Contribution to the computation of regions of attraction of nonlinear systems based on the extended dynamic mode decomposition - Application to the anaerobic digestion

dc.contributor.advisorMojica-Nava, Eduardo
dc.contributor.authorGarcía Tenorio, Camilo
dc.contributor.researchgroupPrograma de Investigacion sobre Adquisicion y Analisis de Señales Paas-Unspa
dc.date.accessioned2021-11-18T00:16:19Z
dc.date.available2021-11-18T00:16:19Z
dc.date.issued2021
dc.description.abstractEl tema principal de la tesis es la identificación basada en datos de la región de atracción (ROA por sus siglas en ingles) de puntos de equilibrio asintóticamente estables. Aunque esta es la principal contribución computacional, la mayoría del trabajo de la tesis constituye en satisfacer las condiciones subyacentes para lograr aproximar la ROA\@. Para obtener una aproximación precisa basada en datos del ROA en sistemas con múltiples puntos fijos o de equilibrio es necesario completar apropiadamente una serie de pasos partiendo de algunas trayectorias del sistema, i.e., asumiendo que no hay ningún acceso al modelo de ecuaciones diferenciales. La condición principal es una aproximación precisa del operador de Koopman ya que proporciona un grupo de eigenfunciones donde una composición particular de las mismas proporciona otra eingenfunción no trivial con eigenvalor asociado unitario. La principal propiedad de esta eingenfunción es que proporciona el ``manifold'' estable de los puntos de silla en el perímetro de la ROA\@. Por esta razón, para todo este procedimiento de trabajo, también es necesario tener una aproximación de la ubicación y estabilidad de los puntos fijos del sistema, recordando que la única entrada al algoritmo es un conjunto de trayectorias del sistema. Por consiguiente, el algoritmo debe ser una aproximación apropiada de las dinámicas del sistema y ser capaz de proporcionar una ecuación de diferencia que pueda proporcionar la ubicación y estabilidad de puntos fijos basándose en el análisis tradicional de sistemas no lineales. El algoritmo que tiene el potencial de alcanzar estos requisitos es el ``extended dynamics mode decomposition'' (EDMD), en donde la mayor parte del trabajo de esta tesis se enfoca en transformar el potencial que tiene este algoritmo en una realidad. En su mayor parte, el enfoque del desarrollo es sobre la estabilidad numérica del algoritmo, reduciendo el esfuerzo computacional y pasos necesarios para llevar a cabo la aproximación. Técnicos como la reducción de los polinomios ortogonales bas\'andose en las casi normas p-q y la eliminaci\'on de elementos polinomiales segur su error, aseguran que bases mas pequeños realicen las aproximaciones garantizando la existencia de soluciones debido a la propiedad de ortogonalidad. Mejoras como la recuperaron del estado a troves de la función inversa de los polinomios de una sola variable reducen el numero necesario de inversiones de matrices. Finalmente, las expansiones a priori del estado con funciones trigonométricas arbitrarias o cualquier otro tipo de funciones elementales, expanden los tipos posibles de sistemas que el algoritmo puede manejar. Como consecuencia de estas mejoras, la tesis logra los objetivos originales de analizar sistemas y controlar conjuntos de sistemas interconectados en un contexto basado en datos. Finalmente, la aplicación principal de la tesis es el análisis de la ROA en el proceso de digestión anaerobia, donde el análisis del fenómeno de multi-estabilidad que garantiza la operación correcta del reactor es de suma importancia.spa
dc.description.abstractLe sujet principal de cette thèse de doctorat est la détermination de la région d’attraction des points d’équilibre asymptotiquement stables d’un système dynamique non linéaire. Cette détermination est réalisée numériquement sans avoir recours à la connaissance explicite d’un modèle mathématique du système, mais sur base d’un ensemble de trajectoires de celui-ci. Ces trajectoires peuvent être soit collectées expérimentalement au départ du système physique, soit obtenues par simulation numérique d’un modèle de forme arbitraire qui serait déjà disponible mais dont la structure ne doit pas être connue. A cette fin, le système dynamique non linéaire est représenté par un opérateur de Koopman. Cet opérateur est linéaire mais de dimension infinie et en pratique il est nécessaire de procéder à une approximation en dimension finie. Celle-ci est fournie par la méthode ``extended dynamic mode decomposition'' (EDMD), qui permet de construire une matrice de Koopman et de calculer les fonctions propres et les valeurs propres associées à celle-ci. En particulier, les fonctions propres associées à la valeur propre unitaire apparaissent comme étant particulièrement utiles. Ces fonctions propres permettent en effet de déterminer les « manifolds » stables des points selle qui se trouvent à la frontière de la région d’attraction. Outre cette détermination des points d’équilibre et de leur région d’attraction, ce travaille de thèse s’intéresse aux aspects numériques de la méthode EDMD, notamment le choix de bases polynomiales performantes et la réduction de l’ordre de l’approximation en utilisant des techniques telles que les quasi-normes p-q. Le choix des bases polynomiales est aussi important pour la représentation des entrées de commande des systèmes ou de leur couplages, dans le contexte de l’interconnexion de plusieurs systèmes dynamiques. Les dernières considérations théoriques de ce travail concernent donc les systèmes avec des entrées de commande et la possibilité de développer une commande prédictive en relation avec la représentation de Koopman. Enfin ce travail contient plusieurs illustrations dont une application à la détermination des points d’équilibre et des régions d’attraction du processus de digestion anaérobie, ainsi qu’un pendule inversé approximé par la méthode EDMD utilisant des fonctions de base trigonométriques, ainsi que des oscillateurs de Duffing couplés.fra
dc.description.abstractThe main topic of the thesis is the data-driven identification of the region of attraction (ROA) of asymptotically stable equilibrium points. Although this is the main computational contribution, satisfying the underlying conditions to make this possible constitutes most of the work of the thesis. To achieve an accurate data-driven approximation of the ROA in systems with multiple fixed or equilibrium points it is necessary to properly complete a series of steps parting from some trajectories of the system, i.e., assuming there is no access to the differential or difference model equation. The main condition is an accurate approximation of the Koopman operator because it provides a set of eigenfunctions where a particular composition of them gives another non-trivial eigenfunction with an associated eigenvalue that is unitary. The main property of this eigenfunction is that it gives the stable manifold of saddle points in the boundary of the ROA, where this stable manifold is in fact, the actual boundary of the ROA\@. Therefore, for this whole procedure to work, it also necessary to have an approximation of the location and stability of the fixed points of the system, recalling that the only input to the algorithm is a set of trajectories of the system. Consequently, the algorithm must be an appropriate approximation of the dynamics of the system and be able to provide a difference equation able to give the location and stability of fixed points upon further traditional non-linear system analysis. The algorithm that has the potential to achieve these requisites is the extended dynamics mode decomposition (EDMD) algorithm, where most of the work of this thesis focuses in transforming the potential into actual. For the most part, the development focus is on the numerical stability of the algorithm, reducing the computational effort and necessary steps to perform the approximation. Techniques such as the p-q-quasi norm reduction of orthogonal polynomials and polynomial element elimination according to its error, ensures that smaller bases perform the approximations while guaranteeing the existence of solutions because of the orthogonality property. Improvements such as the recovery of the state via the inverse of univariate order-one polynomials reduce the number of necessary matrix inversions. Finally, a priori expansions of the state with arbitrary trigonometric functions or any other kind of elemental functions, expand the possible types of systems that the algorithm can handle. As a consequence of these improvements, the thesis achieves the original objectives of analyzing systems and controlling sets of interconnected systems in a data-driven context. Finally, the main application of the thesis is the analysis of the ROA to the anaerobic digestion process, where the analysis of multi-stability phenomena that guarantees the proper operation of the reactor is of paramount importance. (Text taken from source)eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.format.extentxxviii, 148 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80692
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónicaspa
dc.relation.referencesAmir Ali Ahmadi and Pablo A. Parrilo. Converse results on existence of sum of squares Lyapunov functions. In IEEE Conference on Decision and Control and European Control Conference, pages 6516–6521, Orlando FL, USA, dec 2011. IEEE. ISBN 978-1-61284-801-3.spa
dc.relation.referencesJames Anderson and Antonis Papachristodoulou. Dynamical system decomposition for efficient, sparse analysis. In 49th IEEE Conference on Decision and Control (CDC), pages 6565–6570, Atlanta GA, USA, dec 2010. IEEE. ISBN 978-1-4244-7745-6.spa
dc.relation.referencesJacqueline Augusiak, Paul J. Van den Brink, and Volker Grimm. Merging validation and evaluation of ecological models to ’evaludation’: A review of terminology and a practical approach. Ecological Modelling, 280:117–128, 2014.spa
dc.relation.referencesG. Bastin and D. Dochain. On-line Estimation and Adaptive Control of Bioreactors. Elsevier, Amsterdam, 1990.spa
dc.relation.referencesG. Bastin and J.F. F. Van Impe. Nonlinear and Adaptive Control in Biotechnology: A Tutorial. European Journal of Control, 1(1):37–53, jan 1995.spa
dc.relation.referencesRichard Bellman. Vector Lyanpunov Functions. Journal of the Society for Industrial and Applied Mathematics Series A Control, 1(1):32–34, jan 1962. ISSN 0887-4603.spa
dc.relation.referencesOlivier Bernard, Zakaria Hadj-Sadok, Denis Dochain, Antoine Genovesi, and Jean Philippe Steyer. Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnology and Bioengineering, 75(4):424–438, 2001.spa
dc.relation.referencesSteven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE, 11(2):1–19, 2016a.spa
dc.relation.referencesSteven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15):3932–3937, apr 2016b.spa
dc.relation.referencesMarko Budišic, Ryan Mohr, and Igor Mezic. Applied koopmanism. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(4): 47510, 2012.spa
dc.relation.referencesVijaysekhar Chellaboina, Sanjay Bhat, Wassim Haddad, and Dennis Bernstein. Modeling and analysis of mass-action kinetics. IEEE Control Systems Magazine, 29(4):60–78, aug 2009.spa
dc.relation.referencesH D Chiang and L F C Alberto. Stability Regions of Nonlinear Dynamical Systems: Theory, Estimation, and Applications. Cambridge University Press, 2015. ISBN 9781316374320.spa
dc.relation.referencesEdson A. Coayla-Teran, S. E A Mohammed, and P. R C Ruffino. Hartman-Grobman theorems along hyperbolic stationary trajectories. Discrete and Continuous Dynamical Systems, 17(2):281–292, 2007.spa
dc.relation.referencesFederico Cuesta, Francisco Gordillo, Javier Aracil, and Anibal Ollero. Stability analysis of nonlinear multivariable Takagi-Sugeno fuzzy control systems. IEEE Transactions on Fuzzy Systems, 7(5):508–520, 1999.spa
dc.relation.referencesDavid Di Ruscio. Model Predictive Control with Integral Action: A simple MPC algorithm. Modeling, Identification and Control, 34(3): 119–129, 2013.spa
dc.relation.referencesGeorgi M Dimirovski. Complex Systems: Relationships between Control, Communications and Computing, volume 55. Springer, 2016.spa
dc.relation.referencesTanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel. Operator Theoretic Aspects of Ergodic Theory, volume 272 of Graduate Texts in Mathematics. Springer International Publishing, Cham, 2015.spa
dc.relation.referencesNesma ElKalaawy and Amr Wassal. Methodologies for the modeling and simulation of biochemical networks, illustrated for signal transduction pathways: A primer. BioSystems, 129:1–18, 2015.spa
dc.relation.referencesMartin Feinberg. Chemical reaction network structure and the stability of complex isothermal reactors-I. The deficiency zero and deficiency one theorems. Chemical Engineering Science, 42(10):2229–2268, 1987.spa
dc.relation.referencesC. Garcia-Tenorio, D. Tellez-Castro, E. Mojica-Nava, and A. Vande Wouwer. Analysis of hyperbolic systems via data-driven koopman operator. Submitted, 2020.spa
dc.relation.referencesCamilo Garcia-Tenorio, Nicanor Quijano, Eduardo Mojica-Nava, and Jorge Sofrony. Bond graph model-based for IDA-PBC. In 2016 IEEE Conference on Control Applications (CCA), pages 1098–1103. IEEE, sep 2016. ISBN 978-1-5090-0755-4.spa
dc.relation.referencesCamilo Garcia-Tenorio, Duvan Tellez-Castro, Eduardo Mojica-Nava, and Alain Vande Wouwer. Analysis of a Class of Hyperbolic Systems via Data-Driven Koopman Operator. In International Conference on System Theory, Control and Computing (ICSTCC), pages 566–571, 2019.spa
dc.relation.referencesHugues Garnier and LiupingWang, editors. Identification of Continuoustime Models from Sampled Data. Advances in Industrial Control. Springer-Verlag London, London, 1 edition, 2008.spa
dc.relation.referencesPeter Giesl and Sigurdur Hafstein. Review on computational methods for Lyapunov functions. Discrete and Continuous Dynamical Systems- Series B, 20(8):2291–2331, 2015.spa
dc.relation.referencesL. Grujic and D. Siljak. Asymptotic stability and instability of largescale systems. IEEE Transactions on Automatic Control, 18(6):636– 645, dec 1973. ISSN 0018-9286.spa
dc.relation.referencesWassim M Haddad and VijaySekhar Chellaboina. Nonlinear dynamical systems and control : a Lyapunov-based approach. Princeton University Press, 2008. ISBN ISBN-13: 978-0-6911-3329-4.spa
dc.relation.referencesP. Ioannou. Decentralized adaptive control of interconnected systems. IEEE Transactions on Automatic Control, 31(4):291–298, apr 1986. ISSN 0018-9286.spa
dc.relation.referencesE. Kaiser, J. N. Kutz, and S. L. Brunton. Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2219), 2018.spa
dc.relation.referencesHassan K Khalil. Nonlinear systems. Prentice Hall, 3rd edition, 2002.spa
dc.relation.referencesStefan Klus, Péter Koltai, and Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 3(1):51–79, 2016.spa
dc.relation.referencesRoelof Koekoek, Peter A. Lesky, and René F. Swarttouw. Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Monographs in Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.spa
dc.relation.referencesKaterina Konakli and Bruno Sudret. Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions. Journal of Computational Physics, 321:1144–1169, sep 2016a.spa
dc.relation.referencesKaterina Konakli and Bruno Sudret. Reliability analysis of highdimensional models using low-rank tensor approximations. Probabilistic Engineering Mechanics, 46:18–36, 2016b.spa
dc.relation.referencesBernard O. Koopman. Hamiltonian Systems and Transformation in Hilbert Space. Proceedings of the National Academy of Sciences, 17 (5):315–318, may 1931.spa
dc.relation.referencesMilan Korda and Igor Mezic. On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator. Journal of Nonlinear Science, 28(2):687–710, apr 2018a.spa
dc.relation.referencesMilan Korda and Igor Mezic. Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica, 93:149–160, 2018b.spa
dc.relation.referencesYueheng Lan and Igor Mezic. Linearization in the large of nonlinear systems and Koopman operator spectrum. Physica D: Nonlinear Phenomena, 242(1):42–53, 2013.spa
dc.relation.referencesA Lasota and James A. Yorke. Exact dynamical systems and the frobenius-perron operator. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 273(1):375–384, 1982.spa
dc.relation.referencesQianxiao Li, Felix Dietrich, Erik M. Bollt, and Ioannis G. Kevrekidis. Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27 (10):103111, 2017.spa
dc.relation.referencesA. Linnemann. Decentralized control of dynamically interconnected systems. IEEE Transactions on Automatic Control, 29(11):1052–1054, nov 1984. ISSN 0018-9286.spa
dc.relation.referencesLudovic Mailleret, Olivier Bernard, and J. P. Steyer. Robust regulation of anaerobic digestion processes. Water Science and Technology, 48(6): 87–94, 2003.spa
dc.relation.referencesAnirudha Majumdar, Amir Ali Ahmadi, and Russ Tedrake. Control and verification of high-dimensional systems with dsos and sdsos programming. In 53rd IEEE Conference on Decision and Control, pages 394–401, 2014.spa
dc.relation.referencesStefano Marelli and Bruno Sudret. An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural reliability analysis. Structural Safety, 75(August 2017):67–74, 2018.spa
dc.relation.referencesB. M. Maschke and A.J. J van der Schaft. Interconnection of systems: the network paradigm. In 35th Conference on Decision and Control, volume 1, pages 207–212. IEEE, 1996.spa
dc.relation.referencesA. Mauroy and J. Hendrickx. Spectral identification of networks using sparse measurements. SIAM Journal on Applied Dynamical Systems, 16(1):479–513, 2017a. ISSN 15360040.spa
dc.relation.referencesA. Mauroy, I. Mezic, and J. Moehlis. Isostables, isochrons, and koopman spectrum for the action–angle representation of stable fixed point dynamics. Physica D: Nonlinear Phenomena, 261:19 – 30, 2013. ISSN 0167-2789.spa
dc.relation.referencesAlexandre Mauroy and Julien M. Hendrickx. Spectral identification of networks with inputs. In 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017, volume 2018-Janua, pages 469–474, sep 2017b.spa
dc.relation.referencesAlexandre Mauroy and Igor Mezic. Global Stability Analysis Using the Eigenfunctions of the Koopman Operator. IEEE Transactions on Automatic Control, 61(11):3356–3369, nov 2016.spa
dc.relation.referencesIgor Mezic. Spectral Properties of Dynamical Systems , Model Reduction and Decompositions. Nonlinear Dynamics, 41(1):309–325, 2005. ISSN 0924-090X.spa
dc.relation.referencesIgor Mezic. Koopman operator spectrum and data analysis, feb 2017spa
dc.relation.referencesArnold Neumaier. Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization. SIAM Review, 40(3):636–666, 2003.spa
dc.relation.referencesFrank K. Lu Paul Zarchan, Howard Musoff. Fundamentals of Kalman Filtering:: A Practical Approach, volume 232 of Progress in Astronautics and Aeronautics (Volume 232). AIAA (American Institute of Aeronautics & Astronautics), 3 edition, 2009.spa
dc.relation.referencesSigurdur Hafstein Peter Giesl. Review on computational methods for lyapunov functions. Discrete & Continuous Dynamical Systems - B, 20:2291, 2015.spa
dc.relation.referencesJoshua L. Proctor, Steven L. Brunton, and J. Nathan Kutz. Dynamic mode decomposition with control. SIAM Journal on Applied Dynamical Systems, 15(1):142–161, 2016.spa
dc.relation.referencesNicanor Quijano, Carlos Ocampo-Martinez, Julian Barreiro-Gomez, German Obando, Andres Pantoja, and Eduardo Mojica-Nava. The Role of Population Games and Evolutionary Dynamics in Distributed Control Systems: The Advantages of Evolutionary Game Theory. IEEE Control Systems, 37(1):70–97, feb 2017.spa
dc.relation.referencesLorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana, and Alessandro Verri. Are Loss Functions All the Same? Neural Computation, 16(5):1063–1076, 2004.spa
dc.relation.referencesM. Sbarciog, M. Loccufier, and E. Noldus. Determination of appropriate operating strategies for anaerobic digestion systems. Biochemical Engineering Journal, 51(3):180–188, 2010a.spa
dc.relation.referencesMihaela Sbarciog, Mia Loccufier, and Erik Noldus. The estimation of stability boundaries for an anaerobic digestion system. IFAC Proceedings Volumes, 43(6):359 – 364, 2010b. ISSN 1474-6670. 11th IFAC Symposium on Computer Applications in Biotechnology.spa
dc.relation.referencesMihaela Sbarciog, Mia Loccufier, and Alain Vande Wouwer. On the optimization of biogas production in anaerobic digestion systems*. IFAC Proceedings Volumes, 44(1):7150 – 7155, 2011. ISSN 1474-6670. 18th IFAC World Congress.spa
dc.relation.referencesPeter J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 656:5–28, aug 2010.spa
dc.relation.referencesM. Erol Sezer and Özay Hüseyin. Stabilization of Linear Time-Invariant Interconnected Systems Using Local State Feedback. IEEE Transactions on Systems, Man, and Cybernetics, 8(10):751–756, 1978. ISSN 0018-9472.spa
dc.relation.referencesShuiwen Shen, Giuliano C Premier, Alan Guwy, and Richard Dinsdale. Bifurcation and stability analysis of an anaerobic digestion model. Nonlinear Dynamics, 48(4):391–408, 2007.spa
dc.relation.referencesShih-Ho Wang and E. Davison. On the stabilization of decentralized control systems. IEEE Transactions on Automatic Control, 18(5):473–478, oct 1973. ISSN 0018-9286.spa
dc.relation.referencesDragoslav D. Siljak. Stability of Large-Scale Systems under Structural Perturbations. IEEE Transactions on Systems, Man, and Cybernetics, 2(5):657–663, 1972. ISSN 0018-9472.spa
dc.relation.referencesDragoslav D Siljak. Decentralized Control of Complex Systems. Mathematics in science and engineering. Academic Press, 1991.spa
dc.relation.referencesS. J. Skar, R. K. Miller, and A. N. Michel. On Nonexistence of Limit Cycles in Interconnected Systems. IEEE Transactions on Automatic Control, 26(3):669–676, 1981.spa
dc.relation.referencesBruno Sudret. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering and System Safety, 93(7):964–979, 2008.spa
dc.relation.referencesEric Walter and Luc Pronzato. Identification of parametric models from experimental data. Springer-Verlag London, London, 1 edition, 1997.spa
dc.relation.referencesJan C. Willems. Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. Archive for Rational Mechanics and Analysis, 45(5):352–393, 1972a.spa
dc.relation.referencesJanC. Willems. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis, 45(5):321–351, 1972b.spa
dc.relation.referencesMatthew O. Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition. Journal of Nonlinear Science, 25(6): 1307–1346, dec 2015.spa
dc.relation.referencesMatthew O. Williams, Clarence W. Rowley, and Ioannis G. Kevrekidis. A kernel-based method for data-driven koopman spectral analysis. Journal of Computational Dynamics, 2(2):247–265, may 2016. ISSN 2158- 2491.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalRegion of Attractioneng
dc.subject.proposalKoopman Operatoreng
dc.subject.proposalExtended Dynamic Mode Decompositioneng
dc.subject.proposalAnaerobic Digestioneng
dc.subject.proposalRegión de Atraciónspa
dc.subject.proposalOperador de Koopmanspa
dc.subject.proposalDigestión Anaerobiaspa
dc.subject.proposalRégion d’attractionfra
dc.subject.proposalOpérateur de Koopmanfra
dc.subject.proposalDigestion Anaérobiefra
dc.titleContribution to the computation of regions of attraction of nonlinear systems based on the extended dynamic mode decomposition - Application to the anaerobic digestioneng
dc.title.translatedContribution to the computation of regions of attraction of nonlinear systems based on the extended dynamic mode decomposition - Application to the anaerobic digestioneng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColciencias - Colfuturospa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020722818.2021.pdf
Tamaño:
5.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Documento de Tesis

Bloque de licencias

Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
U.FT.09.006.004 Licencia y autorización para publicación de obras en el repositorio institucional UN v3.pdf
Tamaño:
221.3 KB
Formato:
Adobe Portable Document Format
Descripción: