 101–108. https://doi.org/10.1016/j.enpol.2016.11.026spa
dc.relation.referencesMartos, A., Pacheco-Torres, R., Ordóñez, J., & Jadraque-Gago, E. (2016). Towards successful environmental performance of sustainable cities: Intervening sectors. A review. Renewable and Sustainable Energy Reviews, 57, 479–495. https://doi.org/10.1016/j.rser.2015.12.095spa
dc.relation.referencesMassiani, J. (2015). Cost-Benefit Analysis of policies for the development of electric vehicles in Germany: Methods and results. Transport Policy, 38, 19–26.spa
dc.relation.referencesMassiani, J., & Gohs, A. (2015). The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies. Research in Transportation Economics, 50, 17–28.spa
dc.relation.referencesMatta, M. F., & Ramírez, L. J. (2013). Manual de calidad para la inspección de vehículos a gas natural vehicular. https://repository.unimilitar.edu.co/bitstream/handle/10654/10424/MattaTovarManuelFernando2013.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesMcFadden, D. (1974). The measurement of urban travel demand. Journal of Public Economics, 3(4), 303–328.spa
dc.relation.referencesMcFadden, D. (1986). The choice theory approach to market research. Marketing Science, 5(4), 275–297.spa
dc.relation.referencesMcFadden, D., & Train, K. (2000). Mixed MNL models for discrete response. Journal of Applied Econometrics, 15(5), 447–470.spa
dc.relation.referencesMeade, N. (1984). The use of growth curves in forecasting market development—a review and appraisal. Journal of Forecasting, 3(4), 429–451.spa
dc.relation.referencesMedellín cómovamos. (2021). Informe de calidad de vida de Medellín, 2020. Movilidad y Espacio Público. https://www.medellincomovamos.org/system/files/2021-09/docuprivados/Movilidad y espacio público Informe de Calidad de Vida de Medellín%2C 2020.pdfspa
dc.relation.referencesMercure, J.-F., Lam, A., Billington, S., & Pollitt, H. (2018). Integrated assessment modelling as a positive science: private passenger road transport policies to meet a climate target well below 2∘ C. Climatic Change, 151(2), 109–129.spa
dc.relation.referencesMetro de Medellín. (2017). Con los nuevos trenes mejoró la frecuencia en horas pico y valle. https://www.metrodemedellin.gov.co/alamys-2019/noticias/artmid/8805/articleid/337/con-los-nuevos-trenes-mejor243-la-frecuencia-en-horas-pico-y-vallespa
dc.relation.referencesMetro de Medellín. (2018). El Metro ya cuenta con 21 trenes más. https://www.metrodemedellin.gov.co/alamys-2019/noticias/artmid/8805/articleid/421/el-metro-ya-cuenta-con-21-trenes-m225sspa
dc.relation.referencesMeza, C. G., Amado, N. B., & Sauer, I. L. (2017). Transforming the Nicaraguan energy mix towards 100% renewable. Energy Procedia, 138, 494–499.spa
dc.relation.referencesMinAmbiente. (2017). Política Nacional de Cambio Climático. http://www.andi.com.co/Uploads/13. PolCC toma decisiones.pdfspa
dc.relation.referencesMinAmbiente. (2020). Estrategia Colombiana de Desarrollo Bajo en Carbono (ECDBC). https://www.minambiente.gov.co/cambio-climatico-y-gestion-del-riesgo/estrategia-colombiana-de-desarrollo-bajo-en-carbono-ecdbc/spa
dc.relation.referencesMinAmbiente. (2021). Portafolio de medidas sectoriales de mitigación del cambio climático – Contribución Determinada a Nivel Nacional de Colombia (NDC). https://www.minambiente.gov.co/wp-content/uploads/2021/10/portafolio-de-medidas-sectoriales-de-mitigacion-de-cambio-climatico-contribucion-determinada-Colombia-ndc-2020.pdfspa
dc.relation.referencesMinAmbiente, & ANDEMOS. (2017). Inventario de Emisiones Vehículos Colombia. https://www.andemos.org/wp-content/uploads/2017/03/Presentacion-ANDEMOS-Emisiones-01.25.2017-v8.pdfspa
dc.relation.referencesMinAmbiente, & Fundación Cardiovascular de Colombia. (2012). Diagnóstico de salud ambiental.spa
dc.relation.referencesMinEnergía. (2016). Listado de estaciones de servicio de gas natural vehicular - 30 de junio de 2016. https://www.minenergia.gov.co/documents/10180/1157884/EDS+DE+GNV+A+30+DE+JUN+DE+2016.pdf/965d1cb6-7684-4919-a2ec-60a9ff773c50spa
dc.relation.referencesMinEnergía. (2017). Listado de estaciones de servicio de gas natural vehicular - junio de 2017. https://www.minenergia.gov.co/documents/10192/23897778/280617_estaciones_servicio_GNV_220617.pdf/963c08a1-49be-49ec-a5de-5e061adaa94dspa
dc.relation.referencesMinEnergía. (2021). Hidrocarburos - Ministerio de Minas y Energía GM. https://www.minenergia.gov.co/historico-de-preciosspa
dc.relation.referencesMinTransporte. (2016). Bases Gravables - Ministerio de transporte. https://www.mintransporte.gov.co/publicaciones/4673/tablas-2016/spa
dc.relation.referencesMinTransporte. (2021). Propietarios de vehículos eléctricos tendrán un descuento del 30 en la revisión técnico mecánica. https://www.mintransporte.gov.co/publicaciones/10261/propietarios-de-vehiculos-electricos-tendran-un-descuento-del-30-en-la-revision-tecnico-mecanica/spa
dc.relation.referencesMinTransporte, & RUNT. (2019). Boletín de Prensa 003 de 2019 - Mercado de eléctricos en aumento.spa
dc.relation.referencesMirutafacil. (2016). Taxis Eléctricos (Biotaxis). https://mirutafacil.com/taxis-electricos-biotaxis/spa
dc.relation.referencesMishra, S. (2017). Is smog innocuous? Air pollution and cardiovascular disease. In Indian Heart Journal (Vol. 69, Issue 4, pp. 425–429). Elsevier.spa
dc.relation.referencesMocanu, T. (2018). What Types of Cars Will We Be Driving? Methods of Forecasting Car Travel Demand by Vehicle Type. Transportation Research Record, 2672(49), 125–134.spa
dc.relation.referencesMoovit. (2022a). Estadísticas y datos de transporte público en Bogotá. https://moovitapp.com/insights/es-419/Moovit_Insights_Índice_de_Transporte_Público_Colombia_Bogota-762spa
dc.relation.referencesMoovit. (2022b). Estadísticas y datos de transporte público en Medellín. https://moovitapp.com/insights/es-419/Moovit_Insights_Índice_de_Transporte_Público_Colombia_Medellin-1642spa
dc.relation.referencesMorales, B. (2014). Modelo de masificación de vehículos eléctricos en Bogotá D.C. https://repositorio.unal.edu.co/handle/unal/53890spa
dc.relation.referencesMotorpasion. (2014). ¿Quieres un coche de GNC? Te interesa saber esto sobre los gastos en mantenimiento y averías. https://www.motorpasion.com/coches-hibridos-alternativos/quieres-un-coche-de-gnc-te-interesa-saber-esto-sobre-los-gastos-en-mantenimiento-y-averiasspa
dc.relation.referencesMotorpasion. (2021). Esta es la autonomía que puede ofrecer un coche con pila de combustible de hidrógeno. https://www.motorpasion.com/espaciotoyota/esta-autonomia-que-puede-ofrecer-coche-pila-combustible-hidrogenospa
dc.relation.referencesMuñoz-Villamizar, A., Montoya-Torres, J. R., & Faulin, J. (2017). Impact of the use of electric vehicles in collaborative urban transport networks: A case study. Transportation Research Part D: Transport and Environment, 50, 40–54.spa
dc.relation.referencesMuñoz-Villamizar, A., Quintero-Araújo, C. L., Montoya-Torres, J. R., & Faulin, J. (2019). Short-and mid-term evaluation of the use of electric vehicles in urban freight transport collaborative networks: a case study. International Journal of Logistics Research and Applications, 22(3), 229–252.spa
dc.relation.referencesNakata, T., Silva, D., & Rodionov, M. (2011). Application of energy system models for designing a low-carbon society. Progress in Energy and Combustion Science, 37(4), 462–502.spa
dc.relation.referencesNaturgas. (2017). Análisis de la competitividad del gas natural vehicular GNV en vehículos convertidos. https://www.naturgas.com.co/documentos/2017/GNV.pdfspa
dc.relation.referencesNaturgas. (2018). Aumenta en un 19% el número de vehículos convertidos a Gas Natural . https://naturgas.com.co/aumenta-en-un-19-el-numero-de-vehiculos-convertidos-a-gas-natural/spa
dc.relation.referencesNaturgas. (2020). Indicadores 2020. https://www.naturgas.com.co/documentos/2020/Indicadores2020.pdfspa
dc.relation.referencesNaturgas. (2021). Indicadores 2021. https://naturgas.com.co/indicadores-naturgas-2021/#page=4spa
dc.relation.referencesNieves, J. A., Aristizábal, A. J., Dyner, I., Báez, O., & Ospina, D. H. (2019). Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application. Energy, 169, 380–397. https://doi.org/10.1016/j.energy.2018.12.051spa
dc.relation.referencesNing, W., Guo, J., Liu, X., & Pan, H. (2020). Incorporating individual preference and network influence on choice behavior of electric vehicle sharing using agent-based model. International Journal of Sustainable Transportation, 14(12), 917–931.spa
dc.relation.referencesNovizayanti, D., Prasetio, E. A., Siallagan, M., & Santosa, S. P. (2021). Agent-Based Modeling Framework for Electric Vehicle Adoption Transition in Indonesia. World Electric Vehicle Journal, 12(2), 73.spa
dc.relation.referencesNovosel, T., Perković, L., Ban, M., Keko, H., Pukšec, T., Krajačić, G., & Duić, N. (2015). Agent based modelling and energy planning – Utilization of MATSim for transport energy demand modelling. Energy, 92, 466–475. https://doi.org/10.1016/j.energy.2015.05.091spa
dc.relation.referencesNREL. (2020). SunLine Transit Agency American Fuel Cell Bus Progress Report. www.nrel.gov/docs/fy17osti/67209.pdfspa
dc.relation.referencesOCDE. (2021). Long-term economic scenarios. Compare Your Country. https://www1.compareyourcountry.org/long-term-economic-scenarios/en/0/datatable/spa
dc.relation.referencesOkushima, M. (2016). Multi-agent simulation for promoting clean energy vehicles from the perspective of concern for the environment and local interactions. Asian Transport Studies, 4(1), 96–113.spa
dc.relation.referencesOlascuaga, L. M. H., Caicedo, O. F. P., & Garcia, J. A. R. (2013). Key challenges within the definition of a regulatory framework for electric vehicles: experience from Colombia. 2013 IEEE International Electric Vehicle Conference (IEVC), 1–7.spa
dc.relation.referencesOMS. (2021). Ambient (outdoor) air pollution. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-healthspa
dc.relation.referencesOnn, C. C., Mohd, N. S., Yuen, C. W., Loo, S. C., Koting, S., Abd Rashid, A. F., Karim, M. R., & Yusoff, S. (2018). Greenhouse gas emissions associated with electric vehicle charging: The impact of electricity generation mix in a developing country. Transportation Research Part D: Transport and Environment, 64, 15–22.spa
dc.relation.referencesOrtega, S., Ángel, E., & Jaramillo, A. (2019). Escenarios Energéticos. Seis posibilidades para la transición en Colombia.spa
dc.relation.referencesOspina, D., Zapata, S., Castañeda, M., Dyner, I., Aristizábal, A. J., & Escalante, N. (2018). Model for evaluating CO2 emissions and the projection of the transport sector.spa
dc.relation.referencesParra, J. F. (2023). Diseño de estructuras dinámicas para el manejo de incertidumbres metodológicas en modelos de dinámica de sistemas. Universidad Nacional de Colombia.spa
dc.relation.referencesPod Point. (2021). How Long Does It Take to Charge an Electric Car? https://pod-point.com/guides/driver/how-long-to-charge-an-electric-carspa
dc.relation.referencesPruebaderuta. (2015). Electrolineras. https://www.pruebaderuta.com/electrolineras.phpspa
dc.relation.referencesPuricelli, S., Cardellini, G., Casadei, S., Faedo, D., van den Oever, A. E. M., & Grosso, M. (2021). A review on biofuels for light-duty vehicles in Europe. Renewable and Sustainable Energy Reviews, 137, 110398. https://doi.org/10.1016/j.rser.2020.110398spa
dc.relation.referencesRajper, S. Z., & Albrecht, J. (2020). Prospects of electric vehicles in the developing countries: a literature review. Sustainability, 12(5), 1906.spa
dc.relation.referencesRamjerdi, F., & Fearnley, N. (2014). Risk and irreversibility of transport interventions. Transportation Research Part A: Policy and Practice, 60, 31–39. https://doi.org/10.1016/j.tra.2013.10.014spa
dc.relation.referencesRequia, W. J., Mohamed, M., Higgins, C. D., Arain, A., & Ferguson, M. (2018). How clean are electric vehicles? Evidence-based review of the effects of electric mobility on air pollutants, greenhouse gas emissions and human health. Atmospheric Environment, 185, 64–77. https://doi.org/10.1016/j.atmosenv.2018.04.040spa
dc.relation.referencesResolución 000019. (2022). Por la cual se ajustan las tarifas del Impuesto Nacional a la Gasolina y al ACPM, y del Impuesto al carbono. https://www.dian.gov.co/normatividad/Normatividad/Resolución 000019 de 28-01-2022.pdfspa
dc.relation.referencesResolución 40359. (2021). Resolución 40359 por la cual se modifica el artículo 1 de la Resolución del 12 de agosto de 2021, con el fin de darle continuidad al abastecimiento de combustibles en el territorio nacional. https://www.minenergia.gov.co/documents/10180//23517//49113-Res+40359+de+11+de+noviembre+2021_organized.pdfspa
dc.relation.referencesResolución 40421. (2021). Resolución 40421 por la cual se modifica el contenido de biocombustible - biodiesel en la mezcla con diésel fósil y se dictan otras disposiciones, con el fin de darle continuidad al abastecimiento de combustibles en el territorio nacional. https://www.minenergia.gov.co/documents/10180//23517//49175-Resolución+40421+mezcla+biodiesel.pdfspa
dc.relation.referencesResolución 8-0582. (1996). Resolución 8-0582 por la cual se reglamenta el almacenamiento, manejo y distribución del Gas Natural Comprimido, GNC, para uso en vehículos automotores, la conversión de los mismos y se delegan unas funciones. https://www.suin-juriscol.gov.co/viewDocument.asp?id=4035986spa
dc.relation.referencesRodríguez, R. (2019). Mobility Scenarios in Colombia’s Main Cities According to Energy, Macroeconomic & Demographic Perspectives 2050: More electricity and gas with a less dynamic vehicle fleet? 2019 FISE-IEEE/CIGRE Conference - Living the Energy Transition (FISE/CIGRE), 1–6. https://doi.org/10.1109/FISECIGRE48012.2019.8984978spa
dc.relation.referencesRodríguez Valencia, Á., & Acevedo Bohórquez, J. (2012). Taxi! El modo olvidado de la movilidad en Bogotá! Ediciones Uniandes-Universidad de los Andes.spa
dc.relation.referencesRogers, E. M. (1962). Diffusion of innovations. Free Press (NY). 1995.spa
dc.relation.referencesRokadiya, S., Bandivadekar, A., & Isenstadt, A. (2021). Estimating electric two-wheeler costs in India to 2030 and beyond.spa
dc.relation.referencesRUNT. (2021). Runt en cifras. https://www.runt.com.co/runt-en-cifrasspa
dc.relation.referencesRUNT, & MinTransporte. (2021). Boletín de Prensa 012 de 2021 ¿Cuál es la edad del parque automotor del país? https://www.runt.com.co/sites/default/files/Boletín de Prensa 012 de 2021.pdfspa
dc.relation.referencesSaavedra Muñoz, M., Alvarez Villa, D. A., Sánchez Wilches, E. A., & others. (2019). Diseño, construccion y puesta en marcha de eco-electrolineras.spa
dc.relation.referencesSadri, A., Ardehali, M. M., & Amirnekooei, K. (2014). General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN. Energy, 77, 831–843.spa
dc.relation.referencesSaisirirat, P., & Chollacoop, N. (2017). A scenario analysis of road transport sector: the impacts of recent energy efficiency policies. Energy Procedia, 138, 1004–1010.spa
dc.relation.referencesSaisirirat, P., Chollacoop, N., Tongroon, M., Laoonual, Y., & Pongthanaisawan, J. (2013). Scenario Analysis of Electric Vehicle Technology Penetration in Thailand: Comparisons of Required Electricity with Power Development Plan and Projections of Fossil Fuel and Greenhouse Gas Reduction. Energy Procedia, 34, 459–470. https://doi.org/10.1016/j.egypro.2013.06.774spa
dc.relation.referencesSaldarriaga-Isaza, C. A., & Vergara, C. (2009). Who switches to hybrids? A study of a fuel conversion program in Colombia. Transportation Research Part A: Policy and Practice, 43(5), 572–579.spa
dc.relation.referencesSarmiento, C. E., & Jeréz, E. A. (2019). Análisis de escenarios para la integración de taxis eléctricos en el sector público de Bucaramanga. https://repository.unab.edu.co/handle/20.500.12749/7109spa
dc.relation.referencesSchade, W., Kley, F., Köhler, J., & Peters, A. (2012). Contextual Requirements for Electric Vehicles in Developed and Developing Countries: The Example of China. In Sustainable Transport for Chinese Cities. Emerald Group Publishing Limited.spa
dc.relation.referencesSchwaninger, M., & Grösser, S. (2020). System dynamics modeling: validation for quality assurance. System Dynamics: Theory and Applications, 119–138.spa
dc.relation.referencesSchwartz, P. (1996). The art of the long view: paths to strategic insight for yourself and your company. Currency.spa
dc.relation.referencesSclar, R., Werthmann, E., Albuquerque, C., & Castellanos, S. (2020). The Future of Urban Mobility: The Case for Electric Bus Deployment in Bogotá, Colombia. https://www.coalitionforurbantransitions.org/wp-content/uploads/2020/04/The_Future_of_Urban_Mobility_web_FINAL.pdfspa
dc.relation.referencesSDP. (2020). Diagnóstico general gremios - POT Bogotá D.C. http://www.sdp.gov.co/sites/default/files/diagnostico_general-gremios_05062020.pdfspa
dc.relation.referencesSecretaría de transportes y tránsito de Medellín. (2011). Medellín, la ciudad de la movilidad inteligente. Balance de gestión. Enero de 2008 - noviembre de 2011. https://www.medellin.gov.co/movilidad/documents/balance_de_gestion_secretaria_de_transportes_y_transito_de_medellin_2008_2011.pdfspa
dc.relation.referencesSecretaría Distrital de Movilidad. (2017). Informe ejecutivo modelación de la demanda. https://www.metrodebogota.gov.co/sites/default/files/INFORME%5C EJECUTIVO%5C MODELACIO%5C%CC%5C%81N%5C DE%5C LA%5C DEMANDA.PDFspa
dc.relation.referencesSecretaría Distrital de Planeación. (2021). Política Pública de la Bicicleta 2021-2039. https://www.sdp.gov.co/content/politica-publica-de-la-bicicleta-2021-2039spa
dc.relation.referencesSenkpiel, C., Berneiser, J., & Baumann, D. (2021). Open-source simulation of the long-term diffusion of alternative passenger cars on the basis of investment decisions of private persons. Transportation Research Part D: Transport and Environment, 93, 102713.spa
dc.relation.referencesSerohi, A. (2021). E-mobility ecosystem innovation–impact on downstream supply chain management processes. Is India ready for inevitable change in auto sector? Supply Chain Management: An International Journal.spa
dc.relation.referencesShafiei, E., Stefansson, H., Asgeirsson, E. I., Davidsdottir, B., & Raberto, M. (2013). Integrated agent-based and system dynamics modelling for simulation of sustainable mobility. Transport Reviews, 33(1), 44–70.spa
dc.relation.referencesShakya, S. R. (2016). Benefits of low carbon development strategies in emerging cities of developing country: A case of Kathmandu. Journal of Sustainable Development of Energy, Water and Environment Systems, 4(2), 141–160.spa
dc.relation.referencesShakya, S. R., & Shrestha, R. M. (2011). Transport sector electrification in a hydropower resource rich developing country: Energy security, environmental and climate change co-benefits. Energy for Sustainable Development, 15(2), 147–159.spa
dc.relation.referencesShepherd, S. P. (2014). A review of system dynamics models applied in transportation. Transportmetrica B: Transport Dynamics, 2(2), 83–105.spa
dc.relation.referencesShepherd, S., Bonsall, P., & Harrison, G. (2012). Factors affecting future demand for electric vehicles: A model based study. Transport Policy, 20, 62–74.spa
dc.relation.referencesSIC. (2014). Estudios de Mercado. Mercado Minorista del Gas Natural Vehicular en Bogotá. https://www.sic.gov.co/sites/default/files/files/Estudio_Mercado_Gas_Natural_Vehicular.pdfspa
dc.relation.referencesSingh, D., Mahanta, G. B., & Deepak, B. (2020). A Systematic Approach to Identify the Critical Parameters of Two-Wheeler E-Vehicles. In Innovative Product Design and Intelligent Manufacturing Systems (pp. 229–240). Springer, Singapore.spa
dc.relation.referencesSingh, V., Singh, V., & Vaibhav, S. (2020). A review and simple meta-analysis of factors influencing adoption of electric vehicles. Transportation Research Part D: Transport and Environment, 86, 102436.spa
dc.relation.referencesŚlusarczyk, B. (2020). Chapter 10 - Electromobility for sustainable transport in Poland. In M. Tvaronavičienė & B. Ślusarczyk (Eds.), Energy Transformation Towards Sustainability (pp. 199–218). Elsevier. https://doi.org/10.1016/B978-0-12-817688-7.00010-0spa
dc.relation.referencesSodiq, A., Baloch, A. A. B., Khan, S. A., Sezer, N., Mahmoud, S., Jama, M., & Abdelaal, A. (2019). Towards modern sustainable cities: Review of sustainability principles and trends. Journal of Cleaner Production, 227, 972–1001. https://doi.org/10.1016/j.jclepro.2019.04.106spa
dc.relation.referencesSoto, J. J., Cantillo, V., & Arellana, J. (2018). Incentivizing alternative fuel vehicles: the influence of transport policies, attitudes and perceptions. Transportation, 45(6), 1721–1753. https://doi.org/10.1007/s11116-018-9869-4spa
dc.relation.referencesSovacool, B. K., Hook, A., Martiskainen, M., & Baker, L. (2019). The whole systems energy injustice of four European low-carbon transitions. Global Environmental Change, 58, 101958. https://doi.org/10.1016/j.gloenvcha.2019.101958spa
dc.relation.referencesSovacool, B. K., Kester, J., Noel, L., & de Rubens, G. Z. (2019). Energy Injustice and Nordic Electric Mobility: Inequality, Elitism, and Externalities in the Electrification of Vehicle-to-Grid (V2G) Transport. Ecological Economics, 157, 205–217. https://doi.org/10.1016/j.ecolecon.2018.11.013spa
dc.relation.referencesSovacool, B. K., Lipson, M. M., & Chard, R. (2019). Temporality, vulnerability, and energy justice in household low carbon innovations. Energy Policy, 128, 495–504.spa
dc.relation.referencesSteenblik, R. (2007). Biofuels at what cost? Government support for ethanol and biodiesel in selected OECD countries A synthesis of reports addressing subsidies for biofuels in Australia, Canada, the European Union, Switzerland and United States (Issue D-1589). The Global Subsidies Initiative, GSI.spa
dc.relation.referencesSterman, J. (2000). Business dynamics. McGraw-Hill, Inc.spa
dc.relation.referencesStrapasson, A., Woods, J., Pérez-Cirera, V., Elizondo, A., Cruz-Cano, D., Pestiaux, J., Cornet, M., & Chaturvedi, R. (2020). Modelling carbon mitigation pathways by 2050: Insights from the Global Calculator. Energy Strategy Reviews, 29, 100494. https://doi.org/10.1016/j.esr.2020.100494spa
dc.relation.referencesStruben, J., & Sterman, J. D. (2008). Transition challenges for alternative fuel vehicle and transportation systems. Environment and Planning B: Planning and Design, 35(6), 1070–1097.spa
dc.relation.referencesSurtigas. (2017). Ahorre hasta un \46% de dinero por cada tanqueada convirtiendo su vehículo a gas natural vehicular. https://www.surtigas.com.co/noticia_165_ahorre-hasta-un-46-de-dinero-por-cada-tanqueada-convirtiendo-su-vehculo-a--165spa
dc.relation.referencesTanco, M., Cat, L., & Garat, S. (2019). A break-even analysis for battery electric trucks in Latin America. Journal of Cleaner Production, 228, 1354–1367. https://doi.org/10.1016/j.jclepro.2019.04.168spa
dc.relation.referencesTchetchik, A., Zvi, L. I., Kaplan, S., & Blass, V. (2020). The joint effects of driving hedonism and trialability on the choice between internal combustion engine, hybrid, and electric vehicles. Technological Forecasting and Social Change, 151, 119815.spa
dc.relation.referencesTeoh, L. E., & Khoo, H. L. (2020). Analysis of natural gas vehicle acceptance behavior for Klang Valley, Malaysia. International Journal of Sustainable Transportation, 15(1), 11–29.spa
dc.relation.referencesThe Australian Financial Review. (2022). Electric vehicles set for range parity with petrol cars by 2024 and dramatically increase sales. https://www.afr.com/companies/energy/electric-vehicles-set-for-range-parity-with-petrol-cars-by-2024-20220202-p59t79spa
dc.relation.referencesThe Economic Times. (2021). Should you buy an electric car? Comparison with other fuel cars, pros and cons. https://economictimes.indiatimes.com/wealth/spend/should-you-buy-an-electric-car-comparison-with-other-fuel-cars-pros-and-cons/articleshow/88088750.cmsspa
dc.relation.referencesThurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34(4), 273.spa
dc.relation.referencesToro-González, D., Cantillo, V., & Cantillo-García, V. (2020). Factors influencing demand for public transport in Colombia. Research in Transportation Business & Management, 36, 100514.spa
dc.relation.referencesTrain, K. E. (2009). Discrete choice methods with simulation. Cambridge university press.spa
dc.relation.referencesTransport & Environment. (2018). Electric buses arrive on time. https://www.transportenvironment.org/wp-content/uploads/2021/07/Electric-buses-arrive-on-time-1.pdfspa
dc.relation.referencesTransport & Environment. (2020). Comparison of hydrogen and battery electric trucks. Methodology and underlying assumptions.spa
dc.relation.referencesUNFCCC. (2020). Actualización de la Contribución Determinada a Nivel Nacional de Colombia (NDC).spa
dc.relation.referencesUPB, & AMVA. (2016). Actualización inventario de emisiones atmosféricas del Valle de Aburrá 2016. https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/Inventario-de-emisiones/Inventario_FuentesMóviles2016.pdfspa
dc.relation.referencesUPME. (1998). El gas natural vehicular en Colombia: cuaderno SE-001. https://bdigital.upme.gov.co/handle/001/1076spa
dc.relation.referencesUPME. (2016a). Boletín Estadístico Minas y Energía 2012-2016. http://www1.upme.gov.co/simco/documents/boletin_estadistico_2012_2016.pdfspa
dc.relation.referencesUPME. (2016b). Plan de acción indicativo de eficiencia energética PAI-PROURE 2017-2022. 157. http://www1.upme.gov.co/DemandaEnergetica/MarcoNormatividad/PAI_PROURE_2017-2022.pdfspa
dc.relation.referencesUPME. (2017). Repositorio UPME: Mapa de ruta para la transición hacia vehículos de bajas y cero emisiones. In Ernst & Young. https://bdigital.upme.gov.co/handle/001/1160spa
dc.relation.referencesUPME. (2019a). Establecer Recomendaciones en Materia de Infraestructura de Recarga para la Movilidad Eléctrica en Colombia para los Diferentes Segmentos: Buses, motos, taxis, BRT.spa
dc.relation.referencesUPME. (2019b). Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética. Resumen Ejecutivo BEU Sector Transporte.spa
dc.relation.referencesUPME. (2021a). Movilidad Sostenible. https://www1.upme.gov.co/DemandayEficiencia/Paginas/Movilidad-Sostenible.aspxspa
dc.relation.referencesUPME. (2021b). Plan Energético Nacional 2020-2050. 83. https://www1.upme.gov.co/DemandayEficiencia/Documents/PEN_2020_2050/Plan_Energetico_Nacional_2020_2050.pdfspa
dc.relation.referencesUrrutia-Mosquera, J., & Fábrega, J. (2021). Impact of fiscal incentives in the consumption of low emission vehicles. Case Studies on Transport Policy.spa
dc.relation.referencesValenzuela, M. M., Espinosa, M., Virgüez, E. A., & Behrentz, E. (2017). Uncertainty of greenhouse gas emission models: A case in Colombia’s transport sector. Transportation Research Procedia, 25, 4606–4622. https://doi.org/10.1016/j.trpro.2017.05.380spa
dc.relation.referencesVelásquez, J. D. (2015). Una guía corta para escribir revisiones sistemáticas de literatura parte 3. Dyna, 82(189), 9–12.spa
dc.relation.referencesVicente, J. B. (2020). Parametric and Non-Parametric Approaches for the Prediction of the Diffusion of the Electric Vehicle. University of Maryland, College Park.spa
dc.relation.referencesVilchez, J. G., Harrison, G., Thiel, C., Lu, H., Rohr, C., Kelleher, L., & Smyth, A. (2019). Preference elicitation for a dynamic simulation: powertrain choices in the European Union car market. 37th International Conference of the System Dynamics Society.spa
dc.relation.referencesVilchez, J. J. G., & Jochem, P. (2019). Simulating vehicle fleet composition: A review of system dynamics models. Renewable and Sustainable Energy Reviews, 115, 109367.spa
dc.relation.referencesVon Rosenstiel, D. P., Heuermann, D. F., & Hüsig, S. (2015). Why has the introduction of natural gas vehicles failed in Germany?—Lessons on the role of market failure in markets for alternative fuel vehicles. Energy Policy, 78, 91–101.spa
dc.relation.referencesWalker, J. (2016). From Trend Spotting to Trend Setting: Modeling the Impact of Major Technological and Infrastructural Changes on Travel Demand.spa
dc.relation.referencesWeiss, M., Cloos, K. C., & Helmers, E. (2020). Energy efficiency trade-offs in small to large electric vehicles. Environmental Sciences Europe, 32(1). https://doi.org/10.1186/s12302-020-00307-8spa
dc.relation.referencesWeitzman, M. L. (1974). Prices vs. quantities. The Review of Economic Studies, 41(4), 477–491.spa
dc.relation.referencesWinyuchakrit, P., Sukamongkol, Y., & Limmeechokchai, B. (2017). Do electric vehicles really reduce GHG emissions in Thailand? Energy Procedia, 138, 348–353.spa
dc.relation.referencesWolken, A. R., Smith, M. J., Kaye-Blake, B., Curry, K. O., Dickson, M. C., Drummond, C. E., & Thomas, A. (2018). Driving Change: Technology Diffusion in the Transport Sector, June 2018. NZ Transport Agency.spa
dc.relation.referencesWorld Resources Institute. (2016). What is an INDC? https://www.wri.org/indc-definitionspa
dc.relation.referencesWright. (2021). Wrightbus First hydrogen fuel cell bus. https://wrightbus.com/en-gb/hydrogen-bus-streetdeck-hydrolinerFCEVspa
dc.relation.referencesWright, L., & Fulton, L. (2005). Climate Change Mitigation and Transport in Developing Nations. Transport Reviews, 25(6), 691–717. https://doi.org/10.1080/01441640500360951spa
dc.relation.referencesWu, Y., & Zhang, L. (2017). Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries? Transportation Research Part D: Transport and Environment, 51, 129–145.spa
dc.relation.referencesXM. (2022). Demanda de energía en 2021 marca máximos históricos. https://www.xm.com.co/noticias/4590-demanda-de-energia-en-2021-marca-maximos-historicosspa
dc.relation.referencesYamaha Izabal. (2020). ¿Cuánto Rinde un Litro de Gasolina en una Moto 150? - . https://yamahaizabal.com/blog/cuanto-rinde-litro-gasolina-moto-150/spa
dc.relation.referencesYan, S. (2018). The economic and environmental impacts of tax incentives for battery electric vehicles in Europe. Energy Policy, 123, 53–63.spa
dc.relation.referencesYang, W., Zhou, H., Liu, J., Dai, S., Ma, Z., & Liu, Y. (2015). Market evolution modeling for electric vehicles based on system dynamics and multi-agents. 2015 International Symposium on Smart Electric Distribution Systems and Technologies (EDST), 133–138.spa
dc.relation.referencesYaqoob, H., Teoh, Y. H., Goraya, T. S., Sher, F., Jamil, M. A., Rashid, T., & Yar, K. A. (2021). Energy evaluation and environmental impact assessment of transportation fuels in Pakistan. Case Studies in Chemical and Environmental Engineering, 3, 100081.spa
dc.relation.referencesYeh, S. (2007). An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles. Energy Policy, 35(11), 5865–5875.spa
dc.relation.referencesZhang, L., Wilson, J. P., MacDonald, B., Zhang, W., & Yu, T. (2020). The changing PM2. 5 dynamics of global megacities based on long-term remotely sensed observations. Environment International, 142, 105862.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.lembContaminación del airespa
dc.subject.lembAir - Pollutioneng
dc.subject.lembGases de escape en automóvilesspa
dc.subject.lembAutomobiles - motors - exhaust gaseng
dc.subject.proposalDescarbonizaciónspa
dc.subject.proposalTransporte sosteniblespa
dc.subject.proposalVehículos eléctricos (EVs)spa
dc.subject.proposalVehículos de fuentes de propulsión alternativas (AFVs)spa
dc.subject.proposalDinámica de sistemasspa
dc.subject.proposalDifusión de una innovaciónspa
dc.subject.proposalElección discretaspa
dc.subject.proposalDecarbonizationeng
dc.subject.proposalSustainable Transporteng
dc.subject.proposalElectric Vehicles (EVs)eng
dc.subject.proposalAlternative Fuel Vehicles (AFVs)eng
dc.subject.proposalSystem Dynamicseng
dc.subject.proposalInnovation Diffusioneng
dc.subject.proposalDiscrete Choiceeng
dc.titleOpciones de descarbonización del transporte terrestre en ciudades de Colombia: escenarios a partir de un modelo de dinámica de sistemasspa
dc.title.translatedOptions for decarbonization of land transport in Colombian cities: scenarios based on a system dynamics modeleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017243836.2022.pdf
Tamaño:
13.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería -Ingeniería de Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: