Studies of charged pions produced during neutrino-nucleus Final State Interactions using the NOvA experiment simulation and reconstruction tools
dc.contributor.advisor | Arrieta Díaz, Enrique | spa |
dc.contributor.advisor | Sandoval Usme, Carlos Eduardo | spa |
dc.contributor.author | Villamil Santiago, Juan David | spa |
dc.contributor.researchgroup | Grupo de Partículas FENyX-UN | spa |
dc.date.accessioned | 2025-04-22T17:26:42Z | spa |
dc.date.available | 2025-04-22T17:26:42Z | spa |
dc.date.issued | 2024 | spa |
dc.description | ilustraciones (principalmente a color), diagramas, fotografías | spa |
dc.description.abstract | NOvA, located at Fermilab, is a long-baseline neutrino oscillation experiment. It investigates muon-to-electron neutrino flavor oscillations over an 810 km baseline between the Near and Far Detectors, two functionally identical, liquid scintillator tracking calorimeters. The NuMI beam facility at Fermilab provides a 98% pure beam of muon neutrinos for NOvA. The Near Detector, situated 800 m from the neutrino production target, observes intense neutrino interactions, offering insights into neutrino-nucleus interactions. NOvA’s two detectors are intended to measure the parameters in neutrino oscillations, including mass hierarchy, CP violation, and the mixing angle θ23. This thesis presents an in-depth analysis of the performance of reconstruction algorithm for charged pions in the Near Detector, with focus on various interaction modes and kinematic variables. Through detailed event displays and statistical comparisons, key factors affecting reconstruction accuracy are identified. Findings highlight challenges such as energy deposition variability, track overlapping, and particle re-interactions that complicate the reconstruction process. Simulated charged pions are predominantly misclassified as muons, protons, and gammas. The efficiency of the charged pion reconstruction algorithms peaks within specific energy and angular regions. The analysis of single-pion events indicates no significant relationship between particle types in final state interactions and reconstruction failures. Normalized comparisons of angles and energy correlations further elucidate the conditions under which the algorithm operates more effectively. These insights are crucial for refining reconstruction techniques and enhancing the reliability of particle identification in experimental setups (Texto tomado de la fuente). | eng |
dc.description.abstract | NOvA, ubicado en Fermilab, es un experimento de oscilación de neutrinos de línea de base larga. Investiga las oscilaciones de sabor de neutrinos de muón a electrón a lo largo de una línea base de 810 km entre el Detector Cercano y el Detector Lejano, dos calorímetros de seguimiento con centelleador líquido, funcionalmente idénticos. La instalación del haz NuMI en Fermilab proporciona un haz de neutrinos de muón con una pureza del 98% para NOvA. El Detector Cercano, situado a 800 m del objetivo de producción de neutrinos, observa interacciones intensas de neutrinos, lo que ofrece información sobre las interacciones neutrino-núcleo. Los dos detectores de NOvA están diseñados para medir los parámetros de las oscilaciones de neutrinos, incluyendo la jerarquía de masas, la violación CP y el ángulo de mezcla θ23. Esta tesis presenta un análisis detallado del desempeño del algoritmo de reconstrucción de piones cargados en el Detector Cercano, con un enfoque en varios modos de interacción y variables cinemáticas. A través de visualizaciones detalladas de eventos y comparaciones estadísticas, se identifican factores clave que afectan la precisión de la reconstrucción. Los resultados destacan desafíos como la variabilidad en la deposición de energía, el solapamiento de trayectorias y las reinteracciones de partículas que complican el proceso de reconstrucción. Los piones cargados simulados son predominantemente mal clasificados como muones, protones y gammas. La eficiencia de los algoritmos de reconstrucción de piones cargados alcanza su punto máximo dentro de regiones específicas de energía y ángulo. El análisis de eventos con un solo pion no indica una relación significativa entre los tipos de partículas en las interacciones del estado final y las fallas de reconstrucción. Comparaciones normalizadas de ángulos y correlaciones de energía ayudan a esclarecer aún más las condiciones bajo las cuales el algoritmo opera con mayor efectividad. Estos hallazgos son fundamentales para refinar las técnicas de reconstrucción y mejorar la fiabilidad en la identificación de partículas en configuraciones experimentales. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.researcharea | Física experimental de neutrinos | spa |
dc.format.extent | xxv, 171 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88052 | spa |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
dc.relation.references | Pauli, W. Dear radioactive ladies and gentlemen. Phys. Today 31N9, 27 (1978) | spa |
dc.relation.references | Reines, F. & Cowan, C. L. The neutrino. Nature 178, 446–449 (1956) | spa |
dc.relation.references | Cowan, C. L., Reines, F., Harrison, F. B., Kruse, H. W. & McGuire, A. D. Detection of the free neutrino: A confirmation. Science 124, 103–104 (July 1956) | spa |
dc.relation.references | Cao, J. & He, M. Neutrino oscillation: discovery and perspectives. Science Bulletin 61, 48–51 (Jan. 2016). | spa |
dc.relation.references | Fukuda, Y. et al. Evidence for Oscillation of Atmospheric Neutrinos. Physical Review Letters 81, 1562 (Aug. 1998). | spa |
dc.relation.references | Ahmad, Q. R. et al. Direct Evidence for Neutrino Flavor Transformation from Neutral- Current Interactions in the Sudbury Neutrino Observatory. Physical Review Letters 89 (Apr. 2002). | spa |
dc.relation.references | Eberly, B. et al. Charged Pion Production in νµ Interactions on Hydrocarbon at E{ν}= 4.0 GeV. Physical Review D - Particles, Fields, Gravitation and Cosmology 92 (June 2014). | spa |
dc.relation.references | Aguilar-Arevalo, A. A. et al. Event Excess in the MiniBooNE Search for¯ νµ →¯ νe Oscillations. Phys.Rev.Lett. 105 (Oct. 2010). | spa |
dc.relation.references | Aalseth, C. E. et al. Search for Neutrinoless Double- β Decay in Ge 76 with the Majorana Demonstrator. Physical Review Letters 120, 132502 (Mar. 2018). | spa |
dc.relation.references | Neutrinos could shed light on why the Universe has so much more matter than antimatter. Nature 580, 305–305 (Apr. 2020). | spa |
dc.relation.references | Abe, K. et al. Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations. Nature 2020 580:7803 580, 339–344 (Apr. 2020). | spa |
dc.relation.references | Datta, A., Roshan, R. & Sil, A. Imprint of the Seesaw Mechanism on Feebly Interacting Dark Matter and the Baryon Asymmetry. Physical Review Letters 127, 231801 (Dec. 2021). | spa |
dc.relation.references | Groh, M. C. Constraints on Neutrino Oscillation Parameters from Neutrinos and Antineutrinos with Machine Learning PhD thesis (Fermi National Accelerator Laboratory, Jan. 2021). https : //www.osti.gov/servlets/purl/1774291/. | spa |
dc.relation.references | Ayres, D. et al. The NOvA Technical Design Report tech. rep. (Fermi National Accelerator Labo- ratory, Oct. 2007). http://www.osti.gov/servlets/purl/935497-qCwq1o/. | spa |
dc.relation.references | Judah, M. An Analysis of Noise in the NOvA Near Detector MA thesis (Colorado State Univer- sity, 2016). https://api.mountainscholar.org/server/api/core/bitstreams/ 3896109e-ed01-494f-b159-282cfda232dd/content. | spa |
dc.relation.references | Acero, M. A. et al. Adjusting Neutrino Interaction Models and Evaluating Uncertainties using NOvA Near Detector Data. European Physical Journal C 80, 22. http://dx.doi.org/ 10.1140/epjc/s10052-020-08577-5 (June 2020). | spa |
dc.relation.references | Adamson, P. et al. Constraints on Oscillation Parameters from νe Appearance and νμ Dis- appearance in NOvA. Physical Review Letters 118, 231801 (June 2017). | spa |
dc.relation.references | Eberly, B. Muon Neutrino Charged Current Inclusive Charged Pion (CCπ±) Production in MINERvA. AIP Conf.Proc. 1663 (May 2015). | spa |
dc.relation.references | Nakajima, Y. A Measurement of Neutrino Charged Current Interactions and a Search for Muon Neutrino Disappearance with the Fermilab Booster Neutrino Beam. Nuclear Physics A 827, 524c–526c (Jan. 2009). | spa |
dc.relation.references | Georgi, H. & Glashow, S. L. Unified Weak and Electromagnetic Interactions without Neu- tral Currents. Physical Review Letters 28, 1494 (May 1972). | spa |
dc.relation.references | Aad, G. et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B 716, 1–29 (Sept. 2012). | spa |
dc.relation.references | Breugelmans, N. Probing the charm quark yukawa coupling using machine learning algorithms MA thesis (Vrije Universiteit Brussel, 2021). https://iihe.ac.be/sites/default/files/ thesis-nordin-breugelmans-cms-master-2021pdf/thesis-nordin-breugelmans- cms-master-2021.pdf. | spa |
dc.relation.references | Hollik, W. Precision Tests of the Standard Model. Acta Physica Polonica B 30, 1787–1805 (Mar. 1993). | spa |
dc.relation.references | Koberinski, A. “Fundamental” “Constants” and Precision Tests of the Standard Model. Phi- losophy of Science 89, 1255–1264 (Dec. 2022). | spa |
dc.relation.references | Messier, M. D., Messier & D., M. Evidence for neutrino mass from observations of atmospheric neutrinos with Super-Kamiokande MA thesis (Boston University, 1999), 1141. | spa |
dc.relation.references | Lokhov, A. Direct neutrino-mass measurement based on 259 days of KATRIN data in (June 2024). https://agenda.infn.it/event/37867/contributions/234003. | spa |
dc.relation.references | Nucciotti, A. Present and future of direct neutrino mass experiments in (June 2024). https:// agenda.infn.it/event/37867/contributions/234004. | spa |
dc.relation.references | Danby, G. et al. Observation of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos. Physical Review Letters 9, 36 (July 1962). | spa |
dc.relation.references | Kodama, K. et al. Observation of tau neutrino interactions. Physics Letters B 504, 218–224 (Apr. 2001). | spa |
dc.relation.references | Giunti, C. & Kim, C. W. Fundamentals of Neutrino Physics and Astrophysics 1–728 (Oxford Uni- versity Press, Jan. 2007). | spa |
dc.relation.references | Pich, A. The Standard Model of Electroweak Interactions 2007. https://arxiv.org/abs/0705.4264. | spa |
dc.relation.references | Charlton, D. G. LEP, SLC and the Standard Model in (Nov. 2002). https://arxiv.org/abs/ hep-ex/0211003v1. | spa |
dc.relation.references | Bellini, G., Ludhova, L., Ranucci, G. & Villante, F. L. Neutrino Oscillations. Advances in High Energy Physics 2014, 1–28 (2014). | spa |
dc.relation.references | Wester, T. et al. Atmospheric neutrino oscillation analysis with neutron tagging and an expanded fiducial volume in Super-Kamiokande I–V. Physical Review D 109 (Apr. 2024). | spa |
dc.relation.references | Fantini, G., Rosso, A. G., Vissani, F. & Zema, V. The formalism of neutrino oscillations: an introduction. The State of the Art of Neutrino Physics A Tutorial for Graduate Students and Young Researchers (ed of Bern) Ereditato, A. () 37–119. https://www.worldscientific.com/ doi/abs/10.1142/9789813226098_0002 (Feb. 2018). | spa |
dc.relation.references | Pontecorvo, B. Inverse beta processes and nonconservation of lepton charge. Zh. Eksp. Teor. Fiz. 34, 247 (1957). | spa |
dc.relation.references | Zuber, K. Neutrino Physics. ISBN: 9781032242200 (Taylor and Francis, 2020). | spa |
dc.relation.references | Wolfenstein, L. Neutrino oscillations in matter. Physical Review D 17, 2369 (May 1978). | spa |
dc.relation.references | Mikheyev, S. P. & Smirnov, A. Y. Resonant amplification of ν oscillations in matter and solar-neutrino spectroscopy. Il Nuovo Cimento C 9, 17–26 (Jan. 1986). | spa |
dc.relation.references | Nunokawa, H., Parke, S. & Valle, J. W. F. CP Violation and Neutrino Oscillations. Progress in Particle and Nuclear Physics 60, 338–402 (Oct. 2007). | spa |
dc.relation.references | De Salas, P. F. et al. 2020 global reassessment of the neutrino oscillation picture. Journal of High Energy Physics 2021 2021:2 2021, 1–36 (Feb. 2021). | spa |
dc.relation.references | Glashow, S. L. The renormalizability of vector meson interactions. Nuclear Physics 10, 107– 117 (Feb. 1959). | spa |
dc.relation.references | Weinberg, S. A Model of Leptons. Physical Review Letters 19, 1264. https://journals. aps.org/prl/abstract/10.1103/PhysRevLett.19.1264 (Nov. 1967). | spa |
dc.relation.references | Salam, A. & Ward, J. Electromagnetic and weak interactions. Physics Letters 13, 168–171 (1964). | spa |
dc.relation.references | Giusti, C. & Ivanov, M. V. Neutral Current Neutrino-Nucleus Scattering. Theory. Journal of Physics G: Nuclear and Particle Physics 47 (Aug. 2019). | spa |
dc.relation.references | Patrick, C. E. Measurement of the Antineutrino Double-Differential Charged-Current Quasi-Elastic Scattering Cross Section at MINERvA PhD thesis (Northwestern University, 2016). | spa |
dc.relation.references | Sobczyk, J. T. Quasi-elastic Neutrino Scattering - an Overview. AIP Conference Proceedings 1405, 59–64 (Aug. 2011). | spa |
dc.relation.references | Abe, K. et al. T2K neutrino flux prediction. Physical Review D - Particles, Fields, Gravitation and Cosmology 87, 012001 (Jan. 2013). | spa |
dc.relation.references | Stancu, I. et al. The MiniBooNE detector technical design report tech. rep. (Fermi National Ac- celerator Laboratory, Apr. 2003). https://lss.fnal.gov/archive/test-tm/2000/ fermilab-tm-2207.pdf. | spa |
dc.relation.references | Judah, M. A. Dissertation measurement of the inclusive electron-neutrino charged-current cross section in the NOvA Near Detector PhD thesis (Fermi National Accelerator Laboratory, 2019). https: //www.osti.gov/biblio/1769398. | spa |
dc.relation.references | Smith, C. H. L. Neutrino reactions at accelerator energies. Physics Reports 3, 261–379 (June 1972). | spa |
dc.relation.references | Formaggio, J. A. & Zeller, G. P. From eV to EeV: Neutrino Cross Sections Across Energy Scales. Reviews of Modern Physics 84, 1307–1341. https://arxiv.org/abs/1305.7513v1 (May 2013). | spa |
dc.relation.references | Graczyk, K. M. Resonance contribution to single pion production in neutrino-nucleon scattering in (Nov. 2008). https://arxiv.org/abs/0810.1247. | spa |
dc.relation.references | Athar, M. S., Fatima, A. & Singh, S. K. Neutrinos and their interactions with matter. Progress in Particle and Nuclear Physics 129 (June 2022). | spa |
dc.relation.references | Spentzouris, P., Spentzouris & Panagiotis. Deep Inelastic Scattering and neutrino physics. AIPC 435, 66–81 (May 1998). | spa |
dc.relation.references | Barbaro, M. B. et al. The role of meson exchange currents in charged current (anti)neutrino- nucleus scattering. Nucl. Theor 35, 60–71 (Oct. 2016). | spa |
dc.relation.references | Oregui, B. T. Towards a measurement of neutral pion production in neutral current interactions with the NOνA near detector PhD thesis (2022). https : / / lss . fnal . gov / archive / thesis / 2000/fermilab-thesis-2022-14.pdf. | spa |
dc.relation.references | Katori, T. Meson Exchange Current (MEC) Models in Neutrino Interaction Generators. AIP Conference Proceedings 1663 (Apr. 2013). | spa |
dc.relation.references | Nieves, J., Simo, I. R., Sánchez, F. & Vacas, M. J. V. 2p2h Excitations, MEC, Nucleon Cor- relations and Other Sources of QE-like Events. JPS Conf.Proc. 12 (Dec. 2016). | spa |
dc.relation.references | Workman, R. L. et al. Review of Particle Physics. PTEP 2022, 083C01 (2022). | spa |
dc.relation.references | Ma, W., Pinzon Guerra, E., Yu, M., Fiorentini, A. & Feusels, T. Current status of final-state interaction models and their impact on neutrino-nucleus interactions. Journal of Physics: Conference Series 888, 012171 (Sept. 2017). | spa |
dc.relation.references | Dytman, S. Final State Interactions in Neutrino-Nucleus Experiments. Acta Physica Polonica B - ACTA PHYS POL B 40 (Sept. 2009). | spa |
dc.relation.references | Alvarez-Ruso, L. et al. NuSTEC White Paper: Status and Challenges of Neutrino-Nucleus Scattering. Progress in Particle and Nuclear Physics 100, 1–68 (June 2017). | spa |
dc.relation.references | Teppei, K. Cross section analyses in MiniBooNE and SciBooNE experiments. AIP Conference Proceedings 1663, 020001 (May 2015). | spa |
dc.relation.references | Aguilar-Arevalo, A. A. et al. Measurement of Neutrino-Induced Charged-Current Charged Pion Production Cross Sections on Mineral Oil at E{ν} ∼ 1{GeV }. Physical Review D - Particles, Fields, Gravitation and Cosmology 83 (Nov. 2010). | spa |
dc.relation.references | Yue, C.-X., Cheng, X.-J. & Yang, J.-C. Charged-current non-standard neutrino interactions at the LHC and HL-LHC. Chinese Physics C 47 (Oct. 2021). | spa |
dc.relation.references | Leitner, T., Alvarez-Ruso, L. & Mosel, U. Charged Current Neutrino Nucleus Interactions at Intermediate Energies. Physical Review C - Nuclear Physics 73 (Jan. 2006). | spa |
dc.relation.references | McGivern, C. L. et al. Cross sections for νμ and ν μ induced pion production on hydrocarbon in the few-GeV region using MINERvA. Physical Review D 94, 052005 (Sept. 2016). | spa |
dc.relation.references | Ayres, D. S. et al. NOvA Proposal to Build a 30 Kiloton Off-Axis Detector to Study Neu- trino Oscillations in the Fermilab NuMI Beamline. https : / / arxiv . org / abs / hep - ex/0503053v1 (Mar. 2005). | spa |
dc.relation.references | Adamson, P. et al. The MINOS Detectors Technical Design Report. https://lss.fnal. gov/archive/design/fermilab-design-1998-02.pdf (Sept. 1998). | spa |
dc.relation.references | Fermilab History and Archives, Experiments and Discoveries https : / / history . fnal . gov / historical/experiments/nova_sees_first_neutrinos.html. | spa |
dc.relation.references | The Fermilab Main Injector Technical Design Handbook. http : / / www . osti . gov / servlets/purl/1127909/ (Aug. 1994). | spa |
dc.relation.references | Fermilab Galleries https://vms.fnal.gov/gallery. | spa |
dc.relation.references | The NuMI Technical Design Handbook tech. rep. (2002). https://lss.fnal.gov/archive/ design/fermilab-design-1998-01.pdf. | spa |
dc.relation.references | Adamson, P. et al. The NuMI Neutrino Beam. Nuclear Instruments and Methods in Physics Re- search, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 806, 279–306. http://arxiv.org/abs/1507.06690 (July 2015). | spa |
dc.relation.references | Acero, M. A. et al. First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA. Physical Review Letters 123, 25 (June 2019). | spa |
dc.relation.references | Cooleybeck, A. Blessing package for ND All POT plots. NOvA internal Document, DocDB 62927- v1 (2024). | spa |
dc.relation.references | Acero, M. A. Measurement of the neutrino oscillation parameters by NOvA. Journal of Physics: Conference Series 1219, 012021 (May 2019). | spa |
dc.relation.references | NOvA turns its eyes to the skies https://news.fnal.gov/2020/11/nova-turns-its- eyes-to-the-skies/. | spa |
dc.relation.references | Fermilab History and Archives Experiments and Discoveries https : / / history . fnal . gov / historical/experiments/nova_sees_first_neutrinos.html. | spa |
dc.relation.references | Mufson, S. et al. Liquid scintillator production for the NOvA experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equip- ment 799, 1–9 (Apr. 2015). | spa |
dc.relation.references | Kuraray America Inc. Plastic Scintillating Fibers http://kuraraypsf.jp/psf/. | spa |
dc.relation.references | Hamamatsu Photonics. photodiode S1227-1010BR https://www.hamamatsu.com/us/en/ product/optical-sensors/photodiodes/si-photodiodes/S1227-1010BR.html. | spa |
dc.relation.references | Behera, B. Tracking Detector Performance and Data Quality in the NOvA Experiment. Pro- ceedings of the 2017 Meeting of the APS Division of Particles and Fields, DPF 2017 (Oct. 2017). | spa |
dc.relation.references | Lu, N. Q., Biery, K. A., Kowalkowski, J. B. & Norman, A. The NOvA Data Acquisition System. Journal of Physics: Conference Series 396, 012035 (Dec. 2012). | spa |
dc.relation.references | Aliaga, L. et al. Neutrino Flux Predictions for the NuMI Beam. Physical Review D 94. http: //dx.doi.org/10.1103/PhysRevD.94.092005 (July 2016). | spa |
dc.relation.references | Agostinelli, S. et al. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250–303 (July 2003). | spa |
dc.relation.references | Yonehara, K., Ganguly, S., Wickremasinghe, D. A., Snopok, P. & Yu, Y. Exploring the Focusing Mechanism of the NuMI Horn Magnets 2023. https://arxiv.org/abs/2305.08695. | spa |
dc.relation.references | Yu, Y. et al. NuMI Beam Monitoring Simulation and Data Analysis. Physical Sciences Forum 8. https://www.mdpi.com/2673-9984/8/1/73 (2023). | spa |
dc.relation.references | Andreopoulos, C. et al. The GENIE Neutrino Monte Carlo Generator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 614, 87–104 (May 2009). | spa |
dc.relation.references | Hagmann, C., Lange, D. & Wright, D. Cosmic-ray shower generator (CRY) for Monte Carlo transport codes. IEEE Nuclear Science Symposium Conference Record 2, 1143–1146 (2007). | spa |
dc.relation.references | Aurisano, A. The NOvA Detector Simulation. NOvA Internal Document, DocDb 13577. | spa |
dc.relation.references | Aurisano, A. et al. The NOvA simulation chain. J.Phys.Conf.Ser. 664 (2015). | spa |
dc.relation.references | Baird, M. et al. Event Reconstruction Techniques in NOvA. Journal of Physics: Conference Series 664, 072035 (Dec. 2015). | spa |
dc.relation.references | Pershey, D. Tdslicer Technote. NOvA Internal Technote, DocDb 27689 (2020). | spa |
dc.relation.references | Fernandes, L. A. & Oliveira, M. M. Real-time line detection through an improved Hough transform voting scheme. Pattern Recognition 41, 299–314 (Jan. 2008). | spa |
dc.relation.references | Gyulassy, M. & Harlander, M. Elastic tracking and neural network algorithms for complex pattern recognition. Computer Physics Communications 66, 31–46 (July 1991). | spa |
dc.relation.references | Ohlsson, M., Peterson, C. & Yuille, A. L. Track finding with deformable templates — the elastic arms approach. Computer Physics Communications 71, 77–98 (Aug. 1992). | spa |
dc.relation.references | Yang, M. S. & Wu, K. L. Unsupervised possibilistic clustering. Pattern Recognition 39, 5–21 (Jan. 2006). | spa |
dc.relation.references | Pal, N. R., Pal, K., Keller, J. M. & Bezdek, J. C. A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems 13, 517–530 (2005). | spa |
dc.relation.references | Krane, K. Introductory Nuclear Physics ISBN: 978-0-471-80553-3 (John Wiley and Sons, Jan. 1991). | spa |
dc.relation.references | What Is the Purpose of a Feature Map in a Convolutional Neural Network May 2023. https:// www.baeldung.com/cs/cnn-feature-map. | spa |
dc.relation.references | Holland, K. Understanding the RGB Color Code: A Comprehensive Guide June 2024. https://www. askhandle.com/blog/understanding-the-rgb-color-code--a-comprehensive- guide. | spa |
dc.relation.references | Aurisano, A. et al. A Convolutional Neural Network Neutrino Event Classifier. Journal of Instrumentation 11 (Apr. 2016). | spa |
dc.relation.references | Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. MobileNetV2: Inverted Resid- uals and Linear Bottlenecks 2019. arXiv: 1801.04381 [cs.CV]. | spa |
dc.relation.references | Psihas, F. et al. Context-Enriched Identification of Particles with a Convolutional Network for Neutrino Events. Physical Review D 100 (June 2019). | spa |
dc.relation.references | Psihas, F. Measurement of Long Baseline Neutrino Oscillations and Improvements from Deep Learning PhD thesis (Indiana University, Jan. 2018). https://www.osti.gov/biblio/1437288. | spa |
dc.relation.references | Claude Sammut, G. W. Encyclopedia of Machine Learning (Springer New York, NY, 2011). | spa |
dc.relation.references | Valassi, A. ROC curves, AUC’s and alternatives in HEP event selection and in other domains in (Jan. 2018). https://indico.cern.ch/event/679765/contributions/2814562/attachments/ 1590383/2516547/20180126-ROC-AV-IML_v008_final.pdf. | spa |
dc.relation.references | Klaus Reygers, S. N. Statistical Methods in Particle Physics in (2017). https://www.physi. uni-heidelberg.de/~reygers/lectures/2017/smipp/stat_methods_ss2017_08_ multivariate_analysis.pdf. | spa |
dc.relation.references | Evaluating Classification Models: Understanding the Confusion Matrix and ROC Curves Dec. 2023. https://statisticallyrelevant.com/confusion-matrix-and-roc-curves/. | spa |
dc.relation.references | Bercellie, A. et al. Simultaneous measurement of muon neutrino νµ charged-current single π+ production in CH, C, H2O, Fe, and Pb targets in MINERvA. Physical Review Letters 131 (Sept. 2022). | spa |
dc.relation.references | Le, T. et al. Single neutral pion production by charged-current¯ {ν}µ interactions on hydro- carbon at Eν =3.6 GeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 749, 130–136 (Mar. 2015). | spa |
dc.relation.references | Altinok, O. et al. Measurement of ν{µ} charged-current single π{0} production on hydro- carbon in the few-GeV region using MINERvA. Physical Review D 96 (Aug. 2017). | spa |
dc.relation.references | Greiner, W. Relativistic Quantum Mechanics. Wave Equations (Springer Berlin Heidelberg, 2000). | spa |
dc.relation.references | Bjorken, J. D. & Drell, S. D. Relativistic quantum fields ISBN: 0700549404 (McGraw-Hill, 1965). | spa |
dc.relation.references | Acero, M. A. et al. Measurement of the νe−Nucleus Charged-Current Double-Differential Cross Section at ⟨Eν ⟩=2.4 GeV using NOvA. Physical Review Letters 130 (June 2022). | spa |
dc.relation.references | Kuruppu, C., Paley, J. & Petti, R. Measurement of the MuonNeutrino Charged Current Cross Section in the NOvA Near Detector. NOvA internal Document, DocDB 58198-v3 (2023). | spa |
dc.relation.references | Backhouse, C. The CAFAna Framework. NOvA internal Technote, DocDB 9222-v4 (2014). | spa |
dc.relation.references | CAFAna Framework · GitHub https://github.com/cafana/. | spa |
dc.relation.references | Brun, R. & Rademakers, F. ROOT: An object oriented data analysis framework. Nucl.In- strum.Meth.A 389, 81–86 (Apr. 1997). | spa |
dc.relation.references | Mosel, U. & Gallmeister, K. Muon-neutrino-induced charged-current pion production on nuclei. Phys. Rev. C 96, 015503. https://link.aps.org/doi/10.1103/PhysRevC.96. 015503 (July 2017). | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 539.72162 | spa |
dc.subject.ddc | 530 - Física | spa |
dc.subject.ddc | 530 - Física::539 - Física moderna | spa |
dc.subject.lcc | Pions | eng |
dc.subject.lcc | Pion production | eng |
dc.subject.lcc | Muons | eng |
dc.subject.lemb | Mesones (Física nuclear) -- Métodos de simulación | eng |
dc.subject.lemb | Mesons -- Simulation Methods | eng |
dc.subject.lemb | Física nuclear -- Investigaciones -- Colombia | spa |
dc.subject.lemb | Nuclear physics -- Research | eng |
dc.subject.lemb | Tesis y disertaciones académicas | spa |
dc.subject.lemb | Dissertations, Academic | eng |
dc.subject.lemb | Experimentación científica | spa |
dc.subject.lemb | Science -- Experiments | eng |
dc.subject.other | Piones | spa |
dc.subject.other | Piones -- Producción | spa |
dc.subject.other | Muones | spa |
dc.subject.other | Mesones (Partículas) | spa |
dc.subject.proposal | Neutrino-nucleus Interactions | eng |
dc.subject.proposal | Interacciones neutrino-núcleo | spa |
dc.subject.proposal | Charged pions | eng |
dc.subject.proposal | Piones cargados | spa |
dc.subject.proposal | Reconstruction algorithms | eng |
dc.subject.proposal | Algoritmos de reconstrucción | spa |
dc.subject.proposal | Convolutional visual network classifier | eng |
dc.subject.proposal | Clasificador de red visual convolucional | spa |
dc.subject.wikidata | Muon neutrino | eng |
dc.subject.wikidata | Neutrino muónico | spa |
dc.title | Studies of charged pions produced during neutrino-nucleus Final State Interactions using the NOvA experiment simulation and reconstruction tools | eng |
dc.title.translated | Estudios de piones cargados producidos durante las interacciones finales neutrino-núcleo utilizando las herramientas de simulación y reconstrucción del experimento NOvA | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1070985933.2025.pdf
- Tamaño:
- 20.48 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: