Caracterización de la vía de señalización intracelular mediada por IGF2R en trofoblasto humano

dc.contributor.advisorUmaña Pérez, Yadi Adrianaspa
dc.contributor.authorCastro Badilla, Juan Joséspa
dc.contributor.researchgroupGrupo de Investigación en Hormonasspa
dc.date.accessioned2021-10-25T15:27:11Z
dc.date.available2021-10-25T15:27:11Z
dc.date.issued2021-04-23
dc.descriptionilustraciones, fotografías, gráficasspa
dc.description.abstractEl factor de crecimiento similar a la insulina tipo 2, IGF2, ejerce acciones a través de los receptores de la familia IGF incluyendo el receptor tipo 1 (IGF1R), el receptor de insulina (IR) y los híbridos IGF1R/IR. Preferentemente, su acción es mediada a través del receptor IGF1R modulando rutas de señalización intracelulares esenciales en procesos como la proliferación, migración o invasión celular, eventos que son de carácter crucial en las manifestaciones patológicas originadas en el trofoblasto, tales como la enfermedad trofoblástica gestacional, molas, preeclampsia o la restricción de crecimiento intrauterino, siendo estas complicaciones un problema actual para la salud pública del país. Se ha descrito que en tejido de mola la expresión de IGF2 se encuentra elevada y, además, que participa activamente en el proceso de la embriogénesis. La regulación de la biodisponibilidad de este ligando se atribuye, entre otros, a la unión con el receptor IGF2R, el cual lo internaliza para su degradación. Sin embargo, hace más de una década existe controversia sobre si esta interacción lGF2/IGF2R puede desencadenar una vía de señalización que participe en los procesos celulares descritos anteriormente. En este orden de ideas, para explorar si existe una vía de señalización dependiente de IGF2R, sin la activación directa de los otros receptores de la familia, se usó como estrategia estimular células derivadas de trofoblasto humano HTR-8/SVneo con Leu27IGF2, péptido análogo de IGF2, que se une exclusivamente al IGF2R. La inducción de las células con el análogo generó una activación temprana de las proteínas ERK1 y 2 mayor a la inducida por el IGF2. Se observó un incremento en los niveles de transcripción de MMP-9 de carácter tiempo-dependiente de Leu27IGF2 y anticipado con respecto al péptido IGF2, concordante con un aumento temprano de la actividad gelatinasa de MMP-9. Se determinó que la interacción de IGF2R con Leu27IGF2 generó un incremento significativo del 20%, 13% y 23% en adhesión, migración y proliferación celular respectivamente. Resultados que nos sugieren que el IGF2 en células de trofoblasto, activa al receptor IGF2R y al menos una ruta de señalización, como la de MAPKs, involucrada en el aumento de la activación de proteínas y transcripción de genes que favorecen la adhesión, migración e invasión celular durante la implantación blastocística. (Texto tomado de la fuente).spa
dc.description.abstractThe insulin-like growth fact or type 2, IGF2, exerts actions through receptors in the IGF family including the type 1 receptor (IGF1R), the insulin receptor (IR) and IGF1R/IR hybrids. Preferably, its action is mediated through the IGF1R receptor modulating intracellular signaling pathways essential in processes such as cell proliferation, migration or invasion, events that are crucial in the pathological manifestations originated by the trophoblast, such as gestational trophoblastic diseases, moles, preeclampsia or intrauterine growth restriction, being these complications a current problem for the public health of the country. It has been described that the expression of IGF2 in mole tissue is high and, in addition, that it actively participates in the embryogenesis process. The regulation of the bioavailability of this ligand is attributed, among others, to the binding with the IGF2R receptor which internalizes it for degradation. However, for more than a decade there has been controversy about whether this interaction lGF2/IGF2R can trigger a signaling pathway involved in the cellular processes described above. In this order of ideas to explore if there is an IGF2R-dependent signaling pathway, without the direct activation of the other receptors of the family, a strategy was used to stimulate cells derived from human trophoblast HTR-8/SVneo with Leu27IGF2, an analogous peptide of IGF2, which binds exclusively to IGF2R. The induction of cells with the analogue generated a higher early activation of ERK1 and 2 proteins compared to that induced by IGF2. Similarly, an increase in the transcription levels of Leu27IGF2-dependent and anticipated MMP-9 with respect to IGF2 peptide was observed, consistent with an early increase in MMP-9 gelatinase activity. It was determined that interaction of IGF2R with Leu27IGF2 generated a significant increase of approximately 20%, 13% and 23% in adhesion, migration and cell proliferation respectively with respect to basal condition. These results suggest that IGF2 in trophoblast cells activates the IGF2R receptor and at least one signaling pathway, such as MAPKs, involved in increased protein activation and gene transcription that favor cell adhesion, migration and invasion during blastocyst implantation.eng
dc.description.curricularareaDepartamento de Químicaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Bioquímicaspa
dc.description.researchareaFactores de crecimiento, diferenciación y cáncerspa
dc.format.extentxvii, 74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80608
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Bioquímicaspa
dc.relation.references1. Apps R, Sharkey A, Gardner L, Male V, Trotter M, Miller N, et al. Genome-wide expression profile of first trimester villous and extravillous human trophoblast cells. Placenta. 2011;32: 33–43. doi:10.1016/j.placenta.2010.10.010spa
dc.relation.references2. Heidari Z, Sheibak N. Trophoblast Giant Cells, the Prime Suspects of Deficient Placentation Associated With Pregnancy Complications. Gene Cell Tissue. 2016;3: e38516. doi:10.17795/gct-38516spa
dc.relation.references3. Lunghi L, Ferretti ME, Medici S, Biondi C, Vesce F. Control of human trophoblast function. Reprod Biol Endocrinol RBE. 2007;5: 6. doi:10.1186/1477-7827-5-6spa
dc.relation.references4. Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knofler M. Regulation of Placental Extravillous Trophoblasts by the Maternal Uterine Environment. Front Immunol. 2018;9: 2597. doi:10.3389/fimmu.2018.02597spa
dc.relation.references5. Khan MA, Manna S, Malhotra N, Sengupta J, Ghosh D. Expressional regulation of genes linked to immunity & programmed development in human early placental villi. Indian J Med Res. 2014;139: 125–140spa
dc.relation.references6. Mutter WP, Karumanchi SA. Molecular mechanisms of preeclampsia. Microvasc Res. 2008;75: 1–8. doi:10.1016/j.mvr.2007.04.009spa
dc.relation.references7. Pennington KA, Schlitt JM, Jackson DL, Schulz LC, Schust DJ. Preeclampsia: multiple approaches for a multifactorial disease. Dis Model Mech. 2012;5: 9–18. doi:10.1242/dmm.008516spa
dc.relation.references8. Monchek R, Wiedaseck S. Gestational trophoblastic disease: an overview. J Midwifery Womens Health. 2012;57: 255–259. doi:10.1111/j.1542-2011.2012.00177.xspa
dc.relation.references9. Fisher SJ. Why is placentation abnormal in preeclampsia? Am J Obstet Gynecol. 2015;213: S115-122. doi:10.1016/j.ajog.2015.08.042spa
dc.relation.references10. Alcaldía Mayor de Bogotá DC. Guía de trastornos hipertensivos del embarazo. 2014. Available: http://www.saludcapital.gov.co/DDS/Publicaciones/Guia%20MaternidadTrastornos_baja.pdfspa
dc.relation.references11. Cortés C, Ching R, Rodríguez A, León H, Capasso S, Lozano F, et al. La mola hidatidiforme: un indicador de la situación sociodemográfica en salud sexual y reproductiva. Inf Quinc Epidemiol Nac. 2003;12: 193–208.spa
dc.relation.references12. Gratton RJ, Asano H, Han VKM. The regional expression of insulin-like growth factor II (IGF-II) and insulin-like growth factor binding protein-1 (IGFBP-1) in the placentae of women with pre-eclampsia. Placenta. 2002;23: 303–310. doi:10.1053/plac.2001.0780spa
dc.relation.references13. Gurel D, Ozer E, Altunyurt S, Guclu S, Demir N. Expression of IGR-IR and VEGF and trophoblastic proliferative activity in placentas from pregnancies complicated by IUGR. Pathol Res Pract. 2003;199: 803–809. doi:10.1078/0344-0338-00499spa
dc.relation.references14. Livingstone C. IGF2 and cancer. Endocr Relat Cancer. 2013;20: R321-339. doi:10.1530/ERC-13-0231spa
dc.relation.references15. Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer. 2012;12: 159–169. doi:10.1038/nrc3215spa
dc.relation.references16. Gary-Bobo M, Nirdé P, Jeanjean A, Morère A, Garcia M. Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr Med Chem. 2007;14: 2945–2953. doi:10.2174/092986707782794005spa
dc.relation.references17. Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol. 2003;4: 202–212. doi:10.1038/nrm1050spa
dc.relation.references18. Leksa V, Ilkova A, Vicikova K, Stockinger H. Unravelling novel functions of the endosomal transporter mannose. Immunol Lett. 2017;190: 194–200. doi:10.1016/j.imlet.2017.08.011spa
dc.relation.references19. Zaina S, Squire S. The soluble type 2 insulin-like growth factor (IGF-II) receptor reduces organ size by IGF-II-mediated and IGF-II-independent mechanisms. J Biol Chem. 1998;273: 28610–28616. doi:10.1074/jbc.273.44.28610spa
dc.relation.references20. Leksa V, Loewe R, Binder B, Schiller HB, Eckerstorfer P, Forster F, et al. Soluble M6P/IGF2R released by TACE controls angiogenesis via blocking plasminogen activation. Circ Res. 2011;108: 676–685. doi:10.1161/CIRCRESAHA.110.234732spa
dc.relation.references21. Vishwamitra D, George SK, Shi P, Kaseb AO, Amin HM. Type I insulin-like growth factor receptor signaling in hematological malignancies. Oncotarget. 2017;8: 1814–1844. doi:10.18632/oncotarget.12123spa
dc.relation.references22. McKinnon T, Chakraborty C, Gleeson LM, Chidiac P, Lala PK. Stimulation of human extravillous trophoblast migration by IGF-II is mediated by IGF type 2 receptor involving inhibitory G protein(s) and phosphorylation of MAPK. J Clin Endocrinol Metab. 2001;86: 3665–3674. doi:10.1210/jcem.86.8.7711spa
dc.relation.references23. Harris LK, Crocker IP, Baker PN, Aplin JD, Westwood M. IGF2 actions on trophoblast in human placenta are regulated by the insulin-like growth factor 2 receptor, which can function as both a signaling and clearance receptor. Biol Reprod. 2011;84: 440–446. doi:10.1095/biolreprod.110.088195spa
dc.relation.references24. Harris LK, Pantham P, Yong HEJ, Pratt A, Borg AJ, Crocker I, et al. The role of insulinlike growth factor 2 receptor-mediated homeobox gene expression in human placental apoptosis, and its implications in idiopathic fetal growth restriction. Mol Hum Reprod. 2019;25: 572–585. doi:10.1093/molehr/gaz047spa
dc.relation.references25. Kaku K, Osada H, Seki K, Sekiya S. Insulin-like growth factor 2 (IGF2) and IGF2 receptor gene variants are associated with fetal growth. Acta Paediatr Oslo Nor 1992. 2007;96: 363–367. doi:10.1111/j.1651-2227.2006.00120.xspa
dc.relation.references26. Holtan SG, Creedon DJ, Haluska P, Markovic SN. Cancer and pregnancy: parallels in growth, invasion, and immune modulation and implications for cancer therapeutic agents. Mayo Clin Proc. 2009;84: 985–1000. doi:10.1016/S0025-6196(11)60669-1spa
dc.relation.references27. Graham CH, Hawley TS, Hawley RG, MacDougall JR, Kerbel RS, Khoo N, et al. Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp Cell Res. 1993;206: 204–211. doi:10.1006/excr.1993.1139spa
dc.relation.references28. American Type Culture Collection. HTR-8/SVneo (ATCC® CRL-3271TM). [cited 18 Jan 2020]. Available: https://www.atcc.org/Products/All/CRL-3271.aspx#spa
dc.relation.references29. Rai A, Cross JC. Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry. Dev Biol. 2014;387: 131–141. doi:10.1016/j.ydbio.2014.01.015spa
dc.relation.references30. Sakano K, Enjoh T, Numata F, Fujiwara H, Marumoto Y, Higashihashi N, et al. The design, expression, and characterization of human insulin-like growth factor II (IGF-II) mutants specific for either the IGF-II/cation-independent mannose. J Biol Chem. 1991;266: 20626–20635spa
dc.relation.references31. GroPep. GroPep Bioreagents IGF Analogues. In: Human [Leu27]IGF-II [Internet]. [cited 6 May 2020]. Available: https://gropep.com/product_families/igfanalogues/products/human-leu27-igf-ii--7spa
dc.relation.references32. Forbes BE, Hartfield PJ, McNeil KA, Surinya KH, Milner SJ, Cosgrove LJ, et al. Characteristics of binding of insulin-like growth factor (IGF)-I and IGF-II analogues to the type 1 IGF receptor determined by BIAcore analysis. Eur J Biochem. 2002;269: 961–968. doi:10.1046/j.0014-2956.2001.02735.xspa
dc.relation.references33. Oh Y, Müller HL, Zhang H, Ling N, Rosenfeld RG. Synthesis and characterization of IGF-II analogs: applications in the evaluation of IGF receptor function and IGFindependent actions of IGFBPs. Adv Exp Med Biol. 1993;343: 41–54. doi:10.1007/978- 1-4615-2988-0_5spa
dc.relation.references34. Howell KR, Powell TL. Effects of maternal obesity on placental function and fetal development. Reprod Camb Engl. 2017;153: R97–R108. doi:10.1530/REP-16-0495spa
dc.relation.references35. Scott CD, Kiess W. Soluble M6P/IGFIIR in the circulation. Best Pract Res Clin Endocrinol Metab. 2015;29: 723–733. doi:10.1016/j.beem.2015.08.001spa
dc.relation.references36. Jeyaratnaganthan N, Hojlund K, Kroustrup JP, Larsen JF, Bjerre M, Levin K, et al. Circulating levels of insulin-like growth factor-II/mannose-6-phosphate receptor in obesity and type 2 diabetes. Growth Horm IGF Res Off J Growth Horm Res Soc Int IGF Res Soc. 2010;20: 185–191. doi:10.1016/j.ghir.2009.12.005spa
dc.relation.references37. Molfino A, Amabile MI, Monti M, Arcieri S, Rossi Fanelli F, Muscaritoli M. The Role of Docosahexaenoic Acid (DHA) in the Control of Obesity and Metabolic Derangements in Breast Cancer. Int J Mol Sci. 2016;17: 505. doi:10.3390/ijms17040505spa
dc.relation.references38. Staun-Ram E, Shalev E. Human trophoblast function during the implantation process. Reprod Biol Endocrinol RBE. 2005;3: 56. doi:10.1186/1477-7827-3-56spa
dc.relation.references39. Bischof P, Irminger-Finger I. The human cytotrophoblastic cell, a mononuclear chameleon. Int J Biochem Cell Biol. 2005;37: 1–16. doi:10.1016/j.biocel.2004.05.014spa
dc.relation.references40. Moffett A, Loke C, McLaren A, editors. Biology and Pathology of Trophoblast. Cambridge: Cambridge University Press; 2006. doi:10.1017/CBO9780511545207spa
dc.relation.references41. Hanssens S, Salzet M, Vinatier D. Aspectos inmunológicos de la gestación. EMC - Ginecol-Obstet. 2013;49: 1–21. doi:10.1016/S1283-081X(13)64079-5spa
dc.relation.references42. American Cancer Society. What Is Gestational Trophoblastic Disease? Available: https://www.cancer.org/cancer/gestational-trophoblastic-disease/about/what-isgtd.htmlspa
dc.relation.references43. Alfredo López Cousillas JME. Enfermedad Trofoblástica Gestacional. Aspectos Clínicos y Morfológicos. Rev Esp Patol. 2002;35: 187–200.spa
dc.relation.references44. Shaaban AM, Rezvani M, Haroun RR, Kennedy AM, Elsayes KM, Olpin JD, et al. Gestational Trophoblastic Disease: Clinical and Imaging Features. RadioGraphics. 2017;37: 681–700. doi:10.1148/rg.2017160140spa
dc.relation.references45. Le Bret T, Tranbaloc P, Benbunan J-L, Salet-Lizée D, Villet R. [Endometrial choriocarcinoma in peri-menopausal women]. J Gynecol Obstet Biol Reprod (Paris). 2005;34: 85–89. doi:10.1016/s0368-2315(05)82674-2spa
dc.relation.references46. Sierra-Bergua B, Sánchez-Marteles M, Cabrerizo-García JL, Sanjoaquin-Conde I. Choriocarcinoma with pulmonary and cerebral metastases. Singapore Med J. 2008;49: e286-288spa
dc.relation.references47. Caniggia I, Winter J, Lye SJ, Post M. Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta. 2000;21 Suppl A: S25-30. doi:10.1053/plac.1999.0522spa
dc.relation.references48. Nathanielsz PW. Animal models that elucidate basic principles of the developmental origins of adult diseases. ILAR J. 2006;47: 73–82. doi:10.1093/ilar.47.1.73spa
dc.relation.references49. Nardozza LMM, Caetano ACR, Zamarian ACP, Mazzola JB, Silva CP, Marçal VMG, et al. Fetal growth restriction: current knowledge. Arch Gynecol Obstet. 2017;295: 1061– 1077. doi:10.1007/s00404-017-4341-9spa
dc.relation.references50. Barker DJP. Fetal programming of coronary heart disease. Trends Endocrinol Metab TEM. 2002;13: 364–368. doi:10.1016/s1043-2760(02)00689-6spa
dc.relation.references51. Sánchez-Gómez M. Entendiendo el papel del sistema de factores de crecimiento similares a la insulin (IGF) en la regulacion funcional del trofoblasto humano. Rev Acad Colomb Cienc Exactas Fis Nat. 2014;38: 118+spa
dc.relation.references52. Diaz LE, Chuan Y-C, Lewitt M, Fernandez-Perez L, Carrasco-Rodriguez S, SanchezGomez M, et al. IGF-II regulates metastatic properties of choriocarcinoma cells through the activation of the insulin receptor. Mol Hum Reprod. 2007;13: 567–576. doi:10.1093/molehr/gam039spa
dc.relation.references53. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993;75: 73–82spa
dc.relation.references54. Kumar N, Leverence J, Bick D, Sampath V. Ontogeny of growth-regulating genes in the placenta. Placenta. 2012;33: 94–99. doi:10.1016/j.placenta.2011.11.018spa
dc.relation.references55. Hamilton GS, Lysiak JJ, Han VK, Lala PK. Autocrine-paracrine regulation of human trophoblast invasiveness by insulin-like growth factor (IGF)-II and IGF-binding protein (IGFBP)-1. Exp Cell Res. 1998;244: 147–156. doi:10.1006/excr.1998.4195spa
dc.relation.references56. Chen H, Li Y, Shi J, Song W. Role and mechanism of insulin-like growth factor 2 on the proliferation of human trophoblasts in vitro. J Obstet Gynaecol Res. 2016;42: 44–51. doi:10.1111/jog.12853spa
dc.relation.references57. Clemmons DR, Busby WH, Arai T, Nam TJ, Clarke JB, Jones JI, et al. Role of insulinlike growth factor binding proteins in the control of IGF actions. Prog Growth Factor Res. 1995;6: 357–366. doi:10.1016/0955-2235(95)00013-5spa
dc.relation.references58. Baxter RC. Changes in the IGF-IGFBP axis in critical illness. Best Pract Res Clin Endocrinol Metab. 2001;15: 421–434. doi:10.1053/beem.2001.0161spa
dc.relation.references59. Massoner P, Ladurner-Rennau M, Eder IE, Klocker H. Insulin-like growth factors and insulin control a multifunctional signalling network of significant importance in cancer. Br J Cancer. 2010;103: 1479–1484. doi:10.1038/sj.bjc.6605932spa
dc.relation.references60. Forbes K, Westwood M, Baker PN, Aplin JD. Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. Am J Physiol Cell Physiol. 2008;294: C1313-1322. doi:10.1152/ajpcell.00035.2008spa
dc.relation.references61. Pombo M, Audí L, Bueno M, Calzada R, Cassorla F, Diéguez C, et al. Tratado de Endocrinología Pediátrica. 4o edición. España: McGRAW-HILL; 2009.spa
dc.relation.references62. O’Dell SD, Day INM. Molecules in focus Insulin-like growth factor II (IGF-II). Int J Biochem Cell Biol. 1998;30: 767–771. doi:10.1016/S1357-2725(98)00048-Xspa
dc.relation.references63. Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92: 1472–1489. doi:10.1093/jnci/92.18.1472spa
dc.relation.references64. Vu TH, Hoffman AR. Promoter-specific imprinting of the human insulin-like growth factor-II gene. Nature. 1994;371: 714–717. doi:10.1038/371714a0spa
dc.relation.references65. Harrela M, Koistinen H, Kaprio J, Lehtovirta M, Tuomilehto J, Eriksson J, et al. Genetic and environmental components of interindividual variation in circulating levels of IGFI, IGF-II, IGFBP-1, and IGFBP-3. J Clin Invest. 1996;98: 2612–2615. doi:10.1172/JCI119081spa
dc.relation.references66. Bergman D, Bergman D, Halje M, Nordin M, Engström W. Insulin-Like Growth Factor 2 in Development and Disease: A Mini-Review. Gerontology. 2013;59: 240–249. doi:10.1159/000343995spa
dc.relation.references67. Chao W, D’Amore PA. IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 2008;19: 111–120. doi:10.1016/j.cytogfr.2008.01.005spa
dc.relation.references68. Krauss G. Biochemistry of Signal Transduction and Regulation. 5th edition. Germany: Wiley-VHC; 2014.spa
dc.relation.references69. Iniguez G, Castro JJ, Garcia M, Kakarieka E, Johnson MC, Cassorla F, et al. IGF-IR signal transduction protein content and its activation by IGF-I in human placentas: relationship with gestational age and birth weight. PloS One. 2014;9: e102252. doi:10.1371/journal.pone.0102252spa
dc.relation.references70. Iñiguez G, Cassorla F. Expresión y contenido placentario de los componentes del eje somatotrófico en niños con alteraciones del crecimiento fetal. Rev Esp Endocrinol Pediatr. 2012;3 Suppl(1): 33–37. doi:10.3266/RevEspEndocrinolPediatr.pre2012.Apr.96spa
dc.relation.references71. Brown J, Delaine C, Zaccheo OJ, Siebold C, Gilbert RJ, van Boxel G, et al. Structure and functional analysis of the IGF-II/IGF2R interaction. EMBO J. 2008;27: 265–276. doi:10.1038/sj.emboj.7601938spa
dc.relation.references72. El-Shewy HM, Luttrell LM. Insulin-like growth factor-2/mannose-6 phosphate receptors. Vitam Horm. 2009;80: 667–697. doi:10.1016/S0083-6729(08)00624-9spa
dc.relation.references73. Fang J, Furesz TC, Lurent RS, Smith CH, Fant ME. Spatial polarization of insulin-like growth factor receptors on the human syncytiotrophoblast. Pediatr Res. 1997;41: 258– 265. doi:10.1203/00006450-199702000-00017spa
dc.relation.references74. Gary-Bobo M, Nirdé P, Jeanjean A, Morère A, Garcia M. Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr Med Chem. 2007;14: 2945–2953. doi:10.2174/092986707782794005spa
dc.relation.references75. Ou J-M, Lian W-S, Qiu M-K, Dai Y-X, Dong Q, Shen J, et al. Knockdown of IGF2R suppresses proliferation and induces apoptosis in hemangioma cells in vitro and in vivo. Int J Oncol. 2014;45: 1241–1249. doi:10.3892/ijo.2014.2512spa
dc.relation.references76. Weiner JA, Chen A, Davis BH. E-box-binding repressor is down-regulated in hepatic stellate cells during up-regulation of mannose 6-phosphate/insulin-like growth factor-II receptor expression in early hepatic fibrogenesis. J Biol Chem. 1998;273: 15913– 15919. doi:10.1074/jbc.273.26.15913spa
dc.relation.references77. Chen W-K, Kuo W-W, Hsieh DJ-Y, Chang H-N, Pai P-Y, Lin K-H, et al. CREB Negatively Regulates IGF2R Gene Expression and Downstream Pathways to Inhibit Hypoxia-Induced H9c2 Cardiomyoblast Cell Death. Int J Mol Sci. 2015;16: 27921– 27930. doi:10.3390/ijms161126067spa
dc.relation.references78. Hinrichs S, Heger J, Schreckenberg R, Wenzel S, Euler G, Arens C, et al. Controlling cardiomyocyte length: the role of renin and PPAR-{gamma}. Cardiovasc Res. 2011;89: 344–352. doi:10.1093/cvr/cvq313spa
dc.relation.references79. Bohnsack RN, Warejcka DJ, Wang L, Gillespie SR, Bernstein AM, Twining SS, et al. Expression of insulin-like growth factor 2 receptor in corneal keratocytes during differentiation and in response to wound healing. Invest Ophthalmol Vis Sci. 2014;55: 7697–7708. doi:10.1167/iovs.14-15179spa
dc.relation.references80. Instituto Weizmann de Ciencias. GeneCards HUMAN GENE DATABASE. [cited 5 Apr 2020]. Available: https://www.genecards.org/cgi-bin/carddisp.pl?gene=IGF2Rspa
dc.relation.references81. El-Shewy HM, Johnson KR, Lee M-H, Jaffa AA, Obeid LM, Luttrell LM. Insulin-like growth factors mediate heterotrimeric G protein-dependent ERK1/2 activation by transactivating sphingosine 1-phosphate receptors. J Biol Chem. 2006;281: 31399– 31407. doi:10.1074/jbc.M605339200spa
dc.relation.references82. Okamoto T, Katada T, Murayama Y, Ui M, Ogata E, Nishimoto I. A simple structure encodes G protein-activating function of the IGF-II/mannose. Cell. 1990;62: 709–717. doi:10.1016/0092-8674(90)90116-vspa
dc.relation.references83. Okamoto T, Nishimoto I. Analysis of stimulation-G protein subunit coupling by using active insulin-like growth factor II receptor peptide. Proc Natl Acad Sci U S A. 1991;88: 8020–8023. doi:10.1073/pnas.88.18.8020spa
dc.relation.references84. Higashijima T, Uzu S, Nakajima T, Ross EM. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating. J Biol Chem. 1988;263: 6491–6494.spa
dc.relation.references85. Shields S-K, Nicola C, Chakraborty C. Rho Guanosine 5′-Triphosphatases Differentially Regulate Insulin-Like Growth Factor I (IGF-I) Receptor-Dependent and -Independent Actions of IGF-II on Human Trophoblast Migration. Endocrinology. 2007;148: 4906– 4917. doi:10.1210/en.2007-0476spa
dc.relation.references86. Chu C-H, Tzang B-S, Chen L-M, Liu C-J, Tsai F-J, Tsai C-H, et al. Activation of insulinlike growth factor II receptor induces mitochondrial-dependent apoptosis through G(alpha)q and downstream calcineurin signaling in myocardial cells. Endocrinology. 2009;150: 2723–2731. doi:10.1210/en.2008-0975spa
dc.relation.references87. Anitei M, Chenna R, Czupalla C, Esner M, Christ S, Lenhard S, et al. A high-throughput siRNA screen identifies genes that regulate mannose 6-phosphate receptor trafficking. England; 2014. doi:10.1242/jcs.159608spa
dc.relation.references88. Amritraj A, Hawkes C, Phinney AL, Mount HT, Scott CD, Westaway D, et al. Altered levels and distribution of IGF-II/M6P receptor and lysosomal enzymes in mutant APP and APP + PS1 transgenic mouse brains. Neurobiol Aging. 2009;30: 54–70. doi:10.1016/j.neurobiolaging.2007.05.004spa
dc.relation.references89. Wang Y, Buggia-Prévot V, Zavorka ME, Bleackley RC, MacDonald RG, Thinakaran G, et al. Overexpression of the Insulin-Like Growth Factor II Receptor Increases β-Amyloid Production and Affects Cell Viability. Mol Cell Biol. 2015;35: 2368–2384. doi:10.1128/MCB.01338-14spa
dc.relation.references90. Turner PR, O’Connor K, Tate WP, Abraham WC. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol. 2003;70: 1–32. doi:10.1016/s0301-0082(03)00089-3spa
dc.relation.references91. Dahms SO, Hoefgen S, Roeser D, Schlott B, Gührs K-H, Than ME. Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein. Proc Natl Acad Sci U S A. 2010;107: 5381–5386. doi:10.1073/pnas.0911326107spa
dc.relation.references92. Zheng H, Koo EH. The amyloid precursor protein: beyond amyloid. Mol Neurodegener. 2006;1: 5. doi:10.1186/1750-1326-1-5spa
dc.relation.references93. Selkoe D, Kopan R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci. 2003;26: 565–597. doi:10.1146/annurev.neuro.26.041002.131334spa
dc.relation.references94. Porayette P, Gallego MJ, Kaltcheva MM, Meethal SV, Atwood CS. Amyloid-beta precursor protein expression and modulation in human embryonic stem cells: a novel role for human chorionic gonadotropin. Biochem Biophys Res Commun. 2007;364: 522–527. doi:10.1016/j.bbrc.2007.10.021spa
dc.relation.references95. Gao H, Sathishkumar KR, Yallampalli U, Balakrishnan M, Li X, Wu G, et al. Maternal protein restriction regulates IGF2 system in placental labyrinth. Front Biosci Elite Ed. 2012;4: 1434–1450. doi:10.2741/472spa
dc.relation.references96. Sferruzzi-Perri AN, Sandovici I, Constancia M, Fowden AL. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth. J Physiol. 2017;595: 5057–5093. doi:10.1113/JP273330spa
dc.relation.references97. Harris LK, Westwood M. Biology and significance of signalling pathways activated by IGF-II. Growth Factors Chur Switz. 2012;30: 1–12. doi:10.3109/08977194.2011.640325spa
dc.relation.references98. Charnock JC, Dilworth MR, Aplin JD, Sibley CP, Westwood M, Crocker IP. The impact of a human IGF-II analog ([Leu27]IGF-II) on fetal growth in a mouse model of fetal growth restriction. Am J Physiol Endocrinol Metab. 2016;310: E24-31. doi:10.1152/ajpendo.00379.2015spa
dc.relation.references99. Sferruzzi-Perri AN, Owens JA, Standen P, Roberts CT. Maternal insulin-like growth factor-II promotes placental functional development via the type 2 IGF receptor in the guinea pig. Placenta. 2008;29: 347–355. doi:10.1016/j.placenta.2008.01.009spa
dc.relation.references100. Costello M, Baxter RC, Scott CD. Regulation of soluble insulin-like growth factor II/mannose 6-phosphate receptor in human serum: measurement by enzyme-linked immunosorbent assay. J Clin Endocrinol Metab. 1999;84: 611–617. doi:10.1210/jcem.84.2.5488spa
dc.relation.references101. Ong K, Kratzsch J, Kiess W, Costello M, Scott C, Dunger D. Size at birth and cord blood levels of insulin, insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-1 (IGFBP-1), IGFBP-3, and the soluble. J Clin Endocrinol Metab. 2000;85: 4266–4269. doi:10.1210/jcem.85.11.6998spa
dc.relation.references102. Instituto Colombiano de Bienestar Familiar. Encuesta Nacional de Situación Nutricional ENSIN. In: Nutrición [Internet]. [cited 17 May 2020]. Available: https://www.icbf.gov.co/bienestar/nutricion/encuesta-nacional-situacion-nutricionalspa
dc.relation.references103. Blancas-Flores G, Almanza-P JC, López-Roa RI, Alarcón-Aguilar FJ, García-Macedo, Rebeca, Cruz M. La obesidad como un proceso inflamatorio. Bol Med Hosp Infant Mex. 2010;67: 88–97.spa
dc.relation.references104. Poston L, Caleyachetty R, Cnattingius S, Corvalan C, Uauy R, Herring S, et al. Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol. 2016;4: 1025–1036. doi:10.1016/S2213-8587(16)30217-0spa
dc.relation.references105. Chanprasertyothin S, Jongjaroenprasert W, Ongphiphadhanakul B. The association of soluble IGF2R and IGF2R gene polymorphism with type 2 diabetes. J Diabetes Res. 2015;2015: 216383. doi:10.1155/2015/216383spa
dc.relation.references106. Caviedes L, Iñiguez G, Hidalgo P, Castro JJ, Castaño E, Llanos M, et al. Relationship between folate transporters expression in human placentas at term and birth weights. Placenta. 2016;38: 24–28. doi:10.1016/j.placenta.2015.12.007spa
dc.relation.references107. Lazar I. Jr., Horvath-Lazar E., Lazar I. GelAnalyzer 19.1. Available: http://www.gelanalyzer.com/index.htmlspa
dc.relation.references108. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif. 2001;25: 402–408. doi:10.1006/meth.2001.1262spa
dc.relation.references109. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55: 611–622. doi:10.1373/clinchem.2008.112797spa
dc.relation.references110. Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3: 1125–1131. doi:10.1038/nprot.2008.75spa
dc.relation.references111. Armant DR. Blastocysts don’t go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Dev Biol. 2005;280: 260–280. doi:10.1016/j.ydbio.2005.02.009spa
dc.relation.references112. Anette Lindhard, Ursula Bentin-Ley, Vibeke Ravn, Henrik Islin, Thomas Hviid, Sven Rex, et al. Biochemical evaluation of endometrial function at the time of implantation. MODERN TRENDS. 2002;78: 221–233. doi:https://doi.org/10.1016/S0015- 0282(02)03240-5spa
dc.relation.references113. Carter AM, Enders AC, Pijnenborg R. The role of invasive trophoblast in implantation and placentation of primates. Philos Trans R Soc Lond B Biol Sci. 2015;370: 20140070. doi:10.1098/rstb.2014.0070spa
dc.relation.references114. Lala PK, Hamilton GS. Growth factors, proteases and protease inhibitors in the maternal-fetal dialogue. Placenta. 1996;17: 545–555. doi:10.1016/s0143- 4004(96)80071-3spa
dc.relation.references115. Umaña Pérez A., Novoa Herrán S., Castro JJ., Correa Sánchez A., Guevara V., López González D., et al. Role of the Insulin-like growth factor axis and the Transforming growth factor-β in the regulation of the placenta and the pathogenesis of Gestational Trophoblastic Diseases. Med Res Arch. En Prensa.spa
dc.relation.references116. Barolo S, Posakony JW. Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev. 2002;16: 1167– 1181. doi:10.1101/gad.976502spa
dc.relation.references117. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat Rev Cancer. 2002;2: 489–501. doi:10.1038/nrc839spa
dc.relation.references118. Crespo P, Xu N, Simonds WF, Gutkind JS. Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature. 1994;369: 418–420. doi:10.1038/369418a0spa
dc.relation.references119. Krauss G. Intracellular Messenger Substances: “Second Messengers.” 5th edition. Biochemistry of Signal Transduction and Regulation. 5th edition. Germany; 2014. pp. 369–416.spa
dc.relation.references120. Strauss JF 3rd, Kido S, Sayegh R, Sakuragi N, Gafvels ME. The cAMP signalling system and human trophoblast function. Placenta. 1992;13: 389–403. doi:10.1016/0143-4004(92)90047-wspa
dc.relation.references121. Biondi C, Ferretti ME, Lunghi L, Medici S, Cervellati F, Pavan B, et al. cAMP efflux from human trophoblast cell lines: a role for multidrug resistance protein (MRP)1 transporter. Mol Hum Reprod. 2010;16: 481–491. doi:10.1093/molehr/gaq023spa
dc.relation.references122. Darashchonak N, Koepsell B, Bogdanova N, von Versen-Hoynck F. Adenosine A2B receptors induce proliferation, invasion and activation of cAMP response element binding protein (CREB) in trophoblast cells. BMC Pregnancy Childbirth. 2014;14: 2. doi:10.1186/1471-2393-14-2spa
dc.relation.references123. Harris LK, Jones CJP, Aplin JD. Adhesion molecules in human trophoblast - a review. II. extravillous trophoblast. Placenta. 2009;30: 299–304. doi:10.1016/j.placenta.2008.12.003spa
dc.relation.references124. Jackson EK, Dubey RK. Role of the extracellular cAMP-adenosine pathway in renal physiology. Am J Physiol Renal Physiol. 2001;281: F597-612. doi:10.1152/ajprenal.2001.281.4.F597spa
dc.relation.references125. Miyamoto S, Teramoto H, Gutkind JS, Yamada KM. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol. 1996;135: 1633–1642. doi:10.1083/jcb.135.6.1633spa
dc.relation.references126. Kabir-Salmani M, Shiokawa S, Akimoto Y, Hasan-Nejad H, Sakai K, Nagamatsu S, et al. Characterization of morphological and cytoskeletal changes in trophoblast cells induced by insulin-like growth factor-I. J Clin Endocrinol Metab. 2002;87: 5751–5759. doi:10.1210/jc.2002-020550spa
dc.relation.references127. Irving JA, Lala PK. Functional role of cell surface integrins on human trophoblast cell migration: regulation by TGF-beta, IGF-II, and IGFBP-1. Exp Cell Res. 1995;217: 419– 427. doi:10.1006/excr.1995.1105spa
dc.relation.references128. Hills FA, Elder MG, Chard T, Sullivan MHF. Regulation of human villous trophoblast by insulin-like growth factors and insulin-like growth factor-binding protein-1. J Endocrinol. 2004;183: 487–496. doi:10.1677/joe.1.05867spa
dc.relation.references129. Burrows TD, King A, Loke YW. Trophoblast migration during human placental implantation. Hum Reprod Update. 1996;2: 307–321. doi:10.1093/humupd/2.4.307spa
dc.relation.references130. Gleeson LM, Chakraborty C, McKinnon T, Lala PK. Insulin-like growth factor-binding protein 1 stimulates human trophoblast migration by signaling through alpha 5 beta 1 integrin via mitogen-activated protein Kinase pathway. J Clin Endocrinol Metab. 2001;86: 2484–2493. doi:10.1210/jcem.86.6.7532spa
dc.relation.references131. Li T, Wei S, Fan C, Tang D, Luo D. Nesfatin-1 Promotes Proliferation, Migration and Invasion of HTR-8/SVneo Trophoblast Cells and Inhibits Oxidative Stress via Activation of PI3K/AKT/mTOR and AKT/GSK3β Pathway. Reprod Sci Thousand Oaks Calif. 2021;28: 550–561. doi:10.1007/s43032-020-00324-1spa
dc.relation.references132. Staun-Ram E, Goldman S, Gabarin D, Shalev E. Expression and importance of matrix metalloproteinase 2 and 9 (MMP-2 and -9) in human trophoblast invasion. Reprod Biol Endocrinol RBE. 2004;2: 59. doi:10.1186/1477-7827-2-59spa
dc.relation.references133. Han VK, Carter AM. Spatial and temporal patterns of expression of messenger RNA for insulin-like growth factors and their binding proteins in the placenta of man and laboratory animals. Placenta. 2000;21: 289–305. doi:10.1053/plac.1999.0498spa
dc.relation.references134. Sánchez-Gómez M, Novoa-Herran SS. EL IGF-II ESTIMULA LA ACTIVIDAD DE MMP-9 Y MMP-2 EN UN MODELO DE TROFOBLASTO HUMANO. Acta Biológica Colomb. 2011;16: 121–132spa
dc.relation.references135. Espino Y Sosa S, Flores-Pliego A, Espejel-Nuñez A, Medina-Bastidas D, VadilloOrtega F, Zaga-Clavellina V, et al. New Insights into the Role of Matrix Metalloproteinases in Preeclampsia. Int J Mol Sci. 2017;18. doi:10.3390/ijms18071448spa
dc.relation.references136. Chang M-H, Kuo W-W, Chen R-J, Lu M-C, Tsai F-J, Kuo W-H, et al. IGF-II/mannose 6-phosphate receptor activation induces metalloproteinase-9 matrix activity and increases plasminogen activator expression in H9c2 cardiomyoblast cells. J Mol Endocrinol. 2008;41: 65–74. doi:10.1677/JME-08-0051spa
dc.relation.references137. Pinzón M, Diaz L, Ortiz B, Umaña A, De Rodriguez S, Sanchez de Gomez M. LA ACTIVACIÓN DE LA VÍA DE SEÑALIZACIÓN PI3K/AKT POR EL FACTOR DE CRECIMIENTO SIMILAR A LA INSULINA TIPO II ESTIMULA LA EXPRESIÓN DEL mARN DE LA METALOPROTEINASA 9 EN CÉLULAS DE CORIOCARCINOMA. Rev Colomb Quím Vol 38 Núm 3 2009. 2009. Available: https://revistas.unal.edu.co/index.php/rcolquim/article/view/13490spa
dc.relation.references138. de Alboran IM, O’Hagan RC, Gartner F, Malynn B, Davidson L, Rickert R, et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity. 2001;14: 45–55.spa
dc.relation.references139. Rivera VM, Greenberg ME. Growth factor-induced gene expression: the ups and downs of c-fos regulation. New Biol. 1990;2: 751–758spa
dc.relation.references140. Kalisch-Smith JI, Simmons DG, Dickinson H, Moritz KM. Review: Sexual dimorphism in the formation, function and adaptation of the placenta. Placenta. 2017;54: 10–16. doi:10.1016/j.placenta.2016.12.008spa
dc.relation.references141. Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans. 2017;45: 1105–1115. doi:10.1042/BST20160474spa
dc.relation.references142. Dennis PA, Rifkin DB. Cellular activation of latent transforming growth factor beta requires binding to the cation-independent mannose 6-phosphate/insulin-like growth factor type II receptor. Proc Natl Acad Sci U S A. 1991;88: 580–584. doi:10.1073/pnas.88.2.580spa
dc.relation.references143. Saben J, Lindsey F, Zhong Y, Thakali K, Badger TM, Andres A, et al. Maternal obesity is associated with a lipotoxic placental environment. Placenta. 2014;35: 171–177. doi:10.1016/j.placenta.2014.01.003spa
dc.relation.references144. Challier JC, Basu S, Bintein T, Minium J, Hotmire K, Catalano PM, et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta. 2008;29: 274–281. doi:10.1016/j.placenta.2007.12.010spa
dc.relation.references145. Howell KR, Powell TL. Effects of maternal obesity on placental function and fetal development. Reprod Camb Engl. 2017;153: R97–R108. doi:10.1530/REP-16-0495spa
dc.relation.references146. Zhu MJ, Du M, Nathanielsz PW, Ford SP. Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta. Placenta. 2010;31: 387–391. doi:10.1016/j.placenta.2010.02.002spa
dc.relation.references147. Zulet MA, Puchau B, Navarro C, Martí A, Martínez JA. Biomarcadores del estado inflamatorio: nexo de unión con la obesidad y complicaciones asociadas. Nutr Hosp. 2007;22: 511–527.spa
dc.relation.references148. Samad F, Yamamoto K, Pandey M, Loskutoff DJ. Elevated expression of transforming growth factor-beta in adipose tissue from obese mice. Mol Med Camb Mass. 1997;3: 37–48.spa
dc.relation.references149. Yadav H, Quijano C, Kamaraju AK, Gavrilova O, Malek R, Chen W, et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 2011;14: 67–79. doi:10.1016/j.cmet.2011.04.013spa
dc.relation.references150. Zunke F, Rose-John S. The shedding protease ADAM17: Physiology and pathophysiology. Biochim Biophys Acta Mol Cell Res. 2017;1864: 2059–2070. doi:10.1016/j.bbamcr.2017.07.001spa
dc.relation.references151. Liu C, Xu P, Lamouille S, Xu J, Derynck R. TACE-mediated ectodomain shedding of the type I TGF-beta receptor downregulates TGF-beta signaling. Mol Cell. 2009;35: 26–36. doi:10.1016/j.molcel.2009.06.018spa
dc.relation.references152. Vicikova K, Petrovcikova E, Manka P, Drach J, Stockinger H, Leksa V. Serum and urinary levels of CD222 in cancer: origin and diagnostic value. Neoplasma. 2018;65: 762–768. doi:10.4149/neo_2018_171203N792spa
dc.relation.references153. Liping Xuan, Jun Ma, Mei Yu, Zhenxing Yang, Yongmin Huang, Caiyun Guo, et al. Insulin-like growth factor 2 promotes adipocyte proliferation, differentiation and lipid deposition in obese type 2 diabetes. J Transl Sci. 2019;6. doi:10.15761/JTS.1000362spa
dc.relation.references154. Alfares MN, Perks CM, Hamilton-Shield JP, Holly JMP. Insulin-like growth factor-II in adipocyte regulation: depot-specific actions suggest a potential role limiting excess visceral adiposity. Am J Physiol Endocrinol Metab. 2018;315: E1098–E1107. doi:10.1152/ajpendo.00409.2017spa
dc.relation.references155. Grimm MOW, Kuchenbecker J, Grösgen S, Burg VK, Hundsdörfer B, Rothhaar TL, et al. Docosahexaenoic acid reduces amyloid beta production via multiple pleiotropic mechanisms. J Biol Chem. 2011;286: 14028–14039. doi:10.1074/jbc.M110.182329spa
dc.relation.references156. Fowden AL. The insulin-like growth factors and feto-placental growth. Placenta. 2003;24: 803–812. doi:10.1016/s0143-4004(03)00080-8spa
dc.relation.references157. Morrison JL, Duffield JA, Muhlhausler BS, Gentili S, McMillen IC. Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity. Pediatr Nephrol Berl Ger. 2010;25: 669–677. doi:10.1007/s00467-009-1407-3spa
dc.relation.references158. Catalano PM. Obesity and pregnancy--the propagation of a viscous cycle? J Clin Endocrinol Metab. 2003;88: 3505–3506. doi:10.1210/jc.2003-031046spa
dc.relation.references159. O’Reilly JR, Reynolds RM. The risk of maternal obesity to the long-term health of the offspring. Clin Endocrinol (Oxf). 2013;78: 9–16. doi:10.1111/cen.12055spa
dc.relation.references160. Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci. 2004;117: 4619–4628. doi:10.1242/jcs.01481spa
dc.relation.references161. Sevetson BR, Kong X, Lawrence JC. Increasing cAMP attenuates activation of mitogen-activated protein kinase. Proc Natl Acad Sci. 1993;90: 10305. doi:10.1073/pnas.90.21.10305spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc570 - Biologíaspa
dc.subject.decsReceptor IGF Tipo 2spa
dc.subject.decsReceptor, IGF Type 2eng
dc.subject.decsReceptor, IGF Type 1eng
dc.subject.decsReceptor IGF Tipo 1spa
dc.subject.decsProteínas Tirosina Quinasas Receptorasspa
dc.subject.decsReceptor Protein-Tyrosine Kinaseseng
dc.subject.proposalIGF receptorspa
dc.subject.proposalHTR-8/SVneospa
dc.subject.proposalFactor de crecimiento similar a insulina tipo 2spa
dc.subject.proposalImplantaciónspa
dc.subject.proposalPlacentaspa
dc.subject.proposalObesidadspa
dc.subject.proposalIGF receptoreng
dc.subject.proposalInsulin-like growth factor type 2eng
dc.subject.proposalImplantationeng
dc.subject.proposalObesityeng
dc.titleCaracterización de la vía de señalización intracelular mediada por IGF2R en trofoblasto humanospa
dc.title.translatedCharacterization of the intracellular signaling mediated by IGF2R in human trophoblasteng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitle“Caracterización de la vía de señalización intracelular mediada por IGF-IIR en trofoblasto humano”, código Hermes 39172spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
528066.2020.pdf
Tamaño:
2.24 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: