Desarrollo de prototipo de celda solar fabricadacon arquitectura FTO/TIO2/PEROVSKITA (CsPbBr3-xIx)/C

dc.contributor.advisorGordillo Guzman, Gerardo
dc.contributor.advisorClavijo Penagos, Josue Itsman
dc.contributor.authorTorres Diaz, Oscar Giovanni
dc.contributor.cvlacTorres Díaz, Oscar Giovanni [rh=0000050279]
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=r3WpMGIAAAAJ&hl=es
dc.contributor.orcidTorres Díaz, Oscar Giovanni [0000000311400731]
dc.contributor.researchgroupGrupo de Materiales Semiconductores y Energía Solar
dc.date.accessioned2025-09-30T14:20:54Z
dc.date.available2025-09-30T14:20:54Z
dc.date.issued2025-09
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractActualmente se están investigando intensivamente nuevos materiales fotovoltaicos que forman parte de la tercera generación de dispositivos fotovoltaicos que es posterior a las tecnologías de primera generación de silicio y de segunda generación de película delgada que hicieron tránsito en forma exitosa a producción industrial; estos nuevos materiales están caracterizados por ser de bajo costo, abundantes en la naturaleza y de baja toxicidad. Entre los materiales emergentes investigados, existe una familia que ha permitido en muy corto tiempo fabricar dispositivos altamente eficientes, pero que no han hecho tránsito a producción industrial porque además de incluir plomo, se degradan bajo condiciones ambientales de humedad, iluminación y temperatura. Estos materiales son compuestos híbridos, sintetizados mezclando materiales orgánicos e inorgánicos y crecidos con estructura cristalina tipo Perovskita, siendo el compuesto CH3NH3PbI3 (MAPbI3) el más investigado. Considerando que estos compuestos de Perovskita híbridos se degradan cuando son expuestos a condiciones ambientales, recientemente se propuso la síntesis de compuestos con estructura Perovskita totalmente inorgánicos como potencial alternativo a las Perovskita hibridas, debido a que este tipo de compuestos permiten fabricar dispositivos fotovoltaicos de alta estabilidad. En el marco de este trabajo de tesis se hicieron aportes interesantes en aspectos relacionados con implementación de infraestructura usada para síntesis y optimización de propiedades de películas delgadas de materiales inorgánicos crecidos con estructura Perovskita, así como también al desarrollo de un prototipo de celda solar que usa como capa activa películas delgadas del compuesto inorgánico CsPbBr3-xIx tipo Perovskita (0≤x≤2), preparado usando una ruta de síntesis que incluye evaporación secuencial de los precursores PbBr2/PbI2/BrCs; esta celda solar se fabricó con arquitectura FTO/TiO2/CsPbBr3-xIx/C y previo a su fabricación se realizó un estudio exhaustivo que permitió optimizar las propiedades ópticas, morfológicas y estructurales de las muestras de Perovskita, mediante correlación de parámetros de síntesis con los resultados de la caracterización realizada a través de medidas de difracción de rayos-x, microscopía electrónica de barrido (SEM) y transmitancia y reflectancia espectral. Finalmente vale la pena resaltar el aporte más significativo de este trabajo consistente en un estudio de la influencia que la substitución del catión metálico Pb por iones de Zn2+y Sn2+ ejerce sobre la estabilidad de las películas de Perovskita y sobre el desempeño y del dispositivo (Texto tomado de la fuente).spa
dc.description.abstractNew photovoltaic materials are currently being intensively investigated as part of the third generation of photovoltaic devices, which follow the first-generation silicon technologies and the second-generation thin-film technologies that successfully transitioned to industrial production. These new materials are characterized by being low-cost, naturally abundant, and low in toxicity. Among the emerging materials studied, there is a family that has enabled, in a very short time, the fabrication of highly efficient devices, but which have not transitioned to industrial production because, in addition to containing lead, they degrade under environmental conditions of humidity, light, and temperature. These materials are hybrid compounds, synthesized by combining organic and inorganic materials and grown with a Perovskite-type crystalline structure, with the compound CH₃NH₃PbI₃ (MAPbI₃) being the most widely studied. Considering that these hybrid Perovskite compounds degrade when exposed to environmental conditions, the synthesis of fully inorganic Perovskite-structured compounds has recently been proposed as a potential alternative to hybrid Perovskites, since this type of compounds enables the fabrication of highly stable photovoltaic devices. Within the framework of this doctoral thesis, significant contributions were made in aspects related to the implementation of infrastructure for the synthesis and optimization of the properties of inorganic Perovskite thin films, as well as the development of a solar cell prototype that uses thin films of the inorganic Perovskite-type compound CsPbBr₃₋ₓIₓ (0≤x≤2) as the active layer. This material was prepared using a sequential evaporation route of the PbBr₂/PbI₂/BrCs precursors. The solar cell was fabricated with the FTO/TiO₂/CsPbBr₃₋ₓIₓ/C architecture, and prior to its fabrication, an exhaustive study was carried out to optimize the optical, morphological, and structural properties of the Perovskite samples through the correlation of synthesis parameters with the results obtained from x-ray diffraction, scanning electron microscopy (SEM), and spectral transmittance and reflectance measurements. Finally, the most significant contribution of this work is highlighted: a study of the influence of substituting the metallic cation Pb with Zn²⁺ and Sn²⁺ ions on the stability of the Perovskite films and on device performance.eng
dc.description.degreelevelDoctorado
dc.description.degreenameDoctorado en Ciencias Física
dc.description.researchareaMateriales y Energía
dc.format.extentxvi, 95 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88985
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Física
dc.relation.references[1] “How the Renewable Energy Sector is Growing so Rapidly | World Resources Institute.” https://www.wri.org/insights/growth-renewable-energy-sector-explained (accessed Feb. 23, 2025).
dc.relation.references[2] “Growth of photovoltaics - Wikipedia.” https://en.wikipedia.org/wiki/Growth_of_photovoltaics#cite_note-Canary_BloombergNEF_20230915-1 (accessed Feb. 23, 2025).
dc.relation.references[3] Z. Liang et al., “Characteristics of a Silicon Nanowires/PEDOT:PSS Heterojunction and Its Effect on the Solar Cell Performance,” ACS Appl. Mater. Interfaces, vol. 7, no. 10, pp. 5830–5836, Mar. 2015, doi: 10.1021/am508879b.
dc.relation.references[4] M.-L. Tsai et al., “Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters,” Nano Lett., vol. 16, no. 1, pp. 309–313, Jan. 2016, doi: 10.1021/acs.nanolett.5b03814.
dc.relation.references[5] C.-H. Chang and Y.-L. Lee, “Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells,” Appl. Phys. Lett., vol. 91, no. 5, p. 53503, Jul. 2007, doi: 10.1063/1.2768311.
dc.relation.references[6] C. Chen et al., “Perovskite solar cells based on screen-printed thin films,” Nature, vol. 612, no. 7939, pp. 266–271, 2022, doi: 10.1038/s41586-022-05346-0.
dc.relation.references[7] Q. Wan et al., “High-Performance Intrinsically Stretchable Polymer Solar Cell with Record Efficiency and Stretchability Enabled by Thymine-Functionalized Terpolymer,” J. Am. Chem. Soc., vol. 145, no. 22, pp. 11914–11920, Jun. 2023, doi: 10.1021/jacs.3c02764.
dc.relation.references[8] F. Li et al., “Solution-Mediated Hybrid FAPbI3 Perovskite Quantum Dots for Over 15% Efficient Solar Cell,” Adv. Funct. Mater., vol. 33, no. 40, p. 2302542, Oct. 2023, doi: https://doi.org/10.1002/adfm.202302542.
dc.relation.references[9] J. H. Markna and P. K. Rathod, “Review on the efficiency of quantum dot sensitized solar cell: Insights into photoanodes and QD sensitizers,” Dye. Pigment., vol. 199, p. 110094, 2022, doi: https://doi.org/10.1016/j.dyepig.2022.110094.
dc.relation.references[10] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” J. Am. Chem. Soc., vol. 131, no. 17, pp. 6050–6051, May 2009, doi: 10.1021/ja809598r.
dc.relation.references[11] M. A. Green et al., “Solar cell efficiency tables (Version 63),” Prog. Photovoltaics Res. Appl., vol. 32, no. 1, pp. 3–13, Jan. 2024, doi: https://doi.org/10.1002/pip.3750.
dc.relation.references[12] C. Yi et al., “Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells,” Energy Environ. Sci., vol. 9, no. 2, pp. 656–662, 2016, doi: 10.1039/C5EE03255E.
dc.relation.references[13] Q. Wang et al., “Energy-Down-Shift CsPbCl3:Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar Cells,” ACS Energy Lett., vol. 2, no. 7, pp. 1479–1486, Jul. 2017, doi: 10.1021/acsenergylett.7b00375.
dc.relation.references[14] Q. Zeng et al., “Inorganic CsPbI2Br Perovskite Solar Cells: The Progress and Perspective,” Sol. RRL, vol. 3, no. 1, p. 1800239, Jan. 2019, doi: https://doi.org/10.1002/solr.201800239.
dc.relation.references[15] M. Chen et al., “Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation,” Nat. Commun., vol. 10, no. 1, p. 16, 2019, doi: 10.1038/s41467-018-07951-y.
dc.relation.references[16] M. Kulbak et al., “Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells,” J. Phys. Chem. Lett., vol. 7, no. 1, pp. 167–172, Jan. 2016, doi: 10.1021/acs.jpclett.5b02597.
dc.relation.references[17] Y. Wang, T. Zhang, M. Kan, and Y. Zhao, “Bifunctional Stabilization of All-Inorganic α-CsPbI3 Perovskite for 17% Efficiency Photovoltaics,” J. Am. Chem. Soc., vol. 140, no. 39, pp. 12345–12348, Oct. 2018, doi: 10.1021/jacs.8b07927.
dc.relation.references[18] M. Abdi-Jalebi et al., “Maximizing and stabilizing luminescence from halide perovskites with potassium passivation,” Nature, vol. 555, no. 7697, pp. 497–501, 2018, doi: 10.1038/nature25989.
dc.relation.references[19] J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho, and N.-G. Park, “Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell,” Adv. Energy Mater., vol. 5, no. 20, p. 1501310, Oct. 2015, doi: https://doi.org/10.1002/aenm.201501310.
dc.relation.references[20] M. Saliba et al., “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci., vol. 9, no. 6, pp. 1989–1997, 2016, doi: 10.1039/C5EE03874J.
dc.relation.references[21] A. H. Slavney, T. Hu, A. M. Lindenberg, and H. I. Karunadasa, “A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications,” J. Am. Chem. Soc., vol. 138, no. 7, pp. 2138–2141, Feb. 2016, doi: 10.1021/jacs.5b13294.
dc.relation.references[22] T. Singh, A. Kulkarni, M. Ikegami, and T. Miyasaka, “Effect of Electron Transporting Layer on Bismuth-Based Lead-Free Perovskite (CH3NH3)3 Bi2I9 for Photovoltaic Applications,” ACS Appl. Mater. Interfaces, vol. 8, no. 23, pp. 14542–14547, Jun. 2016, doi: 10.1021/acsami.6b02843.
dc.relation.references[23] M. Vigneshwaran et al., “Facile Synthesis and Characterization of Sulfur Doped Low Bandgap Bismuth Based Perovskites by Soluble Precursor Route,” Chem. Mater., vol. 28, no. 18, pp. 6436–6440, Sep. 2016, doi: 10.1021/acs.chemmater.6b02315.
dc.relation.references[24] S. Sun, S. Tominaka, J.-H. Lee, F. Xie, P. D. Bristowe, and A. K. Cheetham, “Synthesis, crystal structure, and properties of a perovskite-related bismuth phase, (NH4)3Bi2I9,” APL Mater., vol. 4, no. 3, p. 31101, Mar. 2016, doi: 10.1063/1.4943680.
dc.relation.references[25] B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, and E. M. J. Johansson, “Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application,” Adv. Mater., vol. 27, no. 43, pp. 6806–6813, Nov. 2015, doi: https://doi.org/10.1002/adma.201501978.
dc.relation.references[26] J.-C. Hebig, I. Kühn, J. Flohre, and T. Kirchartz, “Optoelectronic Properties of (CH3NH3)3Sb2I9 Thin Films for Photovoltaic Applications,” ACS Energy Lett., vol. 1, no. 1, pp. 309–314, Jul. 2016, doi: 10.1021/acsenergylett.6b00170.
dc.relation.references[27] X. Chen et al., “Recent Progress and Challenges of Bismuth-Based Halide Perovskites for Emerging Optoelectronic Applications,” Adv. Opt. Mater., vol. 11, no. 3, p. 2202153, Feb. 2023, doi: https://doi.org/10.1002/adom.202202153.
dc.relation.references[28] X. Miao et al., “Air-stable CsPb1−xBixBr3 (0 ≤ x ≪ 1) perovskite crystals: optoelectronic and photostriction properties,” J. Mater. Chem. C, vol. 5, no. 20, pp. 4931–4939, 2017, doi: 10.1039/C7TC00417F.
dc.relation.references[29] T. M. Brenner, D. A. Egger, L. Kronik, G. Hodes, and D. Cahen, “Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties,” Nat. Rev. Mater., vol. 1, no. 1, p. 15007, 2016, doi: 10.1038/natrevmats.2015.7.
dc.relation.references[30] H.-S. Kim, S. H. Im, and N.-G. Park, “Organolead Halide Perovskite: New Horizons in Solar Cell Research,” J. Phys. Chem. C, vol. 118, no. 11, pp. 5615–5625, Mar. 2014, doi: 10.1021/jp409025w.
dc.relation.references[31] Z. Yang and W.-H. Zhang, “Organolead halide perovskite: A rising player in high-efficiency solar cells,” Chinese J. Catal., vol. 35, no. 7, pp. 983–988, 2014, doi: https://doi.org/10.1016/S1872-2067(14)60162-5.
dc.relation.references[32] K. Yoshikawa et al., “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy, vol. 2, no. 5, p. 17032, 2017, doi: 10.1038/nenergy.2017.32.
dc.relation.references[33] M. Badrooj, F. Jamali-Sheini, and N. Torabi, “Zn-doped Pb/Sn hybrid perovskite solar cells: Towards high photovoltaic performance,” Sol. Energy, vol. 236, pp. 63–74, 2022, doi: https://doi.org/10.1016/j.solener.2022.02.034.
dc.relation.references[34] S. Mahato, A. Ghorai, S. K. Srivastava, M. Modak, S. Singh, and S. K. Ray, “Highly Air-Stable Single-Crystalline β-CsPbI3 Nanorods: A Platform for Inverted Perovskite Solar Cells,” Adv. Energy Mater., vol. 10, no. 30, p. 2001305, Aug. 2020, doi: https://doi.org/10.1002/aenm.202001305.
dc.relation.references[35] D. Bi et al., “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv., vol. 2, no. 1, p. e1501170, Feb. 2025, doi: 10.1126/sciadv.1501170.
dc.relation.references[36] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., vol. 140, no. 4A, pp. A1133–A1138, Nov. 1965, doi: 10.1103/PhysRev.140.A1133.
dc.relation.references[37] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., vol. 136, no. 3B, pp. B864–B871, Nov. 1964, doi: 10.1103/PhysRev.136.B864.
dc.relation.references[38] R. Kingsbury et al., “Performance comparison of ${r}^{2}\mathrm{SCAN}$ and SCAN metaGGA density functionals for solid materials via an automated, high-throughput computational workflow,” Phys. Rev. Mater., vol. 6, no. 1, p. 13801, Jan. 2022, doi: 10.1103/PhysRevMaterials.6.013801.
dc.relation.references[39] Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, and I. Tanaka, “Band structure diagram paths based on crystallography,” Comput. Mater. Sci., vol. 128, pp. 140–184, 2017, doi: https://doi.org/10.1016/j.commatsci.2016.10.015.
dc.relation.references[40] “quantum-simulation.org.” http://www.quantum-simulation.org/ (accessed Feb. 25, 2025).
dc.relation.references[41] “SSSP efficiency.” https://www.materialscloud.org/discover/sssp/table/efficiency (accessed Feb. 25, 2025).
dc.relation.references[42] “Pseudo Dojo.” https://www.pseudo-dojo.org/ (accessed Feb. 25, 2025).
dc.relation.references[43] “Home Page - Quantum Espresso.” https://www.quantum-espresso.org/ (accessed Feb. 25, 2025).
dc.relation.references[44] P. Giannozzi et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter, vol. 21, no. 39, p. 395502, 2009, doi: 10.1088/0953-8984/21/39/395502.
dc.relation.references[45] P. Giannozzi et al., “Advanced capabilities for materials modelling with Quantum ESPRESSO,” J. Phys. Condens. Matter, vol. 29, no. 46, p. 465901, 2017, doi: 10.1088/1361-648X/aa8f79.
dc.relation.references[46] J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, and J. Sun, “Construction of meta-GGA functionals through restoration of exact constraint adherence to regularized SCAN functionals,” J. Chem. Phys., vol. 156, no. 3, p. 34109, Jan. 2022, doi: 10.1063/5.0073623.
dc.relation.references[47] M. Kothakonda et al., “Testing the r2SCAN Density Functional for the Thermodynamic Stability of Solids with and without a van der Waals Correction,” ACS Mater. Au, vol. 3, no. 2, pp. 102–111, Mar. 2023, doi: 10.1021/acsmaterialsau.2c00059.
dc.relation.references[48] “GitHub - band-unfolding/banduppy: Python version ofthe BandUP code.” https://github.com/band-unfolding/banduppy (accessed Feb. 25, 2025).
dc.relation.references[49] M. Iraola et al., “IrRep: Symmetry eigenvalues and irreducible representations of ab initio band structures,” Comput. Phys. Commun., vol. 272, p. 108226, 2022, doi: https://doi.org/10.1016/j.cpc.2021.108226.
dc.relation.references[50] K. Yoshikawa et al., “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells, vol. 173, pp. 37–42, 2017, doi: https://doi.org/10.1016/j.solmat.2017.06.024.
dc.relation.references[51] M. A. Scarpulla et al., “CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects,” Sol. Energy Mater. Sol. Cells, vol. 255, p. 112289, 2023, doi: https://doi.org/10.1016/j.solmat.2023.112289.
dc.relation.references[52] “¿Qué son los paneles solares CdTe? ¿Cómo se comparan con otros paneles?” https://solarbuy.com/es/solar-101/cdte-cadmium-telluride-solar-panels/ (accessed Feb. 25, 2025).
dc.relation.references[53] M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, “Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%,” IEEE J. Photovoltaics, vol. 9, no. 6, pp. 1863–1867, 2019, doi: 10.1109/JPHOTOV.2019.2937218.
dc.relation.references[54] H. Sugimoto, “High efficiency and large volume production of CIS-based modules,” in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014, pp. 2767–2770, doi: 10.1109/PVSC.2014.6925503.
dc.relation.references[55] Y. Jiang, Y. Li, J. Tong, L. Mao, Y. Zhou, and F. Zhang, “Polymer Solar Cells BT - Molecular Devices for Solar Energy Conversion and Storage,” H. Tian, G. Boschloo, and A. Hagfeldt, Eds. Singapore: Springer Singapore, 2018, pp. 45–108.
dc.relation.references[56] K. J. Tiwari, S. Giraldo, M. Placidi, Z. Jehl Li-Kao, and E. Saucedo, “Recent Advances in the Kesterite-Based Thin Film Solar Cell Technology: Role of Ge BT - Recent Advances in Thin Film Photovoltaics,” U. P. Singh and N. B. Chaure, Eds. Singapore: Springer Nature Singapore, 2022, pp. 41–66.
dc.relation.references[57] A. Srivastava and S. A. Khan, “Graphene Quantum Dots-Based Heterojunction Solar Cells BT - Nanomaterials for Sensors and Sustainable Energy Volume 1,” S. Ameen, M. S. Akhtar, and I. Kong, Eds. Singapore: Springer Nature Singapore, 2025, pp. 219–240.
dc.relation.references[58] J. Wang et al., “21.15%-Efficiency and Stable γ -CsPbI3 Perovskite Solar Cells Enabled by an Acyloin Ligand,” Adv. Mater., vol. 35, no. 12, p. 2210223, Mar. 2023, doi: https://doi.org/10.1002/adma.202210223.
dc.relation.references[59] J. Wang, G. Wang, and B. Chen, “A review of recent progress on enhancing the stability of CsPbX3 perovskite solar cells,” Sustain. Energy Fuels, vol. 8, no. 20, pp. 4667–4686, 2024, doi: 10.1039/D4SE00914B.
dc.relation.references[60] J. Xing, Q. Wang, Q. Dong, Y. Yuan, Y. Fang, and J. Huang, “Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals,” Phys. Chem. Chem. Phys., vol. 18, no. 44, pp. 30484–30490, 2016, doi: 10.1039/C6CP06496E.
dc.relation.references[61] J. B. Coulter and D. P. Birnie III, “Assessing Tauc Plot Slope Quantification: ZnO Thin Films as a Model System,” Phys. status solidi, vol. 255, no. 3, p. 1700393, Mar. 2018, doi: https://doi.org/10.1002/pssb.201700393.
dc.relation.references[62] F. Ruske, M. Wimmer, G. Köppel, A. Pflug, and B. Rech, “Optical characterization of high mobility polycrystalline ZnO:Al films,” in Proc.SPIE, Feb. 2012, vol. 8263, p. 826303, doi: 10.1117/12.908969.
dc.relation.references[63] M. V Kurik, “Urbach rule,” Phys. status solidi, vol. 8, no. 1, pp. 9–45, Nov. 1971, doi: https://doi.org/10.1002/pssa.2210080102.
dc.relation.references[64] C. Kaiser, O. J. Sandberg, N. Zarrabi, W. Li, P. Meredith, and A. Armin, “A universal Urbach rule for disordered organic semiconductors,” Nat. Commun., vol. 12, no. 1, p. 3988, 2021, doi: 10.1038/s41467-021-24202-9.
dc.relation.references[65] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, vol. 32, no. 5, pp. 751–767, Sep. 1976, doi: 10.1107/S0567739476001551.
dc.relation.references[66] C. H. Ng et al., “Tunable Open Circuit Voltage by Engineering Inorganic Cesium Lead Bromide/Iodide Perovskite Solar Cells,” Sci. Rep., vol. 8, no. 1, p. 2482, 2018, doi: 10.1038/s41598-018-20228-0.
dc.relation.references[67] Y. Han et al., “Controlled n-Doping in Air-Stable CsPbI2Br Perovskite Solar Cells with a Record Efficiency of 16.79%,” Adv. Funct. Mater., vol. 30, no. 12, p. 1909972, Mar. 2020, doi: https://doi.org/10.1002/adfm.201909972.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.subject.ddc540 - Química y ciencias afines::546 - Química inorgánica
dc.subject.lembSILICIOspa
dc.subject.lembSiliconeng
dc.subject.lembSILICEspa
dc.subject.lembSilicaeng
dc.subject.lembSEMICONDUCTORESspa
dc.subject.lembSemiconductorseng
dc.subject.lembPROPIEDADES OPTICASspa
dc.subject.lembOptical propertieseng
dc.subject.proposalPelículas delgadasspa
dc.subject.proposalCsPbBr3-xIxspa
dc.subject.proposalPerovskita inorgánicasspa
dc.subject.proposalCeldas Solaresspa
dc.subject.proposalThin filmseng
dc.subject.proposalCsPbBr₃₋ₓIₓeng
dc.subject.proposalInorganic Perovskiteeng
dc.subject.proposalSolar Cellseng
dc.titleDesarrollo de prototipo de celda solar fabricadacon arquitectura FTO/TIO2/PEROVSKITA (CsPbBr3-xIx)/Cspa
dc.title.translatedDevelopment of a Solar cell prototype fabricated with FTO/TiO₂/Perovskite (CsPbBr₃₋ₓIₓ)/C architectureeng
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TesisOscarTorresD.pdf
Tamaño:
5.24 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en ciencias Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: