Análisis paramétrico de grupos de pilotes usados como estructura de estabilización en taludes
dc.contributor.advisor | Colmenares Montañez, Julio Esteban | |
dc.contributor.advisor | García Feria, William Mauricio | |
dc.contributor.author | Garzón Espejo, Ronald Steve | |
dc.contributor.researchgroup | Geotechnical Engineering Knowledge and Innovation Genki | |
dc.coverage.temporal | Colombia | |
dc.date.accessioned | 2025-09-02T22:05:03Z | |
dc.date.available | 2025-09-02T22:05:03Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones (principalmente a color), diagramas, mapa | spa |
dc.description.abstract | Se estudió el comportamiento de grupos de pilotes que sirven como estructura de estabilización en taludes que presentan movimientos de remoción en masa activos. El análisis incluyó la generación de modelos computacionales del sistema suelo-pilotes con modelos bidimensionales aplicando el método de las curvas empuje-deflexión, y con modelos tridimensionales aplicando el método de los elementos finitos. Se estudió el desplazamiento y acciones internas del pilote para veintiocho (28) grupos con diferente separación entre pilotes y diferente configuración de las filas (comúnmente se denominan arreglo rectangular y arreglo al tresbolillo). Este análisis incluyó pilotes de sección transversal circular y pilotes de sección cuadrada, un suelo inestable de origen residual y un suelo estable de origen residual con cementación. Los resultados mostraron que un aumento en la separación entre pilotes (en dirección perpendicular al deslizamiento) aumenta la eficiencia del grupo y la fuerza resistente desarrollada por cada elemento, pero también aumentan los desplazamientos y el momento flector actuante. Los pilotes en grupos de una sola fila son más eficientes que en dos filas, pero en un sentido práctico, los grupos en dos filas son más convenientes, pues ofrecen una mayor fuerza resistente y menores deflexiones. La comparación entre el arreglo rectangular y el arreglo al tresbolillo demostró que la segunda opción logra reducir los desplazamientos del suelo en un mayor área del deslizamiento. Los pilotes de sección cuadrada desarrollan un efecto de arco en una extensión menor que los pilotes de sección circular y su eficiencia no aumenta notablemente, pero reducen los desplazamientos del suelo cercano de forma más pronunciada. Lo anterior indica que los pilotes de sección cuadrada se pueden instalar con mayores separaciones para lograr una solución óptima. Se concluyó que una separación centro a centro de cinco veces el ancho del pilote es óptima. (Texto tomado de la fuente) | spa |
dc.description.abstract | A parametric study of the behaviour of pile groups serving as a stabilization structure on slopes exhibiting active mass movements was performed. The analysis included the generation of computational models of the soil-pile system with two-dimensional models applying the p-y curves method (applied load versus deflection), and with threedimensional models applying the finite element method. The displacement and internal actions of the pile were studied for twenty-eight (28) groups with different pile spacing and different row configurations (commonly called rectangular arrangement and staggered arrangement). This analysis included circular and square piles, an unstable soil of residual origin, and a stable cemented soil of residual origin. The results showed that an increase in the spacing between piles (in a direction perpendicular to the slide) increases the efficiency of the group and the resistant force developed by each element, but also increases the displacements and the bending moment acting on the piles. Piles in singlerow groups are more efficient than those in double-row groups, but in a practical sense, double-row groups are more convenient because they develop greater resisting forces and lower deflections. The comparison between the rectangular and staggered arrangements showed that the latter option reduces soil displacements over a larger area of the slide. Square-section piles develop an arch effect to a lesser extent than circular-section piles and their efficiency does not increase noticeably, but they reduce the displacements of the nearby soil more pronouncedly. This means that square section piles could be installed with larger separations to achieve an optimal solution. It was concluded that a center-tocenter spacing of five times the pile width is optimal. It was concluded that a center-tocenter spacing of five times the pile width is optimal. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería - Geotecnia | |
dc.description.researcharea | Taludes, laderas, cauces y zonificación geotécnica. Área: Modelación y análisis en geotecnia | |
dc.format.extent | xxviii, 222 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88559 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia | |
dc.relation.references | Abramson, L., Lee, T., Sharma, S., & Boyce, G. (2001). Slope stability and stabilization methods (Segunda ed). Nueva York: John Wiley and Sons Inc. | |
dc.relation.references | Ardalan, H. (2013a). Analysis of slopes stabilized using one row of piles based on soil- pile interaction. The University of Alabama in Huntsville. | |
dc.relation.references | Ardalan, H. (2013b). Anaysis of landslides and slopes stabilized using one row of piles. The University of Alabama in Huntsville. | |
dc.relation.references | Árkai, P., Brodie, K., Bryhni, I., Callegari, E., Coutinho, J., Davis, E., … Zharikov, V. (2007). Metamorphic rocks - A classification and glossary of terms. In D. Fettes & J. Desmons (Eds.), Volume 1. https://doi.org/10.1525/9780520352407-005 | |
dc.relation.references | Ashour, M., Norris, G., & Pilling, P. (1998). Lateral loading of a pile in layered soil using the strain wedge model. Journal of Geotechnical and Geoenvironmental Engineering, 124(4), 303–314. https://doi.org/10.1061/(asce)1090-0241(1998)124:4(303) | |
dc.relation.references | Ashour, Mohamed, & Ardalan, H. (2012). Analysis of pile stabilized slopes based on soilpile interaction. Computers and Geotechnics, 39, 85–97. https://doi.org/10.1016/j.compgeo.2011.09.001 | |
dc.relation.references | Ausilio, E., Conte, E., & Dente, G. (2001). Stability analysis of slopes reinforced with piles. Computers and Geosciences, 28(8), 591–611. | |
dc.relation.references | Banerjee, P. K., & Davies, T. G. (1978). The behaviour of axially and laterally loaded single piles embedded in nonhomogeneous soils. Géotechnique, 28(3), 309–326 | |
dc.relation.references | Basto, D. (2022). Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana. Universidad Nacional de Colombia. | |
dc.relation.references | Bellezza, I., & Caferri, L. (2018). Ultimate lateral resistance of passive piles in non-cohesive soils. Geotechnique Letters, 8(1), 5–12. https://doi.org/10.1680/jgele.17.00113 | |
dc.relation.references | Broms, B. (1964a). Lateral Resistance of Piles in Cohesionless Soils. Soil Mechanics and Foundations Division, 3(90), 123–156. | |
dc.relation.references | Broms, B. (1964b). Lateral Resistance of Piles in Cohesive Soils. Journal of the Soil Mechanics and Foundations Division, 90(2), 27–63. | |
dc.relation.references | Carder, D. R., & Temporal, J. (2000). A review of the use of spaced piles to stabilise embankment and cutting slopes. Crowthorne. | |
dc.relation.references | Chen, C. Y., & Martin, G. R. (2002). Soil - Structure interaction for landslide stabilizing piles. Computers and Geotechnics, 29(5), 363–386. https://doi.org/10.1016/S0266- 352X(01)00035-0 | |
dc.relation.references | Chen, L., & Poulos, H. G. (1993). Analysis of pile-soil interaction under lateral loading using infinite and finite elements. Computers and Geotechnics, 15, 189–220. | |
dc.relation.references | Chen, L. T., & Poulos, H. G. (1997). Piles Subjected to Lateral Soil Movements. Journal of Geotechnical and Geoenvironmental Engineering, 123(6), 802–811. https://doi.org/10.1061/(asce)1090-0241(1999)125:6(541) | |
dc.relation.references | Commission on Landslides, I. (1990). Suggested Nomenclature for Landslides. Bulletin of the International Association of Engineering Geology, 41, 13–16. | |
dc.relation.references | Cruden, D., & Varnes, D. (1996). Landslide Types and Processes. In A. Turner & R. Schuster (Eds.), Landslides investigation and mitigation - Special Report 247 (pp. 36– 75). Washington D. C.: National Research Council (US); Transportation Research Board. | |
dc.relation.references | Dao, T. (2011). Validation of PLAXIS Embedded Piles For Lateral Loading. Delft University of Technology. | |
dc.relation.references | Derevenets, F. N., & Matsii, S. I. (2016). Assessing the Ultimate Strength of Piles Interacting with Sliding Soil. Soil Mechanics and Foundation Engineering, 53(4), 1–7. https://doi.org/10.1007/s11204-016-9393-5 | |
dc.relation.references | Douglas, D. J., & Davis, E. H. (1964). The movement of buried footings due to moment and horizontal load and the movement of anchor plates. Géotechnique, 14(2), 115–132. https://doi.org/10.1680/geot.1964.14.2.115 | |
dc.relation.references | Duncan, J., & Chang, C. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, 96(SM5), 1629–1653. | |
dc.relation.references | Fan, C. C., & Long, J. H. (2005). Assessment of existing methods for predicting soil response of laterally loaded piles in sand. Computers and Geotechnics, 32(4), 274– 289. https://doi.org/10.1016/j.compgeo.2005.02.004 | |
dc.relation.references | Fleming, K., Weltman, A., Randolph, M. F., & Elson, K. (2009). Piling Engineering (Tercera ed). New York: Taylor & Francis. | |
dc.relation.references | Flórez, J. (2024). Evaluación del efecto de la distancia entre pilas sometidas a carga horizontal en muros de contención. Universidad Nacional de Colombia. | |
dc.relation.references | Folk, R. (1980). Petrology of the sedimentary rocks (Segunda ed). Austin: Hemphill Publishing Company. | |
dc.relation.references | Frank, R., & Pouget, P. (2008). Experimental pile subjected to long duration thrusts owing to a moving slope. Géotechnique, 58(8), 645–658. https://doi.org/10.1680/geot.2008.58.8.645 | |
dc.relation.references | Fukuoka, M. (1977). The effects of horizontal loads on piles due to landslides. 9th Interntional Conference Soil Mechanics Foundation Engineering - 10th Speciality Session, 27–42. Tokyo. | |
dc.relation.references | Gabr, M. A., & Borden, R. H. (1990). Lateral analysis of piers constructed on slopes. Journal of Geotechnical Engineering, 116(12), 1831–1850. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:6(970.2) | |
dc.relation.references | Gomez, D., Aristizabal, E., & Garcia, E. F. (2023). Antecedent rainfall influence on landslides in the Colombian Andes. Revista de La Asociación Geológica Argentina, 80(2), 179–194. Retrieved from https://geohazards.com.co/#publicaciones | |
dc.relation.references | He, Y., Hazarika, H., Yasufuku, N., & Han, Z. (2015). Evaluating the effect of slope angle on the distribution of the soil – pile pressure acting on stabilizing piles in sandy slopes. Computers and Geotechnics, 69, 153–165. https://doi.org/10.1016/j.compgeo.2015.05.006 | |
dc.relation.references | Hennes, R. (1936). Analysis and Control of landslides. University of Washington Eng. Experiment Sta., 91, 57. | |
dc.relation.references | Hernández, R. (2011). Análisis de pilotes cargados lateralmente, mediante interacción suelo estructura, empleando una teoría simplificada de empujes. Universidad Nacional de Colombia. | |
dc.relation.references | Hu, X., Zhou, C., Xu, C., Liu, D., Wu, S., & Li, L. (2019). Model tests of the response of landslide-stabilizing piles to piles with different stiffness. Landslides, 16(11), 2187– 2200. https://doi.org/10.1007/s10346-019-01233-4 | |
dc.relation.references | Hull, T. S., Lee, C. Y., & Poulos, H. G. (1991). Mechanics of pile reinforcement for unstable slopes. Research Report - University of Sydney, School of Civil and Mining Engineering, (636), 1–41. | |
dc.relation.references | IGAC, Instituo Geográfico Agustín Codazzi (2024). Datos abiertos Cartografía y geografía. Retrieved June 16, 2024, from Cartografía básica website: https://geoportal.igac.gov.co/contenido/datosabiertos-cartografia-y-geografia | |
dc.relation.references | Ito, T., & Matsui, T. (1975). Methods to estimate lateral force acting on stabilizing piles. Soils and Foundations, 15(4), 43–59. | |
dc.relation.references | Ito, T., Matsui, T., & Hong, wong pyo. (1979). Design method for the stability analysis of the slope with landing pier. Soils and Foundations, 19(4), 43–57. Retrieved from http://www.mendeley.com/research/geology-volcanic-history-eruptive-styleyakedake-volcano-group-central-japan/ | |
dc.relation.references | Ito, T., Matsui, T., & Hong, wong pyo. (1981). Design method for stabilizing piles against landslide - one row of piles. Soils and Foundations, 21(1), 21–37. | |
dc.relation.references | Kanagasabai, S., Smethurst, J. A., & Powrie, W. (2011). Three-dimensional numerical modelling of discrete piles used to stabilize landslides. Canadian Geotechnical Journal, 48(9), 1393–1411. https://doi.org/10.1139/t11-046 | |
dc.relation.references | Kourkoulis, R., Gelagoti, F., Anastasopoulos, I., & Gazetas, G. (2011). Slope stabilizing piles and pile-groups: Parametric study and design insights. Journal of Geotechnical and Geoenvironmental Engineering, 137(7), 663–677. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000479 | |
dc.relation.references | Kourkoulis, Rallis. (2009). Αλληλεπίδραση Κατασκευής και Ολισθαίνοντος Πρανούς ή Αστοχούντος Εδάφους Interplay of Mat Foundations and Piles with a Failing Slope. National Technical University of Athens. | |
dc.relation.references | Le Maitre, R. W. L., & Bateman, P. C. (1989). A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Retrieved from https://books.google.com.co/books?id=ykR2QgAACAAJ | |
dc.relation.references | Likitlersuang, S., Surarak, C., Balasubramania, A., Oh, E., Syeung, R., & Wanatowski, D. (2013). Duncan-Chang - Parameters for Hyperbolic Stress Strain Behaviour of Soft Bangkok Clay. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, 381–384. Paris. | |
dc.relation.references | Lirer, S. (2012). Landslide stabilizing piles: Experimental evidences and numerical interpretation. Engineering Geology, 149–150, 70–77. https://doi.org/10.1016/j.enggeo.2012.08.002 | |
dc.relation.references | Lobo-Guerrero, S., & DeMico, T. (2018). Emergency rock slide stabilization with shear pins. The Magazine of the Deep Foundations Institute, (5), 83–86. | |
dc.relation.references | Lobo-Guerrero, S., DeMico, T., & Patel, V. (2018). Embankment Stabilization with Drilled Shafts. The Magazine of the Deep Foundations Institute, (4), 83–87. | |
dc.relation.references | Midasoft. (2019). Analysis reference, Manual de usuario y guía técnica del programa computacional GTS NX. Seongnam: Midas. | |
dc.relation.references | Mindlin, R. D. (1936). Force at a Point in the Interior of a SemiInfinite Solid. Physics, 7, 195–202. https://doi.org/10.1063/1.1745385 | |
dc.relation.references | Mohammadi, S., & Taiebat, H. (2016). Finite element simulation of an excavation-triggered landslide using large deformation theory. Engineering Geology, 205, 62–72. https://doi.org/10.1016/j.enggeo.2016.02.012 | |
dc.relation.references | Montero, J. (2017). Clasificación de movimientos en masa y su distribución en terrenos geológicos de Colombia (L. Vásquez, Ed.). Retrieved from https://www2.sgc.gov.co/Archivos/Clasificación.pdf | |
dc.relation.references | Murcia, D. (2023). Grupos de pilotes sometidos a carga lateral. Universidad Nacional de Colombia. | |
dc.relation.references | Nichols, G. (2009). Sedimentology and Stratigraphy. In Sustainability (Switzerland) (Segunda ed, Vol. 11). Retrieved from http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.20 08.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMB ETUNGAN_TERPUSAT_STRATEGI_MELESTARI | |
dc.relation.references | Pilling, P., Ashour, M., & Norris, G. (2001). Strain wedge model hybrid analysis of laterally loaded pile group. Transportation Research Record, 174(1), 115–121. https://doi.org/10.3141/1772-13 | |
dc.relation.references | Potts, D., & Zdravkovic, L. (1999). Finite element analysis in geotechnical engineering (Primera ed). Londres: Imperial College of Science, Technology and Medicine. | |
dc.relation.references | Poulos, H., & Hull, T. (1999). Design Method for stabilization of slopes with piles. Journal of the Geotechnical and Geoenvironmental Engineering Division, ASCE, 911–913. https://doi.org/10.1061/(ASCE)1090-0241(1999)125 | |
dc.relation.references | Poulos, Harry. (1995). Design of reinforcing piles to increase slope stability. Canadian Geotechnical Journal, 32(5), 808–818. https://doi.org/10.1139/t95-078 | |
dc.relation.references | Powell, D. (1970). A hybrid method for nonlinear equations. In P. Rabinowitz (Ed.), Numerical Methods for Nonlinear Algebraic Equations (pp. 87–114). Londres: Gordon and Breach Science Publishers. | |
dc.relation.references | Proyecto Multinacional Andino (2007). Movimientos en masa en la región Andina: una guía para la evaluación de amenazas. Servicio Nacional de Geología y Minería, No. 4, 432. Retrieved from https://manantiales.sgc.gov.co/bodegasimma/docsreferencia/LibroMovimientosenMasaenlaRegionAndina_07_10_29.pdf | |
dc.relation.references | Ramírez, C. (2023). Estudio de movimientos en masa detonados por el sismo de Quetame ( Cund .) de mayo de 2008. Universidad Nacional de Colombia. | |
dc.relation.references | Reese, L. (1977). Laterally loaded piles: program documentation. Geotechnical and Geoenvironmental Engineering, 103(4), 287–305. Retrieved from http://ojps.aip.org/gto | |
dc.relation.references | Reese, L. C., Cox, W., & Koop, F. (1974). Analysis of Laterally Loaded Piles in Sand. Proceedings of the 6th Annual Offshore Technology Conference, 473–483. https://doi.org/doi:. 10.4043/2080-MS | |
dc.relation.references | SGC, Servicio Geológico Colombiano (2015). Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa : escala detallada. Retrieved from https://manantiales.sgc.gov.co/bodegasimma/docsreferencia/LibroMovimientosenMasaenlaRegionAndina_07_10_29.pdf | |
dc.relation.references | SGC, Servicio Geológico Colombiano (2024). Sistema de Información de Movimientos en Masa. Retrieved June 16, 2024, from SIMMA website: https://simma.sgc.gov.co./#/public/basic/ | |
dc.relation.references | Tejedor, C. (2022). Efecto de la cementación en el comportamiento volumétrico unidimensional de un suelo de la Orinoquía colombiana. Universidad Nacional de Colombia. | |
dc.relation.references | van de Rotten, A. (2003). A limited memory Broyden method to solve high-dimensional systems of nonlinear equations. Universiteit Leiden. | |
dc.relation.references | Van Impe, W., & Reese, L. (2011). Single Piles and Pile Groups under Lateral Loading (Segunda ed). CRC Press, Boca Raton. | |
dc.relation.references | Viggiani, C. (1981). Ultimate lateral load on piles used to stabilise landslides. In Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering (Vol. 3, pp. 555–560). Retrieved from http://link.springer.com/10.1007/978-3-319-73568-9_174 | |
dc.relation.references | Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, … Mulbregt, V. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2 | |
dc.relation.references | Winkler, E. (1867). Die Lehre von der Elasticitaet und Festigkeit (Primera ed). Praga: Heïnr. | |
dc.relation.references | Wu, T. (1966). Soil Mechanics. Boston: Allyn and Bacon, Inc. | |
dc.relation.references | Zeevaert, L. (1980). Interaccion Suelo - Estructura de Cimentación (Primera ed). México D. F.: Limusa. | |
dc.relation.references | Zhang, Y., Hu, X., Tannant, D. D., Zhang, G., & Tan, F. (2018). Field monitoring and deformation characteristics of a landslide with piles in the Three Gorges Reservoir area. Landslides, 15(3), 581–592. https://doi.org/10.1007/s10346-018-0945-9 | |
dc.relation.references | Zhou, C., Hu, X., Wen-bo, Z., Chu, X., & Qiang, W. (2020). Displacement characteristic of landslides reinforced with flexible piles : field and physical model test. Journal of Mountain Science, 17(4), 787–800. https://doi.org/https://doi.org/10.1007/s11629- 019-5743-x | |
dc.relation.references | Zhu, M., Lu, H., Gong, W., & Wan, Z. (2018). Effect of slope angle on stabilizing piles in Cφ soil. In Springer Series in Geomechanics and Geoengineering (Vol. 1). https://doi.org/10.1007/978-3-319-97115-5_150 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.bne | Ingeniería civil | spa |
dc.subject.bne | Cimentaciones sobre pilotes -- Modelos matemáticos | spa |
dc.subject.bne | Piling (Civil engineering) -- Mathematical models | eng |
dc.subject.bne | Civil engineering | eng |
dc.subject.bne | Geotecnia -- Investigación -- Colombia | spa |
dc.subject.bne | Estabilización de suelos -- Métodos de simulación | spa |
dc.subject.bne | Compactación de suelos | spa |
dc.subject.bne | Slopes (Soil mechanics) | eng |
dc.subject.bne | Taludes | spa |
dc.subject.bne | Soil stabilization -- Simulation methods | eng |
dc.subject.bne | Soil mechanics -- Research | eng |
dc.subject.bne | Soil compaction | eng |
dc.subject.bne | Muros de contención | spa |
dc.subject.bne | Retaining walls | eng |
dc.subject.bne | Método de elementos finitos | spa |
dc.subject.bne | Finite element method | eng |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | |
dc.subject.eric | Civil engineering | eng |
dc.subject.lemb | Ingeniería civil -- Programas para computador | spa |
dc.subject.lemb | Civil engineering -- Computer programs | eng |
dc.subject.proposal | Estructuras de contención | spa |
dc.subject.proposal | Estabilidad de taludes | spa |
dc.subject.proposal | Interacción suelo-estructura | spa |
dc.subject.proposal | Elementos finitos | spa |
dc.subject.proposal | Curvas p-y | spa |
dc.subject.proposal | Pilotes | spa |
dc.subject.proposal | Retaining structures | eng |
dc.subject.proposal | Slope stability | eng |
dc.subject.proposal | Soil-structure interaction | eng |
dc.subject.proposal | Finite elements | eng |
dc.subject.proposal | P-y curves | eng |
dc.subject.proposal | Piles | eng |
dc.subject.wikidata | Estructura de contención | spa |
dc.subject.wikidata | Containment structure | eng |
dc.subject.wikidata | Modelización y simulación | spa |
dc.subject.wikidata | Modeling and simulation | eng |
dc.title | Análisis paramétrico de grupos de pilotes usados como estructura de estabilización en taludes | spa |
dc.title.translated | Parametric analysis of pile groups used as structures for the stabilization of slopes | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1010221595.2025.pdf
- Tamaño:
- 7.53 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Geotecnia
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: