Análisis paramétrico de grupos de pilotes usados como estructura de estabilización en taludes

dc.contributor.advisorColmenares Montañez, Julio Esteban
dc.contributor.advisorGarcía Feria, William Mauricio
dc.contributor.authorGarzón Espejo, Ronald Steve
dc.contributor.researchgroupGeotechnical Engineering Knowledge and Innovation Genki
dc.coverage.temporalColombia
dc.date.accessioned2025-09-02T22:05:03Z
dc.date.available2025-09-02T22:05:03Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramas, mapaspa
dc.description.abstractSe estudió el comportamiento de grupos de pilotes que sirven como estructura de estabilización en taludes que presentan movimientos de remoción en masa activos. El análisis incluyó la generación de modelos computacionales del sistema suelo-pilotes con modelos bidimensionales aplicando el método de las curvas empuje-deflexión, y con modelos tridimensionales aplicando el método de los elementos finitos. Se estudió el desplazamiento y acciones internas del pilote para veintiocho (28) grupos con diferente separación entre pilotes y diferente configuración de las filas (comúnmente se denominan arreglo rectangular y arreglo al tresbolillo). Este análisis incluyó pilotes de sección transversal circular y pilotes de sección cuadrada, un suelo inestable de origen residual y un suelo estable de origen residual con cementación. Los resultados mostraron que un aumento en la separación entre pilotes (en dirección perpendicular al deslizamiento) aumenta la eficiencia del grupo y la fuerza resistente desarrollada por cada elemento, pero también aumentan los desplazamientos y el momento flector actuante. Los pilotes en grupos de una sola fila son más eficientes que en dos filas, pero en un sentido práctico, los grupos en dos filas son más convenientes, pues ofrecen una mayor fuerza resistente y menores deflexiones. La comparación entre el arreglo rectangular y el arreglo al tresbolillo demostró que la segunda opción logra reducir los desplazamientos del suelo en un mayor área del deslizamiento. Los pilotes de sección cuadrada desarrollan un efecto de arco en una extensión menor que los pilotes de sección circular y su eficiencia no aumenta notablemente, pero reducen los desplazamientos del suelo cercano de forma más pronunciada. Lo anterior indica que los pilotes de sección cuadrada se pueden instalar con mayores separaciones para lograr una solución óptima. Se concluyó que una separación centro a centro de cinco veces el ancho del pilote es óptima. (Texto tomado de la fuente)spa
dc.description.abstractA parametric study of the behaviour of pile groups serving as a stabilization structure on slopes exhibiting active mass movements was performed. The analysis included the generation of computational models of the soil-pile system with two-dimensional models applying the p-y curves method (applied load versus deflection), and with threedimensional models applying the finite element method. The displacement and internal actions of the pile were studied for twenty-eight (28) groups with different pile spacing and different row configurations (commonly called rectangular arrangement and staggered arrangement). This analysis included circular and square piles, an unstable soil of residual origin, and a stable cemented soil of residual origin. The results showed that an increase in the spacing between piles (in a direction perpendicular to the slide) increases the efficiency of the group and the resistant force developed by each element, but also increases the displacements and the bending moment acting on the piles. Piles in singlerow groups are more efficient than those in double-row groups, but in a practical sense, double-row groups are more convenient because they develop greater resisting forces and lower deflections. The comparison between the rectangular and staggered arrangements showed that the latter option reduces soil displacements over a larger area of the slide. Square-section piles develop an arch effect to a lesser extent than circular-section piles and their efficiency does not increase noticeably, but they reduce the displacements of the nearby soil more pronouncedly. This means that square section piles could be installed with larger separations to achieve an optimal solution. It was concluded that a center-tocenter spacing of five times the pile width is optimal. It was concluded that a center-tocenter spacing of five times the pile width is optimal.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Geotecnia
dc.description.researchareaTaludes, laderas, cauces y zonificación geotécnica. Área: Modelación y análisis en geotecnia
dc.format.extentxxviii, 222 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88559
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.relation.referencesAbramson, L., Lee, T., Sharma, S., & Boyce, G. (2001). Slope stability and stabilization methods (Segunda ed). Nueva York: John Wiley and Sons Inc.
dc.relation.referencesArdalan, H. (2013a). Analysis of slopes stabilized using one row of piles based on soil- pile interaction. The University of Alabama in Huntsville.
dc.relation.referencesArdalan, H. (2013b). Anaysis of landslides and slopes stabilized using one row of piles. The University of Alabama in Huntsville.
dc.relation.referencesÁrkai, P., Brodie, K., Bryhni, I., Callegari, E., Coutinho, J., Davis, E., … Zharikov, V. (2007). Metamorphic rocks - A classification and glossary of terms. In D. Fettes & J. Desmons (Eds.), Volume 1. https://doi.org/10.1525/9780520352407-005
dc.relation.referencesAshour, M., Norris, G., & Pilling, P. (1998). Lateral loading of a pile in layered soil using the strain wedge model. Journal of Geotechnical and Geoenvironmental Engineering, 124(4), 303–314. https://doi.org/10.1061/(asce)1090-0241(1998)124:4(303)
dc.relation.referencesAshour, Mohamed, & Ardalan, H. (2012). Analysis of pile stabilized slopes based on soilpile interaction. Computers and Geotechnics, 39, 85–97. https://doi.org/10.1016/j.compgeo.2011.09.001
dc.relation.referencesAusilio, E., Conte, E., & Dente, G. (2001). Stability analysis of slopes reinforced with piles. Computers and Geosciences, 28(8), 591–611.
dc.relation.referencesBanerjee, P. K., & Davies, T. G. (1978). The behaviour of axially and laterally loaded single piles embedded in nonhomogeneous soils. Géotechnique, 28(3), 309–326
dc.relation.referencesBasto, D. (2022). Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana. Universidad Nacional de Colombia.
dc.relation.referencesBellezza, I., & Caferri, L. (2018). Ultimate lateral resistance of passive piles in non-cohesive soils. Geotechnique Letters, 8(1), 5–12. https://doi.org/10.1680/jgele.17.00113
dc.relation.referencesBroms, B. (1964a). Lateral Resistance of Piles in Cohesionless Soils. Soil Mechanics and Foundations Division, 3(90), 123–156.
dc.relation.referencesBroms, B. (1964b). Lateral Resistance of Piles in Cohesive Soils. Journal of the Soil Mechanics and Foundations Division, 90(2), 27–63.
dc.relation.referencesCarder, D. R., & Temporal, J. (2000). A review of the use of spaced piles to stabilise embankment and cutting slopes. Crowthorne.
dc.relation.referencesChen, C. Y., & Martin, G. R. (2002). Soil - Structure interaction for landslide stabilizing piles. Computers and Geotechnics, 29(5), 363–386. https://doi.org/10.1016/S0266- 352X(01)00035-0
dc.relation.referencesChen, L., & Poulos, H. G. (1993). Analysis of pile-soil interaction under lateral loading using infinite and finite elements. Computers and Geotechnics, 15, 189–220.
dc.relation.referencesChen, L. T., & Poulos, H. G. (1997). Piles Subjected to Lateral Soil Movements. Journal of Geotechnical and Geoenvironmental Engineering, 123(6), 802–811. https://doi.org/10.1061/(asce)1090-0241(1999)125:6(541)
dc.relation.referencesCommission on Landslides, I. (1990). Suggested Nomenclature for Landslides. Bulletin of the International Association of Engineering Geology, 41, 13–16.
dc.relation.referencesCruden, D., & Varnes, D. (1996). Landslide Types and Processes. In A. Turner & R. Schuster (Eds.), Landslides investigation and mitigation - Special Report 247 (pp. 36– 75). Washington D. C.: National Research Council (US); Transportation Research Board.
dc.relation.referencesDao, T. (2011). Validation of PLAXIS Embedded Piles For Lateral Loading. Delft University of Technology.
dc.relation.referencesDerevenets, F. N., & Matsii, S. I. (2016). Assessing the Ultimate Strength of Piles Interacting with Sliding Soil. Soil Mechanics and Foundation Engineering, 53(4), 1–7. https://doi.org/10.1007/s11204-016-9393-5
dc.relation.referencesDouglas, D. J., & Davis, E. H. (1964). The movement of buried footings due to moment and horizontal load and the movement of anchor plates. Géotechnique, 14(2), 115–132. https://doi.org/10.1680/geot.1964.14.2.115
dc.relation.referencesDuncan, J., & Chang, C. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, 96(SM5), 1629–1653.
dc.relation.referencesFan, C. C., & Long, J. H. (2005). Assessment of existing methods for predicting soil response of laterally loaded piles in sand. Computers and Geotechnics, 32(4), 274– 289. https://doi.org/10.1016/j.compgeo.2005.02.004
dc.relation.referencesFleming, K., Weltman, A., Randolph, M. F., & Elson, K. (2009). Piling Engineering (Tercera ed). New York: Taylor & Francis.
dc.relation.referencesFlórez, J. (2024). Evaluación del efecto de la distancia entre pilas sometidas a carga horizontal en muros de contención. Universidad Nacional de Colombia.
dc.relation.referencesFolk, R. (1980). Petrology of the sedimentary rocks (Segunda ed). Austin: Hemphill Publishing Company.
dc.relation.referencesFrank, R., & Pouget, P. (2008). Experimental pile subjected to long duration thrusts owing to a moving slope. Géotechnique, 58(8), 645–658. https://doi.org/10.1680/geot.2008.58.8.645
dc.relation.referencesFukuoka, M. (1977). The effects of horizontal loads on piles due to landslides. 9th Interntional Conference Soil Mechanics Foundation Engineering - 10th Speciality Session, 27–42. Tokyo.
dc.relation.referencesGabr, M. A., & Borden, R. H. (1990). Lateral analysis of piers constructed on slopes. Journal of Geotechnical Engineering, 116(12), 1831–1850. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:6(970.2)
dc.relation.referencesGomez, D., Aristizabal, E., & Garcia, E. F. (2023). Antecedent rainfall influence on landslides in the Colombian Andes. Revista de La Asociación Geológica Argentina, 80(2), 179–194. Retrieved from https://geohazards.com.co/#publicaciones
dc.relation.referencesHe, Y., Hazarika, H., Yasufuku, N., & Han, Z. (2015). Evaluating the effect of slope angle on the distribution of the soil – pile pressure acting on stabilizing piles in sandy slopes. Computers and Geotechnics, 69, 153–165. https://doi.org/10.1016/j.compgeo.2015.05.006
dc.relation.referencesHennes, R. (1936). Analysis and Control of landslides. University of Washington Eng. Experiment Sta., 91, 57.
dc.relation.referencesHernández, R. (2011). Análisis de pilotes cargados lateralmente, mediante interacción suelo estructura, empleando una teoría simplificada de empujes. Universidad Nacional de Colombia.
dc.relation.referencesHu, X., Zhou, C., Xu, C., Liu, D., Wu, S., & Li, L. (2019). Model tests of the response of landslide-stabilizing piles to piles with different stiffness. Landslides, 16(11), 2187– 2200. https://doi.org/10.1007/s10346-019-01233-4
dc.relation.referencesHull, T. S., Lee, C. Y., & Poulos, H. G. (1991). Mechanics of pile reinforcement for unstable slopes. Research Report - University of Sydney, School of Civil and Mining Engineering, (636), 1–41.
dc.relation.referencesIGAC, Instituo Geográfico Agustín Codazzi (2024). Datos abiertos Cartografía y geografía. Retrieved June 16, 2024, from Cartografía básica website: https://geoportal.igac.gov.co/contenido/datosabiertos-cartografia-y-geografia
dc.relation.referencesIto, T., & Matsui, T. (1975). Methods to estimate lateral force acting on stabilizing piles. Soils and Foundations, 15(4), 43–59.
dc.relation.referencesIto, T., Matsui, T., & Hong, wong pyo. (1979). Design method for the stability analysis of the slope with landing pier. Soils and Foundations, 19(4), 43–57. Retrieved from http://www.mendeley.com/research/geology-volcanic-history-eruptive-styleyakedake-volcano-group-central-japan/
dc.relation.referencesIto, T., Matsui, T., & Hong, wong pyo. (1981). Design method for stabilizing piles against landslide - one row of piles. Soils and Foundations, 21(1), 21–37.
dc.relation.referencesKanagasabai, S., Smethurst, J. A., & Powrie, W. (2011). Three-dimensional numerical modelling of discrete piles used to stabilize landslides. Canadian Geotechnical Journal, 48(9), 1393–1411. https://doi.org/10.1139/t11-046
dc.relation.referencesKourkoulis, R., Gelagoti, F., Anastasopoulos, I., & Gazetas, G. (2011). Slope stabilizing piles and pile-groups: Parametric study and design insights. Journal of Geotechnical and Geoenvironmental Engineering, 137(7), 663–677. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000479
dc.relation.referencesKourkoulis, Rallis. (2009). Αλληλεπίδραση Κατασκευής και Ολισθαίνοντος Πρανούς ή Αστοχούντος Εδάφους Interplay of Mat Foundations and Piles with a Failing Slope. National Technical University of Athens.
dc.relation.referencesLe Maitre, R. W. L., & Bateman, P. C. (1989). A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Retrieved from https://books.google.com.co/books?id=ykR2QgAACAAJ
dc.relation.referencesLikitlersuang, S., Surarak, C., Balasubramania, A., Oh, E., Syeung, R., & Wanatowski, D. (2013). Duncan-Chang - Parameters for Hyperbolic Stress Strain Behaviour of Soft Bangkok Clay. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, 381–384. Paris.
dc.relation.referencesLirer, S. (2012). Landslide stabilizing piles: Experimental evidences and numerical interpretation. Engineering Geology, 149–150, 70–77. https://doi.org/10.1016/j.enggeo.2012.08.002
dc.relation.referencesLobo-Guerrero, S., & DeMico, T. (2018). Emergency rock slide stabilization with shear pins. The Magazine of the Deep Foundations Institute, (5), 83–86.
dc.relation.referencesLobo-Guerrero, S., DeMico, T., & Patel, V. (2018). Embankment Stabilization with Drilled Shafts. The Magazine of the Deep Foundations Institute, (4), 83–87.
dc.relation.referencesMidasoft. (2019). Analysis reference, Manual de usuario y guía técnica del programa computacional GTS NX. Seongnam: Midas.
dc.relation.referencesMindlin, R. D. (1936). Force at a Point in the Interior of a SemiInfinite Solid. Physics, 7, 195–202. https://doi.org/10.1063/1.1745385
dc.relation.referencesMohammadi, S., & Taiebat, H. (2016). Finite element simulation of an excavation-triggered landslide using large deformation theory. Engineering Geology, 205, 62–72. https://doi.org/10.1016/j.enggeo.2016.02.012
dc.relation.referencesMontero, J. (2017). Clasificación de movimientos en masa y su distribución en terrenos geológicos de Colombia (L. Vásquez, Ed.). Retrieved from https://www2.sgc.gov.co/Archivos/Clasificación.pdf
dc.relation.referencesMurcia, D. (2023). Grupos de pilotes sometidos a carga lateral. Universidad Nacional de Colombia.
dc.relation.referencesNichols, G. (2009). Sedimentology and Stratigraphy. In Sustainability (Switzerland) (Segunda ed, Vol. 11). Retrieved from http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.20 08.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMB ETUNGAN_TERPUSAT_STRATEGI_MELESTARI
dc.relation.referencesPilling, P., Ashour, M., & Norris, G. (2001). Strain wedge model hybrid analysis of laterally loaded pile group. Transportation Research Record, 174(1), 115–121. https://doi.org/10.3141/1772-13
dc.relation.referencesPotts, D., & Zdravkovic, L. (1999). Finite element analysis in geotechnical engineering (Primera ed). Londres: Imperial College of Science, Technology and Medicine.
dc.relation.referencesPoulos, H., & Hull, T. (1999). Design Method for stabilization of slopes with piles. Journal of the Geotechnical and Geoenvironmental Engineering Division, ASCE, 911–913. https://doi.org/10.1061/(ASCE)1090-0241(1999)125
dc.relation.referencesPoulos, Harry. (1995). Design of reinforcing piles to increase slope stability. Canadian Geotechnical Journal, 32(5), 808–818. https://doi.org/10.1139/t95-078
dc.relation.referencesPowell, D. (1970). A hybrid method for nonlinear equations. In P. Rabinowitz (Ed.), Numerical Methods for Nonlinear Algebraic Equations (pp. 87–114). Londres: Gordon and Breach Science Publishers.
dc.relation.referencesProyecto Multinacional Andino (2007). Movimientos en masa en la región Andina: una guía para la evaluación de amenazas. Servicio Nacional de Geología y Minería, No. 4, 432. Retrieved from https://manantiales.sgc.gov.co/bodegasimma/docsreferencia/LibroMovimientosenMasaenlaRegionAndina_07_10_29.pdf
dc.relation.referencesRamírez, C. (2023). Estudio de movimientos en masa detonados por el sismo de Quetame ( Cund .) de mayo de 2008. Universidad Nacional de Colombia.
dc.relation.referencesReese, L. (1977). Laterally loaded piles: program documentation. Geotechnical and Geoenvironmental Engineering, 103(4), 287–305. Retrieved from http://ojps.aip.org/gto
dc.relation.referencesReese, L. C., Cox, W., & Koop, F. (1974). Analysis of Laterally Loaded Piles in Sand. Proceedings of the 6th Annual Offshore Technology Conference, 473–483. https://doi.org/doi:. 10.4043/2080-MS
dc.relation.referencesSGC, Servicio Geológico Colombiano (2015). Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa : escala detallada. Retrieved from https://manantiales.sgc.gov.co/bodegasimma/docsreferencia/LibroMovimientosenMasaenlaRegionAndina_07_10_29.pdf
dc.relation.referencesSGC, Servicio Geológico Colombiano (2024). Sistema de Información de Movimientos en Masa. Retrieved June 16, 2024, from SIMMA website: https://simma.sgc.gov.co./#/public/basic/
dc.relation.referencesTejedor, C. (2022). Efecto de la cementación en el comportamiento volumétrico unidimensional de un suelo de la Orinoquía colombiana. Universidad Nacional de Colombia.
dc.relation.referencesvan de Rotten, A. (2003). A limited memory Broyden method to solve high-dimensional systems of nonlinear equations. Universiteit Leiden.
dc.relation.referencesVan Impe, W., & Reese, L. (2011). Single Piles and Pile Groups under Lateral Loading (Segunda ed). CRC Press, Boca Raton.
dc.relation.referencesViggiani, C. (1981). Ultimate lateral load on piles used to stabilise landslides. In Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering (Vol. 3, pp. 555–560). Retrieved from http://link.springer.com/10.1007/978-3-319-73568-9_174
dc.relation.referencesVirtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, … Mulbregt, V. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2
dc.relation.referencesWinkler, E. (1867). Die Lehre von der Elasticitaet und Festigkeit (Primera ed). Praga: Heïnr.
dc.relation.referencesWu, T. (1966). Soil Mechanics. Boston: Allyn and Bacon, Inc.
dc.relation.referencesZeevaert, L. (1980). Interaccion Suelo - Estructura de Cimentación (Primera ed). México D. F.: Limusa.
dc.relation.referencesZhang, Y., Hu, X., Tannant, D. D., Zhang, G., & Tan, F. (2018). Field monitoring and deformation characteristics of a landslide with piles in the Three Gorges Reservoir area. Landslides, 15(3), 581–592. https://doi.org/10.1007/s10346-018-0945-9
dc.relation.referencesZhou, C., Hu, X., Wen-bo, Z., Chu, X., & Qiang, W. (2020). Displacement characteristic of landslides reinforced with flexible piles : field and physical model test. Journal of Mountain Science, 17(4), 787–800. https://doi.org/https://doi.org/10.1007/s11629- 019-5743-x
dc.relation.referencesZhu, M., Lu, H., Gong, W., & Wan, Z. (2018). Effect of slope angle on stabilizing piles in Cφ soil. In Springer Series in Geomechanics and Geoengineering (Vol. 1). https://doi.org/10.1007/978-3-319-97115-5_150
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.bneIngeniería civilspa
dc.subject.bneCimentaciones sobre pilotes -- Modelos matemáticosspa
dc.subject.bnePiling (Civil engineering) -- Mathematical modelseng
dc.subject.bneCivil engineeringeng
dc.subject.bneGeotecnia -- Investigación -- Colombiaspa
dc.subject.bneEstabilización de suelos -- Métodos de simulaciónspa
dc.subject.bneCompactación de suelosspa
dc.subject.bneSlopes (Soil mechanics)eng
dc.subject.bneTaludesspa
dc.subject.bneSoil stabilization -- Simulation methodseng
dc.subject.bneSoil mechanics -- Researcheng
dc.subject.bneSoil compactioneng
dc.subject.bneMuros de contenciónspa
dc.subject.bneRetaining wallseng
dc.subject.bneMétodo de elementos finitosspa
dc.subject.bneFinite element methodeng
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civil
dc.subject.ericCivil engineeringeng
dc.subject.lembIngeniería civil -- Programas para computadorspa
dc.subject.lembCivil engineering -- Computer programseng
dc.subject.proposalEstructuras de contenciónspa
dc.subject.proposalEstabilidad de taludesspa
dc.subject.proposalInteracción suelo-estructuraspa
dc.subject.proposalElementos finitosspa
dc.subject.proposalCurvas p-yspa
dc.subject.proposalPilotesspa
dc.subject.proposalRetaining structureseng
dc.subject.proposalSlope stabilityeng
dc.subject.proposalSoil-structure interactioneng
dc.subject.proposalFinite elementseng
dc.subject.proposalP-y curveseng
dc.subject.proposalPileseng
dc.subject.wikidataEstructura de contenciónspa
dc.subject.wikidataContainment structureeng
dc.subject.wikidataModelización y simulaciónspa
dc.subject.wikidataModeling and simulationeng
dc.titleAnálisis paramétrico de grupos de pilotes usados como estructura de estabilización en taludesspa
dc.title.translatedParametric analysis of pile groups used as structures for the stabilization of slopeseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010221595.2025.pdf
Tamaño:
7.53 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: