Studies of charged pions produced during neutrino-nucleus Final State Interactions using the NOvA experiment simulation and reconstruction tools

dc.contributor.advisorArrieta Díaz, Enriquespa
dc.contributor.advisorSandoval Usme, Carlos Eduardospa
dc.contributor.authorVillamil Santiago, Juan Davidspa
dc.contributor.researchgroupGrupo de Partículas FENyX-UNspa
dc.date.accessioned2025-04-22T17:26:42Zspa
dc.date.available2025-04-22T17:26:42Zspa
dc.date.issued2024spa
dc.descriptionilustraciones (principalmente a color), diagramas, fotografíasspa
dc.description.abstractNOvA, located at Fermilab, is a long-baseline neutrino oscillation experiment. It investigates muon-to-electron neutrino flavor oscillations over an 810 km baseline between the Near and Far Detectors, two functionally identical, liquid scintillator tracking calorimeters. The NuMI beam facility at Fermilab provides a 98% pure beam of muon neutrinos for NOvA. The Near Detector, situated 800 m from the neutrino production target, observes intense neutrino interactions, offering insights into neutrino-nucleus interactions. NOvA’s two detectors are intended to measure the parameters in neutrino oscillations, including mass hierarchy, CP violation, and the mixing angle θ23. This thesis presents an in-depth analysis of the performance of reconstruction algorithm for charged pions in the Near Detector, with focus on various interaction modes and kinematic variables. Through detailed event displays and statistical comparisons, key factors affecting reconstruction accuracy are identified. Findings highlight challenges such as energy deposition variability, track overlapping, and particle re-interactions that complicate the reconstruction process. Simulated charged pions are predominantly misclassified as muons, protons, and gammas. The efficiency of the charged pion reconstruction algorithms peaks within specific energy and angular regions. The analysis of single-pion events indicates no significant relationship between particle types in final state interactions and reconstruction failures. Normalized comparisons of angles and energy correlations further elucidate the conditions under which the algorithm operates more effectively. These insights are crucial for refining reconstruction techniques and enhancing the reliability of particle identification in experimental setups (Texto tomado de la fuente).eng
dc.description.abstractNOvA, ubicado en Fermilab, es un experimento de oscilación de neutrinos de línea de base larga. Investiga las oscilaciones de sabor de neutrinos de muón a electrón a lo largo de una línea base de 810 km entre el Detector Cercano y el Detector Lejano, dos calorímetros de seguimiento con centelleador líquido, funcionalmente idénticos. La instalación del haz NuMI en Fermilab proporciona un haz de neutrinos de muón con una pureza del 98% para NOvA. El Detector Cercano, situado a 800 m del objetivo de producción de neutrinos, observa interacciones intensas de neutrinos, lo que ofrece información sobre las interacciones neutrino-núcleo. Los dos detectores de NOvA están diseñados para medir los parámetros de las oscilaciones de neutrinos, incluyendo la jerarquía de masas, la violación CP y el ángulo de mezcla θ23. Esta tesis presenta un análisis detallado del desempeño del algoritmo de reconstrucción de piones cargados en el Detector Cercano, con un enfoque en varios modos de interacción y variables cinemáticas. A través de visualizaciones detalladas de eventos y comparaciones estadísticas, se identifican factores clave que afectan la precisión de la reconstrucción. Los resultados destacan desafíos como la variabilidad en la deposición de energía, el solapamiento de trayectorias y las reinteracciones de partículas que complican el proceso de reconstrucción. Los piones cargados simulados son predominantemente mal clasificados como muones, protones y gammas. La eficiencia de los algoritmos de reconstrucción de piones cargados alcanza su punto máximo dentro de regiones específicas de energía y ángulo. El análisis de eventos con un solo pion no indica una relación significativa entre los tipos de partículas en las interacciones del estado final y las fallas de reconstrucción. Comparaciones normalizadas de ángulos y correlaciones de energía ayudan a esclarecer aún más las condiciones bajo las cuales el algoritmo opera con mayor efectividad. Estos hallazgos son fundamentales para refinar las técnicas de reconstrucción y mejorar la fiabilidad en la identificación de partículas en configuraciones experimentales.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaFísica experimental de neutrinosspa
dc.format.extentxxv, 171 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88052spa
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesPauli, W. Dear radioactive ladies and gentlemen. Phys. Today 31N9, 27 (1978)spa
dc.relation.referencesReines, F. & Cowan, C. L. The neutrino. Nature 178, 446–449 (1956)spa
dc.relation.referencesCowan, C. L., Reines, F., Harrison, F. B., Kruse, H. W. & McGuire, A. D. Detection of the free neutrino: A confirmation. Science 124, 103–104 (July 1956)spa
dc.relation.referencesCao, J. & He, M. Neutrino oscillation: discovery and perspectives. Science Bulletin 61, 48–51 (Jan. 2016).spa
dc.relation.referencesFukuda, Y. et al. Evidence for Oscillation of Atmospheric Neutrinos. Physical Review Letters 81, 1562 (Aug. 1998).spa
dc.relation.referencesAhmad, Q. R. et al. Direct Evidence for Neutrino Flavor Transformation from Neutral- Current Interactions in the Sudbury Neutrino Observatory. Physical Review Letters 89 (Apr. 2002).spa
dc.relation.referencesEberly, B. et al. Charged Pion Production in νµ Interactions on Hydrocarbon at E{ν}= 4.0 GeV. Physical Review D - Particles, Fields, Gravitation and Cosmology 92 (June 2014).spa
dc.relation.referencesAguilar-Arevalo, A. A. et al. Event Excess in the MiniBooNE Search for¯ νµ →¯ νe Oscillations. Phys.Rev.Lett. 105 (Oct. 2010).spa
dc.relation.referencesAalseth, C. E. et al. Search for Neutrinoless Double- β Decay in Ge 76 with the Majorana Demonstrator. Physical Review Letters 120, 132502 (Mar. 2018).spa
dc.relation.referencesNeutrinos could shed light on why the Universe has so much more matter than antimatter. Nature 580, 305–305 (Apr. 2020).spa
dc.relation.referencesAbe, K. et al. Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations. Nature 2020 580:7803 580, 339–344 (Apr. 2020).spa
dc.relation.referencesDatta, A., Roshan, R. & Sil, A. Imprint of the Seesaw Mechanism on Feebly Interacting Dark Matter and the Baryon Asymmetry. Physical Review Letters 127, 231801 (Dec. 2021).spa
dc.relation.referencesGroh, M. C. Constraints on Neutrino Oscillation Parameters from Neutrinos and Antineutrinos with Machine Learning PhD thesis (Fermi National Accelerator Laboratory, Jan. 2021). https : //www.osti.gov/servlets/purl/1774291/.spa
dc.relation.referencesAyres, D. et al. The NOvA Technical Design Report tech. rep. (Fermi National Accelerator Labo- ratory, Oct. 2007). http://www.osti.gov/servlets/purl/935497-qCwq1o/.spa
dc.relation.referencesJudah, M. An Analysis of Noise in the NOvA Near Detector MA thesis (Colorado State Univer- sity, 2016). https://api.mountainscholar.org/server/api/core/bitstreams/ 3896109e-ed01-494f-b159-282cfda232dd/content.spa
dc.relation.referencesAcero, M. A. et al. Adjusting Neutrino Interaction Models and Evaluating Uncertainties using NOvA Near Detector Data. European Physical Journal C 80, 22. http://dx.doi.org/ 10.1140/epjc/s10052-020-08577-5 (June 2020).spa
dc.relation.referencesAdamson, P. et al. Constraints on Oscillation Parameters from νe Appearance and νμ Dis- appearance in NOvA. Physical Review Letters 118, 231801 (June 2017).spa
dc.relation.referencesEberly, B. Muon Neutrino Charged Current Inclusive Charged Pion (CCπ±) Production in MINERvA. AIP Conf.Proc. 1663 (May 2015).spa
dc.relation.referencesNakajima, Y. A Measurement of Neutrino Charged Current Interactions and a Search for Muon Neutrino Disappearance with the Fermilab Booster Neutrino Beam. Nuclear Physics A 827, 524c–526c (Jan. 2009).spa
dc.relation.referencesGeorgi, H. & Glashow, S. L. Unified Weak and Electromagnetic Interactions without Neu- tral Currents. Physical Review Letters 28, 1494 (May 1972).spa
dc.relation.referencesAad, G. et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B 716, 1–29 (Sept. 2012).spa
dc.relation.referencesBreugelmans, N. Probing the charm quark yukawa coupling using machine learning algorithms MA thesis (Vrije Universiteit Brussel, 2021). https://iihe.ac.be/sites/default/files/ thesis-nordin-breugelmans-cms-master-2021pdf/thesis-nordin-breugelmans- cms-master-2021.pdf.spa
dc.relation.referencesHollik, W. Precision Tests of the Standard Model. Acta Physica Polonica B 30, 1787–1805 (Mar. 1993).spa
dc.relation.referencesKoberinski, A. “Fundamental” “Constants” and Precision Tests of the Standard Model. Phi- losophy of Science 89, 1255–1264 (Dec. 2022).spa
dc.relation.referencesMessier, M. D., Messier & D., M. Evidence for neutrino mass from observations of atmospheric neutrinos with Super-Kamiokande MA thesis (Boston University, 1999), 1141.spa
dc.relation.referencesLokhov, A. Direct neutrino-mass measurement based on 259 days of KATRIN data in (June 2024). https://agenda.infn.it/event/37867/contributions/234003.spa
dc.relation.referencesNucciotti, A. Present and future of direct neutrino mass experiments in (June 2024). https:// agenda.infn.it/event/37867/contributions/234004.spa
dc.relation.referencesDanby, G. et al. Observation of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos. Physical Review Letters 9, 36 (July 1962).spa
dc.relation.referencesKodama, K. et al. Observation of tau neutrino interactions. Physics Letters B 504, 218–224 (Apr. 2001).spa
dc.relation.referencesGiunti, C. & Kim, C. W. Fundamentals of Neutrino Physics and Astrophysics 1–728 (Oxford Uni- versity Press, Jan. 2007).spa
dc.relation.referencesPich, A. The Standard Model of Electroweak Interactions 2007. https://arxiv.org/abs/0705.4264.spa
dc.relation.referencesCharlton, D. G. LEP, SLC and the Standard Model in (Nov. 2002). https://arxiv.org/abs/ hep-ex/0211003v1.spa
dc.relation.referencesBellini, G., Ludhova, L., Ranucci, G. & Villante, F. L. Neutrino Oscillations. Advances in High Energy Physics 2014, 1–28 (2014).spa
dc.relation.referencesWester, T. et al. Atmospheric neutrino oscillation analysis with neutron tagging and an expanded fiducial volume in Super-Kamiokande I–V. Physical Review D 109 (Apr. 2024).spa
dc.relation.referencesFantini, G., Rosso, A. G., Vissani, F. & Zema, V. The formalism of neutrino oscillations: an introduction. The State of the Art of Neutrino Physics A Tutorial for Graduate Students and Young Researchers (ed of Bern) Ereditato, A. () 37–119. https://www.worldscientific.com/ doi/abs/10.1142/9789813226098_0002 (Feb. 2018).spa
dc.relation.referencesPontecorvo, B. Inverse beta processes and nonconservation of lepton charge. Zh. Eksp. Teor. Fiz. 34, 247 (1957).spa
dc.relation.referencesZuber, K. Neutrino Physics. ISBN: 9781032242200 (Taylor and Francis, 2020).spa
dc.relation.referencesWolfenstein, L. Neutrino oscillations in matter. Physical Review D 17, 2369 (May 1978).spa
dc.relation.referencesMikheyev, S. P. & Smirnov, A. Y. Resonant amplification of ν oscillations in matter and solar-neutrino spectroscopy. Il Nuovo Cimento C 9, 17–26 (Jan. 1986).spa
dc.relation.referencesNunokawa, H., Parke, S. & Valle, J. W. F. CP Violation and Neutrino Oscillations. Progress in Particle and Nuclear Physics 60, 338–402 (Oct. 2007).spa
dc.relation.referencesDe Salas, P. F. et al. 2020 global reassessment of the neutrino oscillation picture. Journal of High Energy Physics 2021 2021:2 2021, 1–36 (Feb. 2021).spa
dc.relation.referencesGlashow, S. L. The renormalizability of vector meson interactions. Nuclear Physics 10, 107– 117 (Feb. 1959).spa
dc.relation.referencesWeinberg, S. A Model of Leptons. Physical Review Letters 19, 1264. https://journals. aps.org/prl/abstract/10.1103/PhysRevLett.19.1264 (Nov. 1967).spa
dc.relation.referencesSalam, A. & Ward, J. Electromagnetic and weak interactions. Physics Letters 13, 168–171 (1964).spa
dc.relation.referencesGiusti, C. & Ivanov, M. V. Neutral Current Neutrino-Nucleus Scattering. Theory. Journal of Physics G: Nuclear and Particle Physics 47 (Aug. 2019).spa
dc.relation.referencesPatrick, C. E. Measurement of the Antineutrino Double-Differential Charged-Current Quasi-Elastic Scattering Cross Section at MINERvA PhD thesis (Northwestern University, 2016).spa
dc.relation.referencesSobczyk, J. T. Quasi-elastic Neutrino Scattering - an Overview. AIP Conference Proceedings 1405, 59–64 (Aug. 2011).spa
dc.relation.referencesAbe, K. et al. T2K neutrino flux prediction. Physical Review D - Particles, Fields, Gravitation and Cosmology 87, 012001 (Jan. 2013).spa
dc.relation.referencesStancu, I. et al. The MiniBooNE detector technical design report tech. rep. (Fermi National Ac- celerator Laboratory, Apr. 2003). https://lss.fnal.gov/archive/test-tm/2000/ fermilab-tm-2207.pdf.spa
dc.relation.referencesJudah, M. A. Dissertation measurement of the inclusive electron-neutrino charged-current cross section in the NOvA Near Detector PhD thesis (Fermi National Accelerator Laboratory, 2019). https: //www.osti.gov/biblio/1769398.spa
dc.relation.referencesSmith, C. H. L. Neutrino reactions at accelerator energies. Physics Reports 3, 261–379 (June 1972).spa
dc.relation.referencesFormaggio, J. A. & Zeller, G. P. From eV to EeV: Neutrino Cross Sections Across Energy Scales. Reviews of Modern Physics 84, 1307–1341. https://arxiv.org/abs/1305.7513v1 (May 2013).spa
dc.relation.referencesGraczyk, K. M. Resonance contribution to single pion production in neutrino-nucleon scattering in (Nov. 2008). https://arxiv.org/abs/0810.1247.spa
dc.relation.referencesAthar, M. S., Fatima, A. & Singh, S. K. Neutrinos and their interactions with matter. Progress in Particle and Nuclear Physics 129 (June 2022).spa
dc.relation.referencesSpentzouris, P., Spentzouris & Panagiotis. Deep Inelastic Scattering and neutrino physics. AIPC 435, 66–81 (May 1998).spa
dc.relation.referencesBarbaro, M. B. et al. The role of meson exchange currents in charged current (anti)neutrino- nucleus scattering. Nucl. Theor 35, 60–71 (Oct. 2016).spa
dc.relation.referencesOregui, B. T. Towards a measurement of neutral pion production in neutral current interactions with the NOνA near detector PhD thesis (2022). https : / / lss . fnal . gov / archive / thesis / 2000/fermilab-thesis-2022-14.pdf.spa
dc.relation.referencesKatori, T. Meson Exchange Current (MEC) Models in Neutrino Interaction Generators. AIP Conference Proceedings 1663 (Apr. 2013).spa
dc.relation.referencesNieves, J., Simo, I. R., Sánchez, F. & Vacas, M. J. V. 2p2h Excitations, MEC, Nucleon Cor- relations and Other Sources of QE-like Events. JPS Conf.Proc. 12 (Dec. 2016).spa
dc.relation.referencesWorkman, R. L. et al. Review of Particle Physics. PTEP 2022, 083C01 (2022).spa
dc.relation.referencesMa, W., Pinzon Guerra, E., Yu, M., Fiorentini, A. & Feusels, T. Current status of final-state interaction models and their impact on neutrino-nucleus interactions. Journal of Physics: Conference Series 888, 012171 (Sept. 2017).spa
dc.relation.referencesDytman, S. Final State Interactions in Neutrino-Nucleus Experiments. Acta Physica Polonica B - ACTA PHYS POL B 40 (Sept. 2009).spa
dc.relation.referencesAlvarez-Ruso, L. et al. NuSTEC White Paper: Status and Challenges of Neutrino-Nucleus Scattering. Progress in Particle and Nuclear Physics 100, 1–68 (June 2017).spa
dc.relation.referencesTeppei, K. Cross section analyses in MiniBooNE and SciBooNE experiments. AIP Conference Proceedings 1663, 020001 (May 2015).spa
dc.relation.referencesAguilar-Arevalo, A. A. et al. Measurement of Neutrino-Induced Charged-Current Charged Pion Production Cross Sections on Mineral Oil at E{ν} ∼ 1{GeV }. Physical Review D - Particles, Fields, Gravitation and Cosmology 83 (Nov. 2010).spa
dc.relation.referencesYue, C.-X., Cheng, X.-J. & Yang, J.-C. Charged-current non-standard neutrino interactions at the LHC and HL-LHC. Chinese Physics C 47 (Oct. 2021).spa
dc.relation.referencesLeitner, T., Alvarez-Ruso, L. & Mosel, U. Charged Current Neutrino Nucleus Interactions at Intermediate Energies. Physical Review C - Nuclear Physics 73 (Jan. 2006).spa
dc.relation.referencesMcGivern, C. L. et al. Cross sections for νμ and ν μ induced pion production on hydrocarbon in the few-GeV region using MINERvA. Physical Review D 94, 052005 (Sept. 2016).spa
dc.relation.referencesAyres, D. S. et al. NOvA Proposal to Build a 30 Kiloton Off-Axis Detector to Study Neu- trino Oscillations in the Fermilab NuMI Beamline. https : / / arxiv . org / abs / hep - ex/0503053v1 (Mar. 2005).spa
dc.relation.referencesAdamson, P. et al. The MINOS Detectors Technical Design Report. https://lss.fnal. gov/archive/design/fermilab-design-1998-02.pdf (Sept. 1998).spa
dc.relation.referencesFermilab History and Archives, Experiments and Discoveries https : / / history . fnal . gov / historical/experiments/nova_sees_first_neutrinos.html.spa
dc.relation.referencesThe Fermilab Main Injector Technical Design Handbook. http : / / www . osti . gov / servlets/purl/1127909/ (Aug. 1994).spa
dc.relation.referencesFermilab Galleries https://vms.fnal.gov/gallery.spa
dc.relation.referencesThe NuMI Technical Design Handbook tech. rep. (2002). https://lss.fnal.gov/archive/ design/fermilab-design-1998-01.pdf.spa
dc.relation.referencesAdamson, P. et al. The NuMI Neutrino Beam. Nuclear Instruments and Methods in Physics Re- search, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 806, 279–306. http://arxiv.org/abs/1507.06690 (July 2015).spa
dc.relation.referencesAcero, M. A. et al. First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA. Physical Review Letters 123, 25 (June 2019).spa
dc.relation.referencesCooleybeck, A. Blessing package for ND All POT plots. NOvA internal Document, DocDB 62927- v1 (2024).spa
dc.relation.referencesAcero, M. A. Measurement of the neutrino oscillation parameters by NOvA. Journal of Physics: Conference Series 1219, 012021 (May 2019).spa
dc.relation.referencesNOvA turns its eyes to the skies https://news.fnal.gov/2020/11/nova-turns-its- eyes-to-the-skies/.spa
dc.relation.referencesFermilab History and Archives Experiments and Discoveries https : / / history . fnal . gov / historical/experiments/nova_sees_first_neutrinos.html.spa
dc.relation.referencesMufson, S. et al. Liquid scintillator production for the NOvA experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equip- ment 799, 1–9 (Apr. 2015).spa
dc.relation.referencesKuraray America Inc. Plastic Scintillating Fibers http://kuraraypsf.jp/psf/.spa
dc.relation.referencesHamamatsu Photonics. photodiode S1227-1010BR https://www.hamamatsu.com/us/en/ product/optical-sensors/photodiodes/si-photodiodes/S1227-1010BR.html.spa
dc.relation.referencesBehera, B. Tracking Detector Performance and Data Quality in the NOvA Experiment. Pro- ceedings of the 2017 Meeting of the APS Division of Particles and Fields, DPF 2017 (Oct. 2017).spa
dc.relation.referencesLu, N. Q., Biery, K. A., Kowalkowski, J. B. & Norman, A. The NOvA Data Acquisition System. Journal of Physics: Conference Series 396, 012035 (Dec. 2012).spa
dc.relation.referencesAliaga, L. et al. Neutrino Flux Predictions for the NuMI Beam. Physical Review D 94. http: //dx.doi.org/10.1103/PhysRevD.94.092005 (July 2016).spa
dc.relation.referencesAgostinelli, S. et al. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250–303 (July 2003).spa
dc.relation.referencesYonehara, K., Ganguly, S., Wickremasinghe, D. A., Snopok, P. & Yu, Y. Exploring the Focusing Mechanism of the NuMI Horn Magnets 2023. https://arxiv.org/abs/2305.08695.spa
dc.relation.referencesYu, Y. et al. NuMI Beam Monitoring Simulation and Data Analysis. Physical Sciences Forum 8. https://www.mdpi.com/2673-9984/8/1/73 (2023).spa
dc.relation.referencesAndreopoulos, C. et al. The GENIE Neutrino Monte Carlo Generator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 614, 87–104 (May 2009).spa
dc.relation.referencesHagmann, C., Lange, D. & Wright, D. Cosmic-ray shower generator (CRY) for Monte Carlo transport codes. IEEE Nuclear Science Symposium Conference Record 2, 1143–1146 (2007).spa
dc.relation.referencesAurisano, A. The NOvA Detector Simulation. NOvA Internal Document, DocDb 13577.spa
dc.relation.referencesAurisano, A. et al. The NOvA simulation chain. J.Phys.Conf.Ser. 664 (2015).spa
dc.relation.referencesBaird, M. et al. Event Reconstruction Techniques in NOvA. Journal of Physics: Conference Series 664, 072035 (Dec. 2015).spa
dc.relation.referencesPershey, D. Tdslicer Technote. NOvA Internal Technote, DocDb 27689 (2020).spa
dc.relation.referencesFernandes, L. A. & Oliveira, M. M. Real-time line detection through an improved Hough transform voting scheme. Pattern Recognition 41, 299–314 (Jan. 2008).spa
dc.relation.referencesGyulassy, M. & Harlander, M. Elastic tracking and neural network algorithms for complex pattern recognition. Computer Physics Communications 66, 31–46 (July 1991).spa
dc.relation.referencesOhlsson, M., Peterson, C. & Yuille, A. L. Track finding with deformable templates — the elastic arms approach. Computer Physics Communications 71, 77–98 (Aug. 1992).spa
dc.relation.referencesYang, M. S. & Wu, K. L. Unsupervised possibilistic clustering. Pattern Recognition 39, 5–21 (Jan. 2006).spa
dc.relation.referencesPal, N. R., Pal, K., Keller, J. M. & Bezdek, J. C. A possibilistic fuzzy c-means clustering algorithm. IEEE Transactions on Fuzzy Systems 13, 517–530 (2005).spa
dc.relation.referencesKrane, K. Introductory Nuclear Physics ISBN: 978-0-471-80553-3 (John Wiley and Sons, Jan. 1991).spa
dc.relation.referencesWhat Is the Purpose of a Feature Map in a Convolutional Neural Network May 2023. https:// www.baeldung.com/cs/cnn-feature-map.spa
dc.relation.referencesHolland, K. Understanding the RGB Color Code: A Comprehensive Guide June 2024. https://www. askhandle.com/blog/understanding-the-rgb-color-code--a-comprehensive- guide.spa
dc.relation.referencesAurisano, A. et al. A Convolutional Neural Network Neutrino Event Classifier. Journal of Instrumentation 11 (Apr. 2016).spa
dc.relation.referencesSandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. MobileNetV2: Inverted Resid- uals and Linear Bottlenecks 2019. arXiv: 1801.04381 [cs.CV].spa
dc.relation.referencesPsihas, F. et al. Context-Enriched Identification of Particles with a Convolutional Network for Neutrino Events. Physical Review D 100 (June 2019).spa
dc.relation.referencesPsihas, F. Measurement of Long Baseline Neutrino Oscillations and Improvements from Deep Learning PhD thesis (Indiana University, Jan. 2018). https://www.osti.gov/biblio/1437288.spa
dc.relation.referencesClaude Sammut, G. W. Encyclopedia of Machine Learning (Springer New York, NY, 2011).spa
dc.relation.referencesValassi, A. ROC curves, AUC’s and alternatives in HEP event selection and in other domains in (Jan. 2018). https://indico.cern.ch/event/679765/contributions/2814562/attachments/ 1590383/2516547/20180126-ROC-AV-IML_v008_final.pdf.spa
dc.relation.referencesKlaus Reygers, S. N. Statistical Methods in Particle Physics in (2017). https://www.physi. uni-heidelberg.de/~reygers/lectures/2017/smipp/stat_methods_ss2017_08_ multivariate_analysis.pdf.spa
dc.relation.referencesEvaluating Classification Models: Understanding the Confusion Matrix and ROC Curves Dec. 2023. https://statisticallyrelevant.com/confusion-matrix-and-roc-curves/.spa
dc.relation.referencesBercellie, A. et al. Simultaneous measurement of muon neutrino νµ charged-current single π+ production in CH, C, H2O, Fe, and Pb targets in MINERvA. Physical Review Letters 131 (Sept. 2022).spa
dc.relation.referencesLe, T. et al. Single neutral pion production by charged-current¯ {ν}µ interactions on hydro- carbon at Eν =3.6 GeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 749, 130–136 (Mar. 2015).spa
dc.relation.referencesAltinok, O. et al. Measurement of ν{µ} charged-current single π{0} production on hydro- carbon in the few-GeV region using MINERvA. Physical Review D 96 (Aug. 2017).spa
dc.relation.referencesGreiner, W. Relativistic Quantum Mechanics. Wave Equations (Springer Berlin Heidelberg, 2000).spa
dc.relation.referencesBjorken, J. D. & Drell, S. D. Relativistic quantum fields ISBN: 0700549404 (McGraw-Hill, 1965).spa
dc.relation.referencesAcero, M. A. et al. Measurement of the νe−Nucleus Charged-Current Double-Differential Cross Section at ⟨Eν ⟩=2.4 GeV using NOvA. Physical Review Letters 130 (June 2022).spa
dc.relation.referencesKuruppu, C., Paley, J. & Petti, R. Measurement of the MuonNeutrino Charged Current Cross Section in the NOvA Near Detector. NOvA internal Document, DocDB 58198-v3 (2023).spa
dc.relation.referencesBackhouse, C. The CAFAna Framework. NOvA internal Technote, DocDB 9222-v4 (2014).spa
dc.relation.referencesCAFAna Framework · GitHub https://github.com/cafana/.spa
dc.relation.referencesBrun, R. & Rademakers, F. ROOT: An object oriented data analysis framework. Nucl.In- strum.Meth.A 389, 81–86 (Apr. 1997).spa
dc.relation.referencesMosel, U. & Gallmeister, K. Muon-neutrino-induced charged-current pion production on nuclei. Phys. Rev. C 96, 015503. https://link.aps.org/doi/10.1103/PhysRevC.96. 015503 (July 2017).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc539.72162spa
dc.subject.ddc530 - Físicaspa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lccPionseng
dc.subject.lccPion productioneng
dc.subject.lccMuonseng
dc.subject.lembMesones (Física nuclear) -- Métodos de simulacióneng
dc.subject.lembMesons -- Simulation Methodseng
dc.subject.lembFísica nuclear -- Investigaciones -- Colombiaspa
dc.subject.lembNuclear physics -- Researcheng
dc.subject.lembTesis y disertaciones académicasspa
dc.subject.lembDissertations, Academiceng
dc.subject.lembExperimentación científicaspa
dc.subject.lembScience -- Experimentseng
dc.subject.otherPionesspa
dc.subject.otherPiones -- Producciónspa
dc.subject.otherMuonesspa
dc.subject.otherMesones (Partículas)spa
dc.subject.proposalNeutrino-nucleus Interactionseng
dc.subject.proposalInteracciones neutrino-núcleospa
dc.subject.proposalCharged pionseng
dc.subject.proposalPiones cargadosspa
dc.subject.proposalReconstruction algorithmseng
dc.subject.proposalAlgoritmos de reconstrucciónspa
dc.subject.proposalConvolutional visual network classifiereng
dc.subject.proposalClasificador de red visual convolucionalspa
dc.subject.wikidataMuon neutrinoeng
dc.subject.wikidataNeutrino muónicospa
dc.titleStudies of charged pions produced during neutrino-nucleus Final State Interactions using the NOvA experiment simulation and reconstruction toolseng
dc.title.translatedEstudios de piones cargados producidos durante las interacciones finales neutrino-núcleo utilizando las herramientas de simulación y reconstrucción del experimento NOvAspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1070985933.2025.pdf
Tamaño:
20.48 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: