En 6 día(s), 20 hora(s) y 17 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Simulación y diseño de celdas solares basadas en semiconductores InxGa1-xN y Si

dc.contributor.advisorBernal Correa, Roberto
dc.contributor.advisorRestrepo-Parra, Elisabeth
dc.contributor.authorPachón Pacheco, Cristian Elías
dc.contributor.researchgroupPCMspa
dc.date.accessioned2021-11-09T14:58:10Z
dc.date.available2021-11-09T14:58:10Z
dc.date.issued2021
dc.descriptiontablasspa
dc.description.abstractEn el presente trabajo se realiza un estudio computacional de celdas solares, utilizando uniones In x Ga 1-x N - In x Ga 1-x N, heterouniones In x Ga 1-x N - Si y celdas tándem de dos y cuatro terminales In x Ga 1-x N / Si e In x Ga 1-x N // Si). Se investiga la influencia de la estequiometría y espesor sobre el rendimiento de las celdas, con el objetivo de determinar valores óptimos que elevan la eficiencia de los dispositivos, teniendo presente consideraciones relevantes para su posible implementación experimental. Para llevarlo a cabo, se utilizan ecuaciones de la física de junturas de celdas solares y se construye un algoritmo para calcularlas. En el estudio de las uniones se observa, que a pesar de que el espesor de la capa base tiene una mayor influencia en la eficiencia de la celda, el espesor del emisor también puede influir sobre la eficiencia producida. De manera que los espesores de ambas capas son relevantes en el diseño de celdas solares. Además, los resultados indican un nivel de independencia de la estequiometría del emisor, lo cual puede ser aprovechado para reducir el desajuste de red en la unión de los materiales. Con base en los resultados obtenidos, se propone la juntura In 0.3 Ga 0.7 N - In 0.6 Ga 0.4 N espesores: 0.016 μm y 0.963 μm) y la heterounión GaN - Si (espesores: 60 nm y 100 μm). Diseños de celda óptimos, con eficiencias de 25% y 22%, respectivamente. La optimización de las celdas tándem, se centró en el ajuste de la capa In x Ga 1-x N de la subcelda superior. La celda de dos terminales, evidenció una relación inversa entre espesor y estequiometría y arrojó un máximo de eficiencia de 36.3% (espesor de 1 μm y estequiometría de 0.48). La celda de cuatro terminales, logró una eficiencia máxima de 37.6% (espesor de 1 μm y estequiometría de 0.32) y eficiencias superiores a 30%, para diferentes valores estequiométricos. Con base en los resultados, se plantean buenas las perspectivas una vez mejore la síntesis del In x Ga 1-x N y las dificultades experimentales asociadas. (Texto tomado de la fuente)spa
dc.description.abstractIn the present work a computational study of solar cells is carried out, using InxGa1-xN - InxGa1-xN junctions, InxGa1-xN-Si heterojunctions and two and four terminal tandem cells (InxGa1-xN/Si and InxGa1-xN//Si). The influence of the stoichiometry and thickness on the performance of the cells is investigated, with the aim of determining optimal values that increase the efficiency of the devices, bearing in mind relevant considerations for their possible experimental implementation. To do this, equations from the physics of solar cell junctions are used and an algorithm is built to calculate them. In the study of junctions it is observed that despite the fact that the thickness of the base layer has a greater influence on the efficiency of the cell, the thickness of the emitter layer can also influence the efficiency produced. So the thicknesses of both layers are relevant in solar cell design. In addition, the results indicate a level of independence of the stoichiometry of the emitter, which can be used to reduce the network mismatch in the union of the materials. Based on the results obtained, the In0.3Ga0.7N-In0.6Ga0.4N junction (thicknesses: 0.016 μm and 0.963 μm) and the GaNSi heterojunction (thicknesses: 60 nm and 100 μm) are proposed. Optimal cell designs, with efficiencies of 25% and 22%, respectively. The optimization of the tandem cells focused on the adjustment of the InxGa1-xN layer of the upper subcell. The two-terminal cell showed an inverse relationship between thickness and stoichiometry and yielded a maximum efficiency of 36.3% (thickness of 1 μm and stoichiometry of 0.48). The four-terminal cell achieved a maximum efficiency of 37.6% (thickness of 1 μm and stoichiometry of 0.32) and efficiencies greater than 30%, for different stoichiometric values. Based on the results, the prospects are good once the synthesis of InxGa1-xN has been improved and the associated experimental difficulties.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaEnergía solarspa
dc.description.technicalinfoEl trabajo se basa en el uso de las ecuaciones de la física de celdas solares, según modelos construidos por diferentes autoresspa
dc.format.extentxii, 73 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80669
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Física y Químicaspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesA. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present State of the Art and Important Challenges,” IEEE J. Photovoltaics, vol. 2, no. 3, pp. 276–293, Jul. 2012, doi: 10.1109/JPHOTOV.2012.2193384.eng
dc.relation.referencesY. L. Hu et al., “Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells,” Appl. Phys. Lett., vol. 100, no. 16, p. 161101, Apr. 2012, doi: 10.1063/1.4704189.eng
dc.relation.referencesJ. W. Shon, J. Ohta, K. Ueno, A. Kobayashi, and H. Fujioka, “Fabrication of full-color InGaN-based light-emitting diodes on amorphous substrates by pulsed sputtering,” Sci. Rep., vol. 4, no. 1, pp. 1–4, Jun. 2014, doi: 10.1038/srep05325.eng
dc.relation.referencesN. Horiuchi, “Light-emitting diodes: Natural white light,” Nat. Photonics, vol. 4, no. 11, p. 738, 2010, doi: 10.1038/nphoton.2010.244.eng
dc.relation.referencesL. A. Vilbois, A. Cheknane, A. Bensaoula, C. Boney, and T. Benouaz, “Simulation of a solar cell based on InGaN,” Energy Procedia, vol. 18, pp. 795–806, Jan. 2012, doi: 10.1016/J.EGYPRO.2012.05.095.eng
dc.relation.referencesJ. Wu et al., “Superior radiation resistance of In 1-xGa xN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys., vol. 94, no. 10, pp. 6477–6482, Nov. 2003, doi: 10.1063/1.1618353.eng
dc.relation.referencesA. Y. Polyakov, S. J. Pearton, P. Frenzer, F. Ren, L. Liu, and J. Kim, “Radiation effects in GaN materials and devices,” J. Mater. Chem. C, vol. 1, no. 5, pp. 877–887, Feb. 2013, doi: 10.1039/c2tc00039c.eng
dc.relation.referencesC. A. M. Fabien and W. A. Doolittle, “Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells,” Sol. Energy Mater. Sol. Cells, vol. 130, pp. 354–363, Nov. 2014, doi: 10.1016/j.solmat.2014.07.018.eng
dc.relation.referencesJ. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys., vol. 106, no. 1, p. 011101, Jul. 2009, doi: 10.1063/1.3155798.eng
dc.relation.referencesO. Jani et al., “EFFECT OF PHASE SEPARATION ON PERFORMANCE OF III-V NITRIDE SOLAR CELLS,” Accessed: Feb. 21, 2021. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.533.6822.eng
dc.relation.referencesO. Jani et al., “Optimization of GaN window layer for InGaN solar cells using polarization effect,” 2008, doi: 10.1109/PVSC.2008.4922725.eng
dc.relation.referencesP. Misra, C. Boney, N. Medelci, D. Starikov, A. Freundlich, and A. Bensaoula, “Fabrication and characterization of 2.3eV InGaN photovoltaic devices,” 2008, doi: 10.1109/PVSC.2008.4922693.eng
dc.relation.referencesK. Hestroffer, C. Lund, H. Li, S. Keller, J. S. Speck, and U. K. Mishra, “Plasma-assisted molecular beam epitaxy growth diagram of InGaN on (0001)GaN for the optimized synthesis of InGaN compositional grades,” Phys. status solidi, vol. 253, no. 4, pp. 626–629, Apr. 2016, doi: 10.1002/pssb.201552550.eng
dc.relation.referencesE. Vadiee et al., “InGaN solar cells with regrown GaN homojunction tunnel contacts,” Appl. Phys. Express, vol. 11, no. 8, p. 082304, Aug. 2018, doi: 10.7567/APEX.11.082304.eng
dc.relation.referencesR. H. Horng et al., “Improved conversion efficiency of GaN/InGaN thin-film solar cells,” IEEE Electron Device Lett., vol. 30, no. 7, pp. 724–726, 2009, doi: 10.1109/LED.2009.2021414.eng
dc.relation.referencesY. Kuwahara, T. Fujii, and Y. Fujiyama, “GaInN-Based Solar Cells Using Strained-Layer GaInN/GaInN Superlattice Active Layer on a Freestanding GaN Substrate,” Appl. Phys. Express, vol. 4, p. 21001, 2011, doi: 10.1143/APEX.4.021001.eng
dc.relation.referencesC. Jiang et al., “Enhanced Solar Cell Conversion Efficiency of InGaN/GaN Multiple Quantum Wells by Piezo-Phototronic Effect,” ACS Nano, vol. 11, no. 9, pp. 9405–9412, Sep. 2017, doi: 10.1021/acsnano.7b04935.eng
dc.relation.referencesB. K. Ghosh, C. N. J. Weoi, A. Islam, and S. K. Ghosh, “Recent progress in Si hetero-junction solar cell: A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 82. Elsevier Ltd, pp. 1990–2004, Feb. 01, 2018, doi: 10.1016/j.rser.2017.07.022.eng
dc.relation.referencesT. T. A. Tuan et al., “Electrical Characterization of RF Reactive Sputtered p–Mg-InxGa1−xN/n–Si Hetero-Junction Diodes without Using Buffer Layer,” Coatings, vol. 9, no. 11, p. 699, Oct. 2019, doi: 10.3390/coatings9110699.eng
dc.relation.referencesC. E. Pachón, L. F. Mulcué-Nieto, and E. Restrepo, “Effect of band alignment on the n-InAlN/p-Si heterojunction for solar cells: a numerical study,” Mater. Today Energy, vol. 17, p. 100457, Sep. 2020, doi: 10.1016/j.mtener.2020.100457.eng
dc.relation.referencesP. P. Altermatt, “Models for numerical device simulations of crystalline silicon solar cells—a review,” J. Comput. Electron., vol. 10, no. 3, pp. 314–330, Sep. 2011, doi: 10.1007/s10825-011-0367-6.eng
dc.relation.referencesA. Benmir and M. S. Aida, “Analytical modeling and simulation of CIGS solar cells,” in Energy Procedia, Jan. 2013, vol. 36, pp. 618–627, doi: 10.1016/j.egypro.2013.07.071.eng
dc.relation.referencesY. H. Khattak et al., “Effect of CZTSe BSF and minority carrier life time on the efficiency enhancement of CZTS kesterite solar cell,” Curr. Appl. Phys., vol. 18, no. 6, pp. 633–641, Jun. 2018, doi: 10.1016/j.cap.2018.03.013.eng
dc.relation.referencesN. Amin, K. Sopian, and M. Konagai, “Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness,” Sol. Energy Mater. Sol. Cells, vol. 91, no. 13, pp. 1202–1208, Aug. 2007, doi: 10.1016/j.solmat.2007.04.006.eng
dc.relation.referencesF. Liu et al., “Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells,” Appl. Phys. Lett., vol. 104, no. 25, p. 253508, Jun. 2014, doi: 10.1063/1.4885367.eng
dc.relation.referencesA. Mesrane, F. Rahmoune, A. Mahrane, and A. Oulebsir, “Design and Simulation of InGaN p - n Junction Solar Cell,” Int. J. Photoenergy, vol. 2015, pp. 1–9, 2015, doi: 10.1155/2015/594858.eng
dc.relation.referencesX. Zhang et al., “Simulation of In0.65Ga0.35 N single-junction solar cell,” J. Phys. D. Appl. Phys., vol. 40, no. 23, pp. 7335–7338, Dec. 2007, doi: 10.1088/0022-3727/40/23/013.eng
dc.relation.referencesS.-W. Feng, C.-M. Lai, C.-Y. Tsai, Y.-R. Su, and L.-W. Tu, “Modeling of InGaN p-n junction solar cells,” Opt. Mater. Express, vol. 3, no. 10, p. 1777, Oct. 2013, doi: 10.1364/OME.3.001777.eng
dc.relation.referencesL. Hsu and W. Walukiewicz, “Modeling of InGaN/Si tandem solar cells,” J. Appl. Phys., vol. 104, no. 2, p. 024507, Jul. 2008, doi: 10.1063/1.2952031.eng
dc.relation.referencesJ. Li et al., “Theoretical study on In x Ga 1-x N/Si hetero-junction solar cells,” in Thin Film Solar Technology, Aug. 2009, vol. 7409, p. 740910, doi: 10.1117/12.826088.eng
dc.relation.referencesM. Benaicha, L. Dehimi, and N. Sengouga, “Simulation of double junction In0:46Ga0:54N/Si tandem solar cell,” J. Semicond., vol. 38, no. 4, 2017, doi: 10.1088/1674-4926/38/4/044002.eng
dc.relation.referencesF. Bouzid and L. Hamlaoui, “Investigation of InGaN/Si double junction tandem solar cells,” J. Fundam. Appl. Sci., vol. 4, no. 2, p. 108, Sep. 2015, doi: 10.4314/jfas.v4i2.1.eng
dc.relation.referencesJ. W. Ager et al., “InGaN/Si heterojunction tandem solar cells,” 2008, doi: 10.1109/PVSC.2008.4922663.eng
dc.relation.references“REN21 - Building the sustainable energy future with renewable energy.” https://www.ren21.net/?gclid=Cj0KCQiApsiBBhCKARIsAN8o_4h5RuNibUdhkVZLnuq0neeBd2lO8u8uoP_WKRFmMXpGn40XWzjEIF8aAi1MEALw_wcB (accessed Feb. 21, 2021).eng
dc.relation.referencesW. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510–519, Mar. 1961, doi: 10.1063/1.1736034.eng
dc.relation.referencesP. J. Ribeyron, “Crystalline silicon solar cells: Better than ever,” Nature Energy, vol. 2, no. 5. Nature Publishing Group, pp. 1–2, Mar. 27, 2017, doi: 10.1038/nenergy.2017.67.eng
dc.relation.referencesM. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 51),” Prog. Photovoltaics Res. Appl., vol. 26, no. 1, pp. 3–12, Jan. 2018, doi: 10.1002/pip.2978.eng
dc.relation.referencesW. Walukiewicz et al., “Structure and electronic properties of InN and In-rich group III-nitride alloys,” Journal of Physics D: Applied Physics, vol. 39, no. 5. pp. R83–R99, Mar. 07, 2006, doi: 10.1088/0022-3727/39/5/R01.eng
dc.relation.referencesA. Yamamoto, M. R. Islam, T.-T. Kang, and A. Hashimoto, “Recent advances in InN-based solar cells: status and challenges in InGaN and InAlN solar cells,” Phys. status solidi, vol. 7, no. 5, pp. 1309–1316, Mar. 2010, doi: 10.1002/pssc.200983106.eng
dc.relation.referencesC. Voyant et al., “Machine learning methods for solar radiation forecasting: A review,” Renewable Energy, vol. 105. Elsevier Ltd, pp. 569–582, May 01, 2017, doi: 10.1016/j.renene.2016.12.095.eng
dc.relation.referencesS. J. Fonash, Solar cell device physics. Academic Press/Elsevier, 2010.eng
dc.relation.referencesR. D. SORKIN, “QUANTUM MECHANICS AS QUANTUM MEASURE THEORY,” Mod. Phys. Lett. A, vol. 09, no. 33, pp. 3119–3127, Oct. 1994, doi: 10.1142/s021773239400294x.eng
dc.relation.referencesB. Y. H. Liu and R. C. Jordan, “The interrelationship and characteristic distribution of direct, diffuse and total solar radiation,” Sol. Energy, vol. 4, no. 3, pp. 1–19, Jul. 1960, doi: 10.1016/0038-092X(60)90062-1.eng
dc.relation.referencesS. Seme, G. Štumberger, and J. Voršič, “Maximum efficiency trajectories of a two-axis sun tracking system determined considering tracking system consumption,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1280–1290, 2011, doi: 10.1109/TPEL.2011.2105506.eng
dc.relation.referencesH. D. Curtis, Orbital Mechanics for Engineering Students. Elsevier Ltd, 2013.eng
dc.relation.references“ASTM G173 - 03(2020) Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface.” https://www.astm.org/Standards/G173.htm (accessed Feb. 21, 2021).eng
dc.relation.referencesR. Hoheisel, D. Wilt, D. Scheiman, P. Jenkins, and R. Walters, “AM0 solar cell calibration under near space conditions,” in 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014, Oct. 2014, pp. 1811–1814, doi: 10.1109/PVSC.2014.6925274.eng
dc.relation.referencesM. A. Green, “Limiting photovoltaic efficiency under new ASTM International G173-based reference spectra,” Prog. Photovoltaics Res. Appl., vol. 20, no. 8, pp. 954–959, Dec. 2012, doi: 10.1002/pip.1156.eng
dc.relation.referencesH. Fischler and M. Lichtfeldt, “Modern physics and students’ conceptions,” Int. J. Sci. Educ., vol. 14, no. 2, pp. 181–190, 1992, doi: 10.1080/0950069920140206.eng
dc.relation.referencesP. M. ; G. Fishbane, Physics : for Scientists and Engineers with Modern Physics, 3rd ed. NJ: Prentice-Hall, 2005.eng
dc.relation.referencesC. Kittel, Introduction to Solid State Physics Wiley, 8th ed., vol. 1. 2004.eng
dc.relation.referencesJ. D. Patterson and B. C. Bailey, Solid state physics: Introduction to the theory. Springer Berlin Heidelberg, 2009.eng
dc.relation.referencesKittel and C, “Introduction to solid state physics. Fifth edition.” 1976.eng
dc.relation.referencesIan Mathews, “High-Efficiency Photovoltaics through Mechanically Stacked Integration of Solar Cells based on the InP Lattice Constant,” National University of Ireland, Cork, 2014.eng
dc.relation.referencesR. L. Anderson, “Germanium-Gallium Arsenide Heterojunctions,” IBM J. Res. Dev., vol. 4, no. 3, pp. 283–287, Apr. 1960, doi: 10.1147/rd.43.0283.eng
dc.relation.referencesA. Luque and S. Hegedus, “Handbook of Photovoltaic Science and Engineering.” Accessed: Feb. 21, 2021. [Online]. Available: www.wileyeurope.com.eng
dc.relation.referencesJ. F. Muth et al., “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett., vol. 71, no. 18, pp. 2572–2574, Nov. 1997, doi: 10.1063/1.120191.eng
dc.relation.referencesS. Michael, A. D. Bates, and M. S. Green, “Silvaco atlas as a solar cell modeling tool,” in Conference Record of the IEEE Photovoltaic Specialists Conference, 2005, pp. 719–721, doi: 10.1109/pvsc.2005.1488232.eng
dc.relation.referencesS. Michael, A. D. Bates, and M. S. Green, “Silvaco ATLAS as a solar cell modeling tool,” in Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005., pp. 719–721, doi: 10.1109/PVSC.2005.1488232.eng
dc.relation.referencesG. F. Brown, J. W. Ager, W. Walukiewicz, and J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” Sol. Energy Mater. Sol. Cells, vol. 94, no. 3, pp. 478–483, Mar. 2010, doi: 10.1016/J.SOLMAT.2009.11.010.eng
dc.relation.referencesZ. Z. Bandić, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Values of minority carrier diffusion lengths and lifetimes in GaN and their implications for bipolar devices,” Solid. State. Electron., vol. 44, no. 2, pp. 221–228, Feb. 2000, doi: 10.1016/S0038-1101(99)00227-0.eng
dc.relation.referencesF. Chen, A. N. Cartwright, H. Lu, and W. J. Schaff, “Hole transport and carrier lifetime in InN epilayers,” Appl. Phys. Lett., vol. 87, no. 21, pp. 1–3, Nov. 2005, doi: 10.1063/1.2133892.eng
dc.relation.referencesD. Benmoussa, H. Benslimane, and H. Abderrachid, “Simulation of In0.52Ga0.48N solar cell using AMPS-1D,” in Proceedings of 2013 International Renewable and Sustainable Energy Conference, IRSEC 2013, Jan. 2013, pp. 23–26, doi: 10.1109/IRSEC.2013.6529713.eng
dc.relation.referencesU. K. Kumawat, K. Kumar, P. Bhardwaj, and A. Dhawan, “Indium‐rich InGaN/GaN solar cells with improved performance due to plasmonic and dielectric nanogratings,” Energy Sci. Eng., vol. 7, no. 6, pp. 2469–2482, Dec. 2019, doi: 10.1002/ese3.436.eng
dc.relation.referencesM. Farahmand et al., “Monte Carlo simulation of electron transport in the III-nitride Wurtzite phase materials system: Binaries and ternaries,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 535–542, 2001, doi: 10.1109/16.906448.eng
dc.relation.referencesP. T. Landsberg, “Einstein and statistical thermodynamics. III. the diffusion-mobility relation in semiconductors,” Eur. J. Phys., vol. 2, no. 4, pp. 213–219, Oct. 1981, doi: 10.1088/0143-0807/2/4/005.eng
dc.relation.referencesS. W. Feng, C. M. Lai, C. Y. Tsai, and L. W. Tu, “Numerical simulations of the current-matching effect and operation mechanisms on the performance of InGaN/Si tandem cells,” Nanoscale Res. Lett., vol. 9, no. 1, 2014, doi: 10.1186/1556-276X-9-652.eng
dc.relation.referencesB. J. Van Zeghbroeck, Principles of Semiconductor Devices. University of Colorado, 2007.eng
dc.relation.references“NSM Archive - Band structure and carrier concentration of Silicon (Si).” http://www.ioffe.ru/SVA/NSM/Semicond/Si/bandstr.html#Masses (accessed Jun. 16, 2018).eng
dc.relation.referencesM. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells, vol. 92, no. 11, pp. 1305–1310, Nov. 2008, doi: 10.1016/j.solmat.2008.06.009.eng
dc.relation.referencesA. Acevedo-Luna, R. Bernal-Correa, J. Montes-Monsalve, and A. Morales-Acevedo, “Design of thin film solar cells based on a unified simple analytical model,” J. Appl. Res. Technol., vol. 15, no. 6, pp. 599–608, Dec. 2017, doi: 10.1016/j.jart.2017.08.002.eng
dc.relation.referencesL. Kosyachenko, “Efficiency of Thin-Film CdS/CdTe Solar Cells,” Ukraine: Chernivtsi National University.eng
dc.relation.referencesS. Torres Jaramillo, “Diseño óptico y eléctrico de celdas solares basadas en CuInGaSe (CIGS),” Universidad Nacional de Colombia, Manizales, 2018.spa
dc.relation.referencesJ. Nelson, The Physics of Solar Cells. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2003.eng
dc.relation.referencesM. Lundstrom, “Notes on Heterostructure Fundamentals,” West Lafayette: Purdue University, 1995, pp. 1–43.eng
dc.relation.referencesS. Torres-Jaramillo, R. Bernal-Correa, and A. Morales-Acevedo, “Improved design of InGaP/GaAs//Si tandem solar cells,” EPJ Photovoltaics, vol. 12, p. 1, Feb. 2021, doi: 10.1051/epjpv/2021001.eng
dc.relation.referencesT. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” in Solar Energy Materials and Solar Cells, Jan. 2011, vol. 95, no. 1, pp. 18–21, doi: 10.1016/j.solmat.2010.04.030.eng
dc.relation.referencesM. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (Version 55),” Prog. Photovoltaics Res. Appl., vol. 28, no. 1, pp. 3–15, Jan. 2020, doi: 10.1002/pip.3228.eng
dc.relation.referencesM. Thosar, “Modeling For High Efficiency GaN/InGaN Solar Cell,” IOSR J. Electr. Electron. Eng., vol. 4, no. 1, pp. 1–4, 2013, doi: 10.9790/1676-0410104.eng
dc.relation.referencesO. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaNInGaN solar cells,” Appl. Phys. Lett., vol. 91, no. 13, p. 132117, Sep. 2007, doi: 10.1063/1.2793180.eng
dc.relation.referencesM. Ferhat and F. Bechstedt, “First-principles calculations of gap bowing in InGaN and InAlN alloys: Relation to structural and thermodynamic properties,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 65, no. 7, pp. 1–7, Feb. 2002, doi: 10.1103/PhysRevB.65.075213.eng
dc.relation.referencesS. A. Kazazis, E. Papadomanolaki, and E. Iliopoulos, “Polarization-engineered InGaN/GaN solar cells: Realistic expectations for single heterojunctions,” IEEE J. Photovoltaics, vol. 8, no. 1, pp. 118–124, Jan. 2018, doi: 10.1109/JPHOTOV.2017.2775164.eng
dc.relation.referencesC. A. Hernández-Gutiérrez, A. Morales-Acevedo, D. Cardona, G. Contreras-Puente, and M. López-López, “Analysis of the performance of InxGa1−xN based solar cells,” SN Appl. Sci., vol. 1, no. 6, pp. 1–7, Jun. 2019, doi: 10.1007/s42452-019-0650-x.eng
dc.relation.referencesH. Kanie, N. Tsukamoto, H. Koami, T. Kawano, and T. Totsuka, “Localized luminescence centers of InGaN,” J. Cryst. Growth, vol. 189–190, pp. 52–56, Jun. 1998, doi: 10.1016/S0022-0248(98)00155-9.eng
dc.relation.referencesJ. Liu et al., “Indium Incorporation Induced Morphological Evolution and Strain Relaxation of High Indium Content InGaN Epilayers Grown by Metal-Organic Chemical Vapor Deposition,” Cryst. Growth Des., vol. 17, no. 6, pp. 3411–3418, Jun. 2017, doi: 10.1021/acs.cgd.7b00365.eng
dc.relation.referencesS. Valdueza-Felip et al., “P-i-n InGaN homojunctions (10–40% In) synthesized by plasma-assisted molecular beam epitaxy with extended photoresponse to 600 nm,” Sol. Energy Mater. Sol. Cells, vol. 160, pp. 355–360, Feb. 2017, doi: 10.1016/j.solmat.2016.10.007.eng
dc.relation.referencesB. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Evolution of phase separation in In-rich InGaN alloys,” Appl. Phys. Lett., vol. 96, no. 23, p. 232105, Jun. 2010, doi: 10.1063/1.3453563.eng
dc.relation.referencesW.-C. Tsai et al., “Optical properties associated with strain relaxations in thick InGaN epitaxial films,” Opt. Express, vol. 22, no. S2, p. A416, Mar. 2014, doi: 10.1364/oe.22.00a416.eng
dc.relation.referencesB. Sheng et al., “Intensive luminescence from a thick, indium-rich In0.7Ga0.3N film,” Jpn. J. Appl. Phys., vol. 58, no. 6, p. 065503, May 2019, doi: 10.7567/1347-4065/ab1a5b.eng
dc.relation.referencesL. Sang et al., “Phase separation resulting from mg doping in p-InGaN Film grown on GaN/sapphire template,” Appl. Phys. Express, vol. 3, no. 11, p. 111004, Nov. 2010, doi: 10.1143/APEX.3.111004.eng
dc.relation.referencesI. Gherasoiu, K. M. Yu, L. A. Reichertz, and W. Walukiewicz, “InGaN doping for high carrier concentration in plasma-assisted molecular beam epitaxy,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 11, no. 3–4, pp. 381–384, 2014, doi: 10.1002/pssc.201300460.eng
dc.relation.references“Champion Photovoltaic Module Efficiency Chart | Photovoltaic Research | NREL.” https://www.nrel.gov/pv/module-efficiency.html (accessed Feb. 22, 2021).eng
dc.relation.referencesK. M. A. Saron, M. R. Hashim, N. Naderi, and N. K. Allam, “Interface properties determined the performance of thermally grown GaN/Si heterojunction solar cells,” Sol. Energy, vol. 98, no. PC, pp. 485–491, Dec. 2013, doi: 10.1016/j.solener.2013.09.028.eng
dc.relation.referencesM. Khoury, O. Tottereau, G. Feuillet, P. Vennéguès, and J. Zúñiga-Pérez, “Evolution and prevention of meltback etching: Case study of semipolar GaN growth on patterned silicon substrates,” J. Appl. Phys., vol. 122, no. 10, p. 105108, Sep. 2017, doi: 10.1063/1.5001914.eng
dc.relation.referencesR. Mantach et al., “Semipolar (10-11) GaN growth on silicon-on-insulator substrates: Defect reduction and meltback etching suppression,” J. Appl. Phys., vol. 125, no. 3, p. 035703, Jan. 2019, doi: 10.1063/1.5067375.eng
dc.relation.referencesJ. W. Ager et al., “Electrical properties of InGaN-Si heterojunctions,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 6, no. SUPPL. 2, Jul. 2009, doi: 10.1002/pssc.200880967.eng
dc.relation.referencesK. M. A. Saron, M. R. Hashim, M. Ibrahim, M. Yahyaoui, and N. K. Allam, “Temperature-dependent transport properties of CVD-fabricated n-GaN nanorods/p-Si heterojunction devices,” RSC Adv., vol. 10, no. 55, pp. 33526–33533, Sep. 2020, doi: 10.1039/d0ra05973k.eng
dc.relation.references“PVEducation.” https://www.pveducation.org/ (accessed Feb. 22, 2021).eng
dc.relation.references“Electrical properties of Silicon (Si).” http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html (accessed Jul. 03, 2021).eng
dc.relation.referencesK. J. Chen et al., “GaN-on-Si power technology: Devices and applications,” IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 779–795, Mar. 2017, doi: 10.1109/TED.2017.2657579.eng
dc.relation.referencesA. Dadgar, “Sixteen years GaN on Si,” Phys. Status Solidi Basic Res., vol. 252, no. 5, pp. 1063–1068, May 2015, doi: 10.1002/pssb.201451656.eng
dc.relation.referencesJ. W. Yang et al., “High quality GaN-InGaN heterostructures grown on (111) silicon substrates,” Appl. Phys. Lett., vol. 69, no. 23, pp. 3566–3568, Dec. 1996, doi: 10.1063/1.117247.eng
dc.relation.referencesA. Krost and A. Dadgar, “GaN-based optoelectronics on silicon substrates,” in Materials Science and Engineering B: Solid-State Materials for Advanced Technology, May 2002, vol. 93, no. 1–3, pp. 77–84, doi: 10.1016/S0921-5107(02)00043-0.eng
dc.relation.referencesD. Zhu, D. J. Wallis, and C. J. Humphreys, “Prospects of III-nitride optoelectronics grown on Si,” Reports Prog. Phys., vol. 76, no. 10, Oct. 2013, doi: 10.1088/0034-4885/76/10/106501.eng
dc.relation.referencesN. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, and M. Yamaguchi, “Growth and properties of semi-polar GaN on a patterned silicon substrate,” J. Cryst. Growth, vol. 311, no. 10, pp. 2867–2874, May 2009, doi: 10.1016/j.jcrysgro.2009.01.032.eng
dc.relation.referencesM. Jamil, J. R. Grandusky, V. Jindal, F. Shahedipour-Sandvik, S. Guha, and M. Arif, “Development of strain reduced GaN on Si (111) by substrate engineering,” Appl. Phys. Lett., vol. 87, no. 8, Aug. 2005, doi: 10.1063/1.2012538.eng
dc.relation.referencesM. Jamil, J. R. Grandusky, V. Jindal, N. Tripathi, and F. Shahedipour-Sandvik, “Mechanism of large area dislocation defect reduction in GaN layers on AlNSi (111) by substrate engineering,” J. Appl. Phys., vol. 102, no. 2, 2007, doi: 10.1063/1.2753706.eng
dc.relation.referencesH. Ishikawa, G. Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno, “GaN on Si Substrate with AlGaN/AlN Intermediate Layer,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., vol. 38, no. 5 PART 2, pp. 492–494, May 1999, doi: 10.1143/jjap.38.l492.eng
dc.relation.referencesJ. H. Yang, S. M. Kang, D. V. Dinh, and D. H. Yoon, “Influence of AlN buffer layer thickness and deposition methods on GaN epitaxial growth,” Thin Solid Films, vol. 517, no. 17, pp. 5057–5060, Jul. 2009, doi: 10.1016/j.tsf.2009.03.089.eng
dc.relation.referencesY. Feng et al., “Epitaxy of Single-Crystalline GaN Film on CMOS-Compatible Si(100) Substrate Buffered by Graphene,” Adv. Funct. Mater., vol. 29, no. 42, Oct. 2019, doi: 10.1002/adfm.201905056.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembSistemas de energía fotovoltaica
dc.subject.proposalCelda solarspa
dc.subject.proposalInxGa1-xNspa
dc.subject.proposalHeterouniónspa
dc.subject.proposalTándemspa
dc.subject.proposalSolar celleng
dc.subject.proposalHeterojunctioneng
dc.subject.unescoSolar energyeng
dc.titleSimulación y diseño de celdas solares basadas en semiconductores InxGa1-xN y Sispa
dc.title.translatedSimulation and design of solar cells based on InxGa1-xN and Si semiconductorseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleSimulación y diseño de celdas solares basadas en semiconductores InGaN y Sispa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1121902562.2021.pdf
Tamaño:
2.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: