Caracterización y clasificación de café cereza usando visión artificial

dc.contributor.advisorPrieto Ortiz, Flavio Augusto (Thesis advisor)spa
dc.contributor.authorSandoval Niño, Zulma Lilianaspa
dc.date.accessioned2019-06-24T12:49:22Zspa
dc.date.available2019-06-24T12:49:22Zspa
dc.date.issued2005-04spa
dc.description.abstractSe desarrolló un sistema de visión artificial para la clasificación de frutos de café en once categorías dependiendo de su estado de madurez. Para la descripción de la forma, el tamaño, el color y la textura de un fruto de café se extrajeron 208 características. La reducción del conjunto de características de 208 a 9 se hizo con base en los resultados de dos métodos de selección de características, uno univariado y otro multivariado. El conjunto final de características se evaluó en tres técnicas de clasificación: Bayesiano, redes neuronales y clustering difuso. Con el clasificador Bayesiano se obtuvo un error de clasificación del 5,43%. Usando redes neuronales el error de clasificación fue de 7,46%. Mientras que 19,46% fue el error obtenido usando clustering difuso. / Abstract: A machine vision system was used to classify coffee fruits into eleven groups according to ripen. 208 features of the individual fruits were extracted from two dimensional images and used as shape, size, color and texture description. An univariate and a multivariate method for feature selection was used to select a subset of 9 from an initial set of 208 features. The selected features were subsequently used as inputs to three classification schemes: the Bayesian decision, a neural network and a fuzzy k means clustering. The average classification error obtained for Bayesian classifier was 5,43%. The neural network classifier resulted in a average classification error of 7,46%. While 19,46% was the error obtained using fuzzy clustering.spa
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/985/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/2620
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computaciónspa
dc.relation.ispartofDepartamento de Ingeniería Eléctrica, Electrónica y Computaciónspa
dc.relation.referencesSandoval Niño, Zulma Liliana (2005) Caracterización y clasificación de café cereza usando visión artificial. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc62 Ingeniería y operaciones afines / Engineeringspa
dc.subject.proposalEvaluación de clasificadoresspa
dc.subject.proposalCafé (grano) - clasificaciónspa
dc.subject.proposalCafé (grano) - selección de característicasspa
dc.subject.proposalVisión por computadorspa
dc.titleCaracterización y clasificación de café cereza usando visión artificialspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
zulmalilianasandovalnino.2005.pdf
Tamaño:
1.19 MB
Formato:
Adobe Portable Document Format