Simulación y diseño de celdas solares basadas en semiconductores InxGa1-xN y Si
| dc.contributor.advisor | Bernal Correa, Roberto | |
| dc.contributor.advisor | Restrepo-Parra, Elisabeth | |
| dc.contributor.author | Pachón Pacheco, Cristian Elías | |
| dc.contributor.researchgroup | PCM | spa |
| dc.date.accessioned | 2021-11-09T14:58:10Z | |
| dc.date.available | 2021-11-09T14:58:10Z | |
| dc.date.issued | 2021 | |
| dc.description | tablas | spa |
| dc.description.abstract | En el presente trabajo se realiza un estudio computacional de celdas solares, utilizando uniones In x Ga 1-x N - In x Ga 1-x N, heterouniones In x Ga 1-x N - Si y celdas tándem de dos y cuatro terminales In x Ga 1-x N / Si e In x Ga 1-x N // Si). Se investiga la influencia de la estequiometría y espesor sobre el rendimiento de las celdas, con el objetivo de determinar valores óptimos que elevan la eficiencia de los dispositivos, teniendo presente consideraciones relevantes para su posible implementación experimental. Para llevarlo a cabo, se utilizan ecuaciones de la física de junturas de celdas solares y se construye un algoritmo para calcularlas. En el estudio de las uniones se observa, que a pesar de que el espesor de la capa base tiene una mayor influencia en la eficiencia de la celda, el espesor del emisor también puede influir sobre la eficiencia producida. De manera que los espesores de ambas capas son relevantes en el diseño de celdas solares. Además, los resultados indican un nivel de independencia de la estequiometría del emisor, lo cual puede ser aprovechado para reducir el desajuste de red en la unión de los materiales. Con base en los resultados obtenidos, se propone la juntura In 0.3 Ga 0.7 N - In 0.6 Ga 0.4 N espesores: 0.016 μm y 0.963 μm) y la heterounión GaN - Si (espesores: 60 nm y 100 μm). Diseños de celda óptimos, con eficiencias de 25% y 22%, respectivamente. La optimización de las celdas tándem, se centró en el ajuste de la capa In x Ga 1-x N de la subcelda superior. La celda de dos terminales, evidenció una relación inversa entre espesor y estequiometría y arrojó un máximo de eficiencia de 36.3% (espesor de 1 μm y estequiometría de 0.48). La celda de cuatro terminales, logró una eficiencia máxima de 37.6% (espesor de 1 μm y estequiometría de 0.32) y eficiencias superiores a 30%, para diferentes valores estequiométricos. Con base en los resultados, se plantean buenas las perspectivas una vez mejore la síntesis del In x Ga 1-x N y las dificultades experimentales asociadas. (Texto tomado de la fuente) | spa |
| dc.description.abstract | In the present work a computational study of solar cells is carried out, using InxGa1-xN - InxGa1-xN junctions, InxGa1-xN-Si heterojunctions and two and four terminal tandem cells (InxGa1-xN/Si and InxGa1-xN//Si). The influence of the stoichiometry and thickness on the performance of the cells is investigated, with the aim of determining optimal values that increase the efficiency of the devices, bearing in mind relevant considerations for their possible experimental implementation. To do this, equations from the physics of solar cell junctions are used and an algorithm is built to calculate them. In the study of junctions it is observed that despite the fact that the thickness of the base layer has a greater influence on the efficiency of the cell, the thickness of the emitter layer can also influence the efficiency produced. So the thicknesses of both layers are relevant in solar cell design. In addition, the results indicate a level of independence of the stoichiometry of the emitter, which can be used to reduce the network mismatch in the union of the materials. Based on the results obtained, the In0.3Ga0.7N-In0.6Ga0.4N junction (thicknesses: 0.016 μm and 0.963 μm) and the GaNSi heterojunction (thicknesses: 60 nm and 100 μm) are proposed. Optimal cell designs, with efficiencies of 25% and 22%, respectively. The optimization of the tandem cells focused on the adjustment of the InxGa1-xN layer of the upper subcell. The two-terminal cell showed an inverse relationship between thickness and stoichiometry and yielded a maximum efficiency of 36.3% (thickness of 1 μm and stoichiometry of 0.48). The four-terminal cell achieved a maximum efficiency of 37.6% (thickness of 1 μm and stoichiometry of 0.32) and efficiencies greater than 30%, for different stoichiometric values. Based on the results, the prospects are good once the synthesis of InxGa1-xN has been improved and the associated experimental difficulties. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ciencias - Física | spa |
| dc.description.researcharea | Energía solar | spa |
| dc.description.technicalinfo | El trabajo se basa en el uso de las ecuaciones de la física de celdas solares, según modelos construidos por diferentes autores | spa |
| dc.format.extent | xii, 73 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80669 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
| dc.publisher.department | Departamento de Física y Química | spa |
| dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales | spa |
| dc.publisher.place | Manizales, Colombia | spa |
| dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física | spa |
| dc.relation.references | A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present State of the Art and Important Challenges,” IEEE J. Photovoltaics, vol. 2, no. 3, pp. 276–293, Jul. 2012, doi: 10.1109/JPHOTOV.2012.2193384. | eng |
| dc.relation.references | Y. L. Hu et al., “Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells,” Appl. Phys. Lett., vol. 100, no. 16, p. 161101, Apr. 2012, doi: 10.1063/1.4704189. | eng |
| dc.relation.references | J. W. Shon, J. Ohta, K. Ueno, A. Kobayashi, and H. Fujioka, “Fabrication of full-color InGaN-based light-emitting diodes on amorphous substrates by pulsed sputtering,” Sci. Rep., vol. 4, no. 1, pp. 1–4, Jun. 2014, doi: 10.1038/srep05325. | eng |
| dc.relation.references | N. Horiuchi, “Light-emitting diodes: Natural white light,” Nat. Photonics, vol. 4, no. 11, p. 738, 2010, doi: 10.1038/nphoton.2010.244. | eng |
| dc.relation.references | L. A. Vilbois, A. Cheknane, A. Bensaoula, C. Boney, and T. Benouaz, “Simulation of a solar cell based on InGaN,” Energy Procedia, vol. 18, pp. 795–806, Jan. 2012, doi: 10.1016/J.EGYPRO.2012.05.095. | eng |
| dc.relation.references | J. Wu et al., “Superior radiation resistance of In 1-xGa xN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys., vol. 94, no. 10, pp. 6477–6482, Nov. 2003, doi: 10.1063/1.1618353. | eng |
| dc.relation.references | A. Y. Polyakov, S. J. Pearton, P. Frenzer, F. Ren, L. Liu, and J. Kim, “Radiation effects in GaN materials and devices,” J. Mater. Chem. C, vol. 1, no. 5, pp. 877–887, Feb. 2013, doi: 10.1039/c2tc00039c. | eng |
| dc.relation.references | C. A. M. Fabien and W. A. Doolittle, “Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells,” Sol. Energy Mater. Sol. Cells, vol. 130, pp. 354–363, Nov. 2014, doi: 10.1016/j.solmat.2014.07.018. | eng |
| dc.relation.references | J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys., vol. 106, no. 1, p. 011101, Jul. 2009, doi: 10.1063/1.3155798. | eng |
| dc.relation.references | O. Jani et al., “EFFECT OF PHASE SEPARATION ON PERFORMANCE OF III-V NITRIDE SOLAR CELLS,” Accessed: Feb. 21, 2021. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.533.6822. | eng |
| dc.relation.references | O. Jani et al., “Optimization of GaN window layer for InGaN solar cells using polarization effect,” 2008, doi: 10.1109/PVSC.2008.4922725. | eng |
| dc.relation.references | P. Misra, C. Boney, N. Medelci, D. Starikov, A. Freundlich, and A. Bensaoula, “Fabrication and characterization of 2.3eV InGaN photovoltaic devices,” 2008, doi: 10.1109/PVSC.2008.4922693. | eng |
| dc.relation.references | K. Hestroffer, C. Lund, H. Li, S. Keller, J. S. Speck, and U. K. Mishra, “Plasma-assisted molecular beam epitaxy growth diagram of InGaN on (0001)GaN for the optimized synthesis of InGaN compositional grades,” Phys. status solidi, vol. 253, no. 4, pp. 626–629, Apr. 2016, doi: 10.1002/pssb.201552550. | eng |
| dc.relation.references | E. Vadiee et al., “InGaN solar cells with regrown GaN homojunction tunnel contacts,” Appl. Phys. Express, vol. 11, no. 8, p. 082304, Aug. 2018, doi: 10.7567/APEX.11.082304. | eng |
| dc.relation.references | R. H. Horng et al., “Improved conversion efficiency of GaN/InGaN thin-film solar cells,” IEEE Electron Device Lett., vol. 30, no. 7, pp. 724–726, 2009, doi: 10.1109/LED.2009.2021414. | eng |
| dc.relation.references | Y. Kuwahara, T. Fujii, and Y. Fujiyama, “GaInN-Based Solar Cells Using Strained-Layer GaInN/GaInN Superlattice Active Layer on a Freestanding GaN Substrate,” Appl. Phys. Express, vol. 4, p. 21001, 2011, doi: 10.1143/APEX.4.021001. | eng |
| dc.relation.references | C. Jiang et al., “Enhanced Solar Cell Conversion Efficiency of InGaN/GaN Multiple Quantum Wells by Piezo-Phototronic Effect,” ACS Nano, vol. 11, no. 9, pp. 9405–9412, Sep. 2017, doi: 10.1021/acsnano.7b04935. | eng |
| dc.relation.references | B. K. Ghosh, C. N. J. Weoi, A. Islam, and S. K. Ghosh, “Recent progress in Si hetero-junction solar cell: A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 82. Elsevier Ltd, pp. 1990–2004, Feb. 01, 2018, doi: 10.1016/j.rser.2017.07.022. | eng |
| dc.relation.references | T. T. A. Tuan et al., “Electrical Characterization of RF Reactive Sputtered p–Mg-InxGa1−xN/n–Si Hetero-Junction Diodes without Using Buffer Layer,” Coatings, vol. 9, no. 11, p. 699, Oct. 2019, doi: 10.3390/coatings9110699. | eng |
| dc.relation.references | C. E. Pachón, L. F. Mulcué-Nieto, and E. Restrepo, “Effect of band alignment on the n-InAlN/p-Si heterojunction for solar cells: a numerical study,” Mater. Today Energy, vol. 17, p. 100457, Sep. 2020, doi: 10.1016/j.mtener.2020.100457. | eng |
| dc.relation.references | P. P. Altermatt, “Models for numerical device simulations of crystalline silicon solar cells—a review,” J. Comput. Electron., vol. 10, no. 3, pp. 314–330, Sep. 2011, doi: 10.1007/s10825-011-0367-6. | eng |
| dc.relation.references | A. Benmir and M. S. Aida, “Analytical modeling and simulation of CIGS solar cells,” in Energy Procedia, Jan. 2013, vol. 36, pp. 618–627, doi: 10.1016/j.egypro.2013.07.071. | eng |
| dc.relation.references | Y. H. Khattak et al., “Effect of CZTSe BSF and minority carrier life time on the efficiency enhancement of CZTS kesterite solar cell,” Curr. Appl. Phys., vol. 18, no. 6, pp. 633–641, Jun. 2018, doi: 10.1016/j.cap.2018.03.013. | eng |
| dc.relation.references | N. Amin, K. Sopian, and M. Konagai, “Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness,” Sol. Energy Mater. Sol. Cells, vol. 91, no. 13, pp. 1202–1208, Aug. 2007, doi: 10.1016/j.solmat.2007.04.006. | eng |
| dc.relation.references | F. Liu et al., “Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells,” Appl. Phys. Lett., vol. 104, no. 25, p. 253508, Jun. 2014, doi: 10.1063/1.4885367. | eng |
| dc.relation.references | A. Mesrane, F. Rahmoune, A. Mahrane, and A. Oulebsir, “Design and Simulation of InGaN p - n Junction Solar Cell,” Int. J. Photoenergy, vol. 2015, pp. 1–9, 2015, doi: 10.1155/2015/594858. | eng |
| dc.relation.references | X. Zhang et al., “Simulation of In0.65Ga0.35 N single-junction solar cell,” J. Phys. D. Appl. Phys., vol. 40, no. 23, pp. 7335–7338, Dec. 2007, doi: 10.1088/0022-3727/40/23/013. | eng |
| dc.relation.references | S.-W. Feng, C.-M. Lai, C.-Y. Tsai, Y.-R. Su, and L.-W. Tu, “Modeling of InGaN p-n junction solar cells,” Opt. Mater. Express, vol. 3, no. 10, p. 1777, Oct. 2013, doi: 10.1364/OME.3.001777. | eng |
| dc.relation.references | L. Hsu and W. Walukiewicz, “Modeling of InGaN/Si tandem solar cells,” J. Appl. Phys., vol. 104, no. 2, p. 024507, Jul. 2008, doi: 10.1063/1.2952031. | eng |
| dc.relation.references | J. Li et al., “Theoretical study on In x Ga 1-x N/Si hetero-junction solar cells,” in Thin Film Solar Technology, Aug. 2009, vol. 7409, p. 740910, doi: 10.1117/12.826088. | eng |
| dc.relation.references | M. Benaicha, L. Dehimi, and N. Sengouga, “Simulation of double junction In0:46Ga0:54N/Si tandem solar cell,” J. Semicond., vol. 38, no. 4, 2017, doi: 10.1088/1674-4926/38/4/044002. | eng |
| dc.relation.references | F. Bouzid and L. Hamlaoui, “Investigation of InGaN/Si double junction tandem solar cells,” J. Fundam. Appl. Sci., vol. 4, no. 2, p. 108, Sep. 2015, doi: 10.4314/jfas.v4i2.1. | eng |
| dc.relation.references | J. W. Ager et al., “InGaN/Si heterojunction tandem solar cells,” 2008, doi: 10.1109/PVSC.2008.4922663. | eng |
| dc.relation.references | “REN21 - Building the sustainable energy future with renewable energy.” https://www.ren21.net/?gclid=Cj0KCQiApsiBBhCKARIsAN8o_4h5RuNibUdhkVZLnuq0neeBd2lO8u8uoP_WKRFmMXpGn40XWzjEIF8aAi1MEALw_wcB (accessed Feb. 21, 2021). | eng |
| dc.relation.references | W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510–519, Mar. 1961, doi: 10.1063/1.1736034. | eng |
| dc.relation.references | P. J. Ribeyron, “Crystalline silicon solar cells: Better than ever,” Nature Energy, vol. 2, no. 5. Nature Publishing Group, pp. 1–2, Mar. 27, 2017, doi: 10.1038/nenergy.2017.67. | eng |
| dc.relation.references | M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 51),” Prog. Photovoltaics Res. Appl., vol. 26, no. 1, pp. 3–12, Jan. 2018, doi: 10.1002/pip.2978. | eng |
| dc.relation.references | W. Walukiewicz et al., “Structure and electronic properties of InN and In-rich group III-nitride alloys,” Journal of Physics D: Applied Physics, vol. 39, no. 5. pp. R83–R99, Mar. 07, 2006, doi: 10.1088/0022-3727/39/5/R01. | eng |
| dc.relation.references | A. Yamamoto, M. R. Islam, T.-T. Kang, and A. Hashimoto, “Recent advances in InN-based solar cells: status and challenges in InGaN and InAlN solar cells,” Phys. status solidi, vol. 7, no. 5, pp. 1309–1316, Mar. 2010, doi: 10.1002/pssc.200983106. | eng |
| dc.relation.references | C. Voyant et al., “Machine learning methods for solar radiation forecasting: A review,” Renewable Energy, vol. 105. Elsevier Ltd, pp. 569–582, May 01, 2017, doi: 10.1016/j.renene.2016.12.095. | eng |
| dc.relation.references | S. J. Fonash, Solar cell device physics. Academic Press/Elsevier, 2010. | eng |
| dc.relation.references | R. D. SORKIN, “QUANTUM MECHANICS AS QUANTUM MEASURE THEORY,” Mod. Phys. Lett. A, vol. 09, no. 33, pp. 3119–3127, Oct. 1994, doi: 10.1142/s021773239400294x. | eng |
| dc.relation.references | B. Y. H. Liu and R. C. Jordan, “The interrelationship and characteristic distribution of direct, diffuse and total solar radiation,” Sol. Energy, vol. 4, no. 3, pp. 1–19, Jul. 1960, doi: 10.1016/0038-092X(60)90062-1. | eng |
| dc.relation.references | S. Seme, G. Štumberger, and J. Voršič, “Maximum efficiency trajectories of a two-axis sun tracking system determined considering tracking system consumption,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1280–1290, 2011, doi: 10.1109/TPEL.2011.2105506. | eng |
| dc.relation.references | H. D. Curtis, Orbital Mechanics for Engineering Students. Elsevier Ltd, 2013. | eng |
| dc.relation.references | “ASTM G173 - 03(2020) Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface.” https://www.astm.org/Standards/G173.htm (accessed Feb. 21, 2021). | eng |
| dc.relation.references | R. Hoheisel, D. Wilt, D. Scheiman, P. Jenkins, and R. Walters, “AM0 solar cell calibration under near space conditions,” in 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014, Oct. 2014, pp. 1811–1814, doi: 10.1109/PVSC.2014.6925274. | eng |
| dc.relation.references | M. A. Green, “Limiting photovoltaic efficiency under new ASTM International G173-based reference spectra,” Prog. Photovoltaics Res. Appl., vol. 20, no. 8, pp. 954–959, Dec. 2012, doi: 10.1002/pip.1156. | eng |
| dc.relation.references | H. Fischler and M. Lichtfeldt, “Modern physics and students’ conceptions,” Int. J. Sci. Educ., vol. 14, no. 2, pp. 181–190, 1992, doi: 10.1080/0950069920140206. | eng |
| dc.relation.references | P. M. ; G. Fishbane, Physics : for Scientists and Engineers with Modern Physics, 3rd ed. NJ: Prentice-Hall, 2005. | eng |
| dc.relation.references | C. Kittel, Introduction to Solid State Physics Wiley, 8th ed., vol. 1. 2004. | eng |
| dc.relation.references | J. D. Patterson and B. C. Bailey, Solid state physics: Introduction to the theory. Springer Berlin Heidelberg, 2009. | eng |
| dc.relation.references | Kittel and C, “Introduction to solid state physics. Fifth edition.” 1976. | eng |
| dc.relation.references | Ian Mathews, “High-Efficiency Photovoltaics through Mechanically Stacked Integration of Solar Cells based on the InP Lattice Constant,” National University of Ireland, Cork, 2014. | eng |
| dc.relation.references | R. L. Anderson, “Germanium-Gallium Arsenide Heterojunctions,” IBM J. Res. Dev., vol. 4, no. 3, pp. 283–287, Apr. 1960, doi: 10.1147/rd.43.0283. | eng |
| dc.relation.references | A. Luque and S. Hegedus, “Handbook of Photovoltaic Science and Engineering.” Accessed: Feb. 21, 2021. [Online]. Available: www.wileyeurope.com. | eng |
| dc.relation.references | J. F. Muth et al., “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett., vol. 71, no. 18, pp. 2572–2574, Nov. 1997, doi: 10.1063/1.120191. | eng |
| dc.relation.references | S. Michael, A. D. Bates, and M. S. Green, “Silvaco atlas as a solar cell modeling tool,” in Conference Record of the IEEE Photovoltaic Specialists Conference, 2005, pp. 719–721, doi: 10.1109/pvsc.2005.1488232. | eng |
| dc.relation.references | S. Michael, A. D. Bates, and M. S. Green, “Silvaco ATLAS as a solar cell modeling tool,” in Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005., pp. 719–721, doi: 10.1109/PVSC.2005.1488232. | eng |
| dc.relation.references | G. F. Brown, J. W. Ager, W. Walukiewicz, and J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” Sol. Energy Mater. Sol. Cells, vol. 94, no. 3, pp. 478–483, Mar. 2010, doi: 10.1016/J.SOLMAT.2009.11.010. | eng |
| dc.relation.references | Z. Z. Bandić, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Values of minority carrier diffusion lengths and lifetimes in GaN and their implications for bipolar devices,” Solid. State. Electron., vol. 44, no. 2, pp. 221–228, Feb. 2000, doi: 10.1016/S0038-1101(99)00227-0. | eng |
| dc.relation.references | F. Chen, A. N. Cartwright, H. Lu, and W. J. Schaff, “Hole transport and carrier lifetime in InN epilayers,” Appl. Phys. Lett., vol. 87, no. 21, pp. 1–3, Nov. 2005, doi: 10.1063/1.2133892. | eng |
| dc.relation.references | D. Benmoussa, H. Benslimane, and H. Abderrachid, “Simulation of In0.52Ga0.48N solar cell using AMPS-1D,” in Proceedings of 2013 International Renewable and Sustainable Energy Conference, IRSEC 2013, Jan. 2013, pp. 23–26, doi: 10.1109/IRSEC.2013.6529713. | eng |
| dc.relation.references | U. K. Kumawat, K. Kumar, P. Bhardwaj, and A. Dhawan, “Indium‐rich InGaN/GaN solar cells with improved performance due to plasmonic and dielectric nanogratings,” Energy Sci. Eng., vol. 7, no. 6, pp. 2469–2482, Dec. 2019, doi: 10.1002/ese3.436. | eng |
| dc.relation.references | M. Farahmand et al., “Monte Carlo simulation of electron transport in the III-nitride Wurtzite phase materials system: Binaries and ternaries,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 535–542, 2001, doi: 10.1109/16.906448. | eng |
| dc.relation.references | P. T. Landsberg, “Einstein and statistical thermodynamics. III. the diffusion-mobility relation in semiconductors,” Eur. J. Phys., vol. 2, no. 4, pp. 213–219, Oct. 1981, doi: 10.1088/0143-0807/2/4/005. | eng |
| dc.relation.references | S. W. Feng, C. M. Lai, C. Y. Tsai, and L. W. Tu, “Numerical simulations of the current-matching effect and operation mechanisms on the performance of InGaN/Si tandem cells,” Nanoscale Res. Lett., vol. 9, no. 1, 2014, doi: 10.1186/1556-276X-9-652. | eng |
| dc.relation.references | B. J. Van Zeghbroeck, Principles of Semiconductor Devices. University of Colorado, 2007. | eng |
| dc.relation.references | “NSM Archive - Band structure and carrier concentration of Silicon (Si).” http://www.ioffe.ru/SVA/NSM/Semicond/Si/bandstr.html#Masses (accessed Jun. 16, 2018). | eng |
| dc.relation.references | M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells, vol. 92, no. 11, pp. 1305–1310, Nov. 2008, doi: 10.1016/j.solmat.2008.06.009. | eng |
| dc.relation.references | A. Acevedo-Luna, R. Bernal-Correa, J. Montes-Monsalve, and A. Morales-Acevedo, “Design of thin film solar cells based on a unified simple analytical model,” J. Appl. Res. Technol., vol. 15, no. 6, pp. 599–608, Dec. 2017, doi: 10.1016/j.jart.2017.08.002. | eng |
| dc.relation.references | L. Kosyachenko, “Efficiency of Thin-Film CdS/CdTe Solar Cells,” Ukraine: Chernivtsi National University. | eng |
| dc.relation.references | S. Torres Jaramillo, “Diseño óptico y eléctrico de celdas solares basadas en CuInGaSe (CIGS),” Universidad Nacional de Colombia, Manizales, 2018. | spa |
| dc.relation.references | J. Nelson, The Physics of Solar Cells. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2003. | eng |
| dc.relation.references | M. Lundstrom, “Notes on Heterostructure Fundamentals,” West Lafayette: Purdue University, 1995, pp. 1–43. | eng |
| dc.relation.references | S. Torres-Jaramillo, R. Bernal-Correa, and A. Morales-Acevedo, “Improved design of InGaP/GaAs//Si tandem solar cells,” EPJ Photovoltaics, vol. 12, p. 1, Feb. 2021, doi: 10.1051/epjpv/2021001. | eng |
| dc.relation.references | T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” in Solar Energy Materials and Solar Cells, Jan. 2011, vol. 95, no. 1, pp. 18–21, doi: 10.1016/j.solmat.2010.04.030. | eng |
| dc.relation.references | M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (Version 55),” Prog. Photovoltaics Res. Appl., vol. 28, no. 1, pp. 3–15, Jan. 2020, doi: 10.1002/pip.3228. | eng |
| dc.relation.references | M. Thosar, “Modeling For High Efficiency GaN/InGaN Solar Cell,” IOSR J. Electr. Electron. Eng., vol. 4, no. 1, pp. 1–4, 2013, doi: 10.9790/1676-0410104. | eng |
| dc.relation.references | O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaNInGaN solar cells,” Appl. Phys. Lett., vol. 91, no. 13, p. 132117, Sep. 2007, doi: 10.1063/1.2793180. | eng |
| dc.relation.references | M. Ferhat and F. Bechstedt, “First-principles calculations of gap bowing in InGaN and InAlN alloys: Relation to structural and thermodynamic properties,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 65, no. 7, pp. 1–7, Feb. 2002, doi: 10.1103/PhysRevB.65.075213. | eng |
| dc.relation.references | S. A. Kazazis, E. Papadomanolaki, and E. Iliopoulos, “Polarization-engineered InGaN/GaN solar cells: Realistic expectations for single heterojunctions,” IEEE J. Photovoltaics, vol. 8, no. 1, pp. 118–124, Jan. 2018, doi: 10.1109/JPHOTOV.2017.2775164. | eng |
| dc.relation.references | C. A. Hernández-Gutiérrez, A. Morales-Acevedo, D. Cardona, G. Contreras-Puente, and M. López-López, “Analysis of the performance of InxGa1−xN based solar cells,” SN Appl. Sci., vol. 1, no. 6, pp. 1–7, Jun. 2019, doi: 10.1007/s42452-019-0650-x. | eng |
| dc.relation.references | H. Kanie, N. Tsukamoto, H. Koami, T. Kawano, and T. Totsuka, “Localized luminescence centers of InGaN,” J. Cryst. Growth, vol. 189–190, pp. 52–56, Jun. 1998, doi: 10.1016/S0022-0248(98)00155-9. | eng |
| dc.relation.references | J. Liu et al., “Indium Incorporation Induced Morphological Evolution and Strain Relaxation of High Indium Content InGaN Epilayers Grown by Metal-Organic Chemical Vapor Deposition,” Cryst. Growth Des., vol. 17, no. 6, pp. 3411–3418, Jun. 2017, doi: 10.1021/acs.cgd.7b00365. | eng |
| dc.relation.references | S. Valdueza-Felip et al., “P-i-n InGaN homojunctions (10–40% In) synthesized by plasma-assisted molecular beam epitaxy with extended photoresponse to 600 nm,” Sol. Energy Mater. Sol. Cells, vol. 160, pp. 355–360, Feb. 2017, doi: 10.1016/j.solmat.2016.10.007. | eng |
| dc.relation.references | B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Evolution of phase separation in In-rich InGaN alloys,” Appl. Phys. Lett., vol. 96, no. 23, p. 232105, Jun. 2010, doi: 10.1063/1.3453563. | eng |
| dc.relation.references | W.-C. Tsai et al., “Optical properties associated with strain relaxations in thick InGaN epitaxial films,” Opt. Express, vol. 22, no. S2, p. A416, Mar. 2014, doi: 10.1364/oe.22.00a416. | eng |
| dc.relation.references | B. Sheng et al., “Intensive luminescence from a thick, indium-rich In0.7Ga0.3N film,” Jpn. J. Appl. Phys., vol. 58, no. 6, p. 065503, May 2019, doi: 10.7567/1347-4065/ab1a5b. | eng |
| dc.relation.references | L. Sang et al., “Phase separation resulting from mg doping in p-InGaN Film grown on GaN/sapphire template,” Appl. Phys. Express, vol. 3, no. 11, p. 111004, Nov. 2010, doi: 10.1143/APEX.3.111004. | eng |
| dc.relation.references | I. Gherasoiu, K. M. Yu, L. A. Reichertz, and W. Walukiewicz, “InGaN doping for high carrier concentration in plasma-assisted molecular beam epitaxy,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 11, no. 3–4, pp. 381–384, 2014, doi: 10.1002/pssc.201300460. | eng |
| dc.relation.references | “Champion Photovoltaic Module Efficiency Chart | Photovoltaic Research | NREL.” https://www.nrel.gov/pv/module-efficiency.html (accessed Feb. 22, 2021). | eng |
| dc.relation.references | K. M. A. Saron, M. R. Hashim, N. Naderi, and N. K. Allam, “Interface properties determined the performance of thermally grown GaN/Si heterojunction solar cells,” Sol. Energy, vol. 98, no. PC, pp. 485–491, Dec. 2013, doi: 10.1016/j.solener.2013.09.028. | eng |
| dc.relation.references | M. Khoury, O. Tottereau, G. Feuillet, P. Vennéguès, and J. Zúñiga-Pérez, “Evolution and prevention of meltback etching: Case study of semipolar GaN growth on patterned silicon substrates,” J. Appl. Phys., vol. 122, no. 10, p. 105108, Sep. 2017, doi: 10.1063/1.5001914. | eng |
| dc.relation.references | R. Mantach et al., “Semipolar (10-11) GaN growth on silicon-on-insulator substrates: Defect reduction and meltback etching suppression,” J. Appl. Phys., vol. 125, no. 3, p. 035703, Jan. 2019, doi: 10.1063/1.5067375. | eng |
| dc.relation.references | J. W. Ager et al., “Electrical properties of InGaN-Si heterojunctions,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 6, no. SUPPL. 2, Jul. 2009, doi: 10.1002/pssc.200880967. | eng |
| dc.relation.references | K. M. A. Saron, M. R. Hashim, M. Ibrahim, M. Yahyaoui, and N. K. Allam, “Temperature-dependent transport properties of CVD-fabricated n-GaN nanorods/p-Si heterojunction devices,” RSC Adv., vol. 10, no. 55, pp. 33526–33533, Sep. 2020, doi: 10.1039/d0ra05973k. | eng |
| dc.relation.references | “PVEducation.” https://www.pveducation.org/ (accessed Feb. 22, 2021). | eng |
| dc.relation.references | “Electrical properties of Silicon (Si).” http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html (accessed Jul. 03, 2021). | eng |
| dc.relation.references | K. J. Chen et al., “GaN-on-Si power technology: Devices and applications,” IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 779–795, Mar. 2017, doi: 10.1109/TED.2017.2657579. | eng |
| dc.relation.references | A. Dadgar, “Sixteen years GaN on Si,” Phys. Status Solidi Basic Res., vol. 252, no. 5, pp. 1063–1068, May 2015, doi: 10.1002/pssb.201451656. | eng |
| dc.relation.references | J. W. Yang et al., “High quality GaN-InGaN heterostructures grown on (111) silicon substrates,” Appl. Phys. Lett., vol. 69, no. 23, pp. 3566–3568, Dec. 1996, doi: 10.1063/1.117247. | eng |
| dc.relation.references | A. Krost and A. Dadgar, “GaN-based optoelectronics on silicon substrates,” in Materials Science and Engineering B: Solid-State Materials for Advanced Technology, May 2002, vol. 93, no. 1–3, pp. 77–84, doi: 10.1016/S0921-5107(02)00043-0. | eng |
| dc.relation.references | D. Zhu, D. J. Wallis, and C. J. Humphreys, “Prospects of III-nitride optoelectronics grown on Si,” Reports Prog. Phys., vol. 76, no. 10, Oct. 2013, doi: 10.1088/0034-4885/76/10/106501. | eng |
| dc.relation.references | N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, and M. Yamaguchi, “Growth and properties of semi-polar GaN on a patterned silicon substrate,” J. Cryst. Growth, vol. 311, no. 10, pp. 2867–2874, May 2009, doi: 10.1016/j.jcrysgro.2009.01.032. | eng |
| dc.relation.references | M. Jamil, J. R. Grandusky, V. Jindal, F. Shahedipour-Sandvik, S. Guha, and M. Arif, “Development of strain reduced GaN on Si (111) by substrate engineering,” Appl. Phys. Lett., vol. 87, no. 8, Aug. 2005, doi: 10.1063/1.2012538. | eng |
| dc.relation.references | M. Jamil, J. R. Grandusky, V. Jindal, N. Tripathi, and F. Shahedipour-Sandvik, “Mechanism of large area dislocation defect reduction in GaN layers on AlNSi (111) by substrate engineering,” J. Appl. Phys., vol. 102, no. 2, 2007, doi: 10.1063/1.2753706. | eng |
| dc.relation.references | H. Ishikawa, G. Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno, “GaN on Si Substrate with AlGaN/AlN Intermediate Layer,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., vol. 38, no. 5 PART 2, pp. 492–494, May 1999, doi: 10.1143/jjap.38.l492. | eng |
| dc.relation.references | J. H. Yang, S. M. Kang, D. V. Dinh, and D. H. Yoon, “Influence of AlN buffer layer thickness and deposition methods on GaN epitaxial growth,” Thin Solid Films, vol. 517, no. 17, pp. 5057–5060, Jul. 2009, doi: 10.1016/j.tsf.2009.03.089. | eng |
| dc.relation.references | Y. Feng et al., “Epitaxy of Single-Crystalline GaN Film on CMOS-Compatible Si(100) Substrate Buffered by Graphene,” Adv. Funct. Mater., vol. 29, no. 42, Oct. 2019, doi: 10.1002/adfm.201905056. | eng |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Reconocimiento 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
| dc.subject.ddc | 530 - Física | spa |
| dc.subject.lemb | Sistemas de energía fotovoltaica | |
| dc.subject.proposal | Celda solar | spa |
| dc.subject.proposal | InxGa1-xN | spa |
| dc.subject.proposal | Heterounión | spa |
| dc.subject.proposal | Tándem | spa |
| dc.subject.proposal | Solar cell | eng |
| dc.subject.proposal | Heterojunction | eng |
| dc.subject.unesco | Solar energy | eng |
| dc.title | Simulación y diseño de celdas solares basadas en semiconductores InxGa1-xN y Si | spa |
| dc.title.translated | Simulation and design of solar cells based on InxGa1-xN and Si semiconductors | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Image | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
| oaire.awardtitle | Simulación y diseño de celdas solares basadas en semiconductores InGaN y Si | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1121902562.2021.pdf
- Tamaño:
- 2.3 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

