Aplicación de técnicas de aprendizaje de máquina al análisis de archivos de video para la detección de delitos

dc.contributor.advisorBolaños Martinez, Freddy
dc.contributor.authorLondoño Lopera, Juan Camilo
dc.contributor.otherLuis Alejandro Fletscher Bocanegra
dc.date.accessioned2024-06-25T16:11:54Z
dc.date.available2024-06-25T16:11:54Z
dc.date.issued2024
dc.description.abstractEsta tesis se centra en el desarrollo de una aplicación para seguridad ciudadana mediante técnicas de aprendizaje de máquina, con el objetivo principal de detectar delitos a través del análisis de archivos de video. La investigación comienza con una revisión sistemática de las técnicas más relevantes, estableciendo criterios de selección que priorizan estructuras capaces de integrar eficientemente la dimensión temporal. Se favorecen modelos de aprendizaje de máquina, que ofrecen versatilidad para la incorporación de nuevos parámetros, especialmente aquellos basados en esquemas espacio-temporales, fundamentales para el análisis de video y la consideración del contexto temporal de los eventos. Dado que la recolección de datos extensos y etiquetados resulta inviable en el marco temporal del proyecto, se opta por utilizar simulaciones basadas en conjuntos de datos públicos en lı́nea diseñados especı́ficamente para la detección de delitos. Se selecciona cuidadosamente al menos un tipo de delito para la investigación, considerando su relevancia y disponibilidad de repeticiones para el desarrollo efectivo del modelo de predicción. La validación del modelo se lleva a cabo mediante una evaluación exhaustiva, utilizando diversos conjuntos de datos previamente seleccionados y parámetros clave de desempeño, como la curva ROC - AUC. Este enfoque integral busca garantizar la eficacia y aplicabilidad del modelo en entornos prácticos y del mundo real. (Texto tomado de la fuente)spa
dc.description.abstractThis thesis focuses on developing an application for public safety through machine learning techniques, with the primary goal of crime detection by analyzing video files. The research begins with a systematic review of the most relevant techniques, establishing selection criteria that prioritize structures capable of efficiently integrating the temporal dimension. Machine learning models are favored for their versatility in incorporating new parameters, especially those based on spatiotemporal schemes, crucial for video analysis and considering the temporal context of events. Since the collection of extensive and labeled data is impractical within the project’s timeframe, simulations based on publicly available online datasets specifically designed for crime detection are used. At least one type of crime is carefully selected for investigation, considering its relevance and the availability of repetitions for the effective development of the prediction model. Model validation is conducted through a comprehensive evaluation, utilizing various pre-selected datasets and key performance parameters, such as the ROC-AUC curve. This holistic approach seeks to ensure the effectiveness and applicability of the model in practical and real-world settings.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaSistemas de ingeniería inteligentesspa
dc.format.extent91 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86291
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.references[Acsintoae et al., 2021] Acsintoae, A., Florescu, A., Georgescu, M.-I., Mare, T., Sumedrea, P., Ionescu, R. T., Khan, F. S., and Shah, M. (2021). Ubnormal: New benchmark for supervised open-set video anomaly detection. Computer Vision and Pattern Recognition.spa
dc.relation.references[Adam et al., 2008] Adam, A., Rivlin, E., Shimshoni, I., and Reinitz, D. (2008). Robust real- time unusual event detection using multiple fixed-location monitors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(3):555–560spa
dc.relation.references[Althnian et al., 2021] Althnian, A., AlSaeed, D., Al-Baity, H., Samha, A., Dris, A. B., Al- zakari, N., Abou Elwafa, A., and Kurdi, H. (2021). Impact of dataset size on classification performance: An empirical evaluation in the medical domain. Applied Sciences, 11(2).spa
dc.relation.references[Anthopoulos, 2015] Anthopoulos, L. G. (2015). Understanding the Smart City Domain: A Literature Review, pages 9–21. Springer International Publishing, Cham.spa
dc.relation.references[Boekhoudt et al., 2021] Boekhoudt, K., Matei, A., Aghaei, M., and Talavera, E. (2021). Hr- crime: Human-related anomaly detection in surveillance videos. CoRR, abs/2108.00246.spa
dc.relation.references[Carreira and Zisserman, 2017] Carreira, J. and Zisserman, A. (2017). Quo vadis, action recognition? a new model and the kinetics dataset. pages 4724–4733.spa
dc.relation.references[Catlett et al., 2019] Catlett, C., Cesario, E., Talia, D., and Vinci, A. (2019). Spatio- temporal crime predictions in smart cities: A data-driven approach and experiments. Pervasive and Mobile Computing, 53.spa
dc.relation.references[Cheng et al., 2021] Cheng, M., Cai, K., and Li, M. (2021). Rwf-2000: An open large scale video database for violence detection. In 2020 25th International Conference on Pattern Recognition (ICPR), pages 4183–4190.spa
dc.relation.references[Degardin and Proença, 2021] Degardin, B. and Proença, H. (2021). Iterative weak/self- supervised classification framework for abnormal events detection. Pattern Recognition Letters, 145:50–57.spa
dc.relation.references[Dubey et al., 2019] Dubey, S., Boragule, A., and Jeon, M. (2019). 3d resnet with ranking loss function for abnormal activity detection in videos. In 2019 International Conference on Control, Automation and Information Sciences (ICCAIS), pages 1–6.spa
dc.relation.references[Farnebäck, 2003] Farnebäck, G. (2003). Two-frame motion estimation based on polynomial expansion. volume 2749, pages 363–370spa
dc.relation.references[Feng et al., 2021] Feng, J.-C., Hong, F.-T., and Zheng, W.-S. (2021). Mist: Multiple ins- tance self-training framework for video anomaly detection. pages 14004–14013.spa
dc.relation.references[Gemmeke et al., 2017] Gemmeke, J. F., Ellis, D. P. W., Freedman, D., Jansen, A., Law- rence, W., Moore, R. C., Plakal, M., and Ritter, M. (2017). Audio set: An ontology and human-labeled dataset for audio events. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 776–780.spa
dc.relation.references[Gorr et al., 2003] Gorr, W., Olligschlaeger, A., and Thompson, Y. (2003). Short-term fo- recasting of crime. International Journal of Forecasting, 19.spa
dc.relation.references[Hasan et al., 2016] Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A. K., and Davis, L. S. (2016). Learning temporal regularity in video sequences. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 733–742.spa
dc.relation.references[Hershey et al., 2016] Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F., Jansen, A., Moore, R. C., Plakal, M., Platt, D., Saurous, R. A., Seybold, B., Slaney, M., Weiss, R. J., and Wilson, K. W. (2016). CNN architectures for large-scale audio classification. CoRR, abs/1609.09430.spa
dc.relation.references[Isafiade and Bagula, 2020] Isafiade, O. E. and Bagula, A. B. (2020). Series mining for public safety advancement in emerging smart cities. Future Generation Computer Systems, 108.spa
dc.relation.references[Kamoona et al., 2023] Kamoona, A. M., Gostar, A. K., Bab-Hadiashar, A., and Hosein- nezhad, R. (2023). Multiple instance-based video anomaly detection using deep temporal encoding–decoding. Expert Systems with Applications, 214:119079.spa
dc.relation.references[Karpathy et al., 2014] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In CVPR.spa
dc.relation.references[Kliper-Gross et al., 2012] Kliper-Gross, O., Hassner, T., and Wolf, L. (2012). The action similarity labeling challenge. IEEE Transactions on Pattern Analysis and Machine Inte- lligence, 34:615–621.spa
dc.relation.references[Landi et al., 2019] Landi, F., Snoek, C. G. M., and Cucchiara, R. (2019). Anomaly locality in video surveillance. ArXiv, abs/1901.10364.spa
dc.relation.references[Lu et al., 2013] Lu, C., Shi, J., and Jia, J. (2013). Abnormal event detection at 150 fps in matlab. In 2013 IEEE International Conference on Computer Vision, pages 2720–2727.spa
dc.relation.references[Luo et al., 2017] Luo, W., Liu, W., and Gao, S. (2017). A revisit of sparse coding based anomaly detection in stacked rnn framework. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 341–349.spa
dc.relation.references[Lv et al., 2021a] Lv, H., Chen, C., Cui, Z., Xu, C., Li, Y., and Yang, J. (2021a). Learning normal dynamics in videos with meta prototype network. Computer Vision and Pattern Recognition.spa
dc.relation.references[Lv et al., 2021b] Lv, H., Zhou, C., Cui, Z., Xu, C., Li, Y., and Yang, J. (2021b). Localizing anomalies from weakly-labeled videos. Computer Vision and Pattern Recognition.spa
dc.relation.references[Mahadevan et al., 2010] Mahadevan, V., Li, W., Bhalodia, V., and Vasconcelos, N. (2010). Anomaly detection in crowded scenes. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1975–1981.spa
dc.relation.references[Majhi et al., 2021] Majhi, S., Das, S., Bremond, F., Dash, R., and Sa, P. (2021). Weakly- supervised joint anomaly detection and classification. In 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), pages 1–7, Los Ala- mitos, CA, USA. IEEE Computer Society.spa
dc.relation.references[Maqsood et al., 2021] Maqsood, R., Bajwa, U., Saleem, G., Raza, R., and Anwar, M. (2021). Anomaly recognition from surveillance videos using 3d convolutional neural networks.spa
dc.relation.references[Medapati et al., 2019] Medapati, P. K., Murthy, P. H. S. T., and Sridhar, K. P. (2019). Lamstar: For iot-based face recognition system to manage the safety factor in smart cities. Transactions on Emerging Telecommunications Technologies.spa
dc.relation.references[Mehran et al., 2009] Mehran, R., Oyama, A., and Shah, M. (2009). Abnormal crowd beha- vior detection using social force model. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 935–942.spa
dc.relation.references[OECD, 2021] OECD (2021). OECD, “Better life index, security”. Accedido: 2022-03-17.spa
dc.relation.references[Oh, 2011] Oh, S. (2011). A new dataset evaluation method based on category overlap. Computers in Biology and Medicine, 41(2):115–122.spa
dc.relation.references[Pang et al., 2019] Pang, Y., Zhang, L., Ding, H., Fang, Y., and Chen, S. (2019). Spath: Fin- ding the safest walking path in smart cities. IEEE Transactions on Vehicular Technology, 68.spa
dc.relation.references[Perez et al., 2019] Perez, M., Kot, A. C., and Rocha, A. (2019). Detection of real-world fights in surveillance videos. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2662–2666.spa
dc.relation.references[Ramzan et al., 2019] Ramzan, M., Abid, A., Khan, H. U., Awan, S. M., Ismail, A., Ahmed, M., Ilyas, M., and Mahmood, A. (2019). A review on state-of-the-art violence detection techniques. IEEE Access, 7:107560–107575.spa
dc.relation.references[Rathore et al., 2016] Rathore, M., Ahmad, A., Paul, A., and Rho, S. (2016). Urban planning and building smart cities based on the internet of things using big data analytics. Computer Networks, 101:63–80.spa
dc.relation.references[Rathore et al., 2018] Rathore, M., Paul, A., Ahmad, A., Chilamkurti, N., Hong, W.-H., and Seo, H. (2018). Real-time secure communication for smart city in high-speed big data environment. Future Generation Computer Systems, 83:638–652.spa
dc.relation.references[Sandler et al., 2018] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4510–4520.spa
dc.relation.references[SIEDCO, 2021] SIEDCO (2021). Estadı́stica delictiva. Accedido: 2022-03-23.spa
dc.relation.references[Simić et al., 2020] Simić, M., Perić, M., Popadić, I., Perić, D., Pavlović, M., Vučetić, M., and Stanković, M. (2020). Big data and development of smart city: System architecture and practical public safety example. Serbian Journal of Electrical Engineering, 17:337–355.spa
dc.relation.references[Soliman et al., 2019] Soliman, M. M., Kamal, M. H., El-Massih Nashed, M. A., Mostafa, Y. M., Chawky, B. S., and Khattab, D. (2019). Violence recognition from videos using deep learning techniques. In 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS), pages 80–85.spa
dc.relation.references[Soomro et al., 2012] Soomro, K., Zamir, A. R., and Shah, M. (2012). UCF101: A dataset of 101 human actions classes from videos in the wild. CoRR, abs/1212.0402.spa
dc.relation.references[Sultani et al., 2019] Sultani, W., Chen, C., and Shah, M. (2019). Real-world anomaly de- tection in surveillance videos. Computer Vision and Pattern Recognition.spa
dc.relation.references[Tian et al., 2021] Tian, Y., Pang, G., Chen, Y., Singh, R., Verjans, J. W., and Carnei- ro, G. (2021). Weakly-supervised video anomaly detection with robust temporal feature magnitude learning. Computer Vision and Pattern Recognition.spa
dc.relation.references[Tran et al., 2015] Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M. (2015). Learning spatiotemporal features with 3d convolutional networks. pages 4489–4497.spa
dc.relation.references[Ullah and Petrosino, 2017] Ullah, I. and Petrosino, A. (2017). A spatiotemporal feature learning approach for dynamic scene recognition.spa
dc.relation.references[Ullah et al., 2021a] Ullah, W., Ullah, A., Haq, I. U., Muhammad, K., Sajjad, M., and Baik, S. W. (2021a). Cnn features with bi-directional lstm for real-time anomaly detection in surveillance networks. Multimedia Tools and Applications.spa
dc.relation.references[Ullah et al., 2021b] Ullah, W., Ullah, A., Hussain, T., Khan, A., and Baik, S. W. (2021b). An efficient anomaly recognition framework using an attention residual lstm in surveillance videos. Sensors.spa
dc.relation.references[Vahdani and Tian, 2023] Vahdani, E. and Tian, Y. (2023). Deep learning-based action detection in untrimmed videos: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4302–4320.spa
dc.relation.references[Wan et al., 2021] Wan, B., Jiang, W., Fang, Y., Luo, Z., and Ding, G. (2021). Ano- maly detection in video sequences: A benchmark and computational model. CoRR, abs/2106.08570.spa
dc.relation.references[Wu et al., 2021] Wu, J., Zhang, W., Li, G., Wu, W., Tan, X., Li, Y., Ding, E., and Lin, L. (2021). Weakly-supervised spatio-temporal anomaly detection in surveillance video.spa
dc.relation.references[Wu et al., 2020] Wu, P., Liu, J., Shi, Y., Sun, Y., Shao, F., Wu, Z., and Yang, Z. (2020). Not only look, but also listen: Learning multimodal violence detection under weak supervision. Computer Vision and Pattern Recognition.spa
dc.relation.references[Xu et al., 2022] Xu, Y., Huang, C., Nan, Y., and Lian, S. (2022). Tad: A large-scale bench- mark for traffic accidents detection from video surveillance.spa
dc.relation.references[Zhang and Yu, 2018] Zhang, S. and Yu, H. (2018). Person re-identification by multi-camera networks for internet of things in smart cities. IEEE Access, 6.spa
dc.relation.references[Zhong et al., 2019] Zhong, J.-X., Li, N., Kong, W., Liu, S., Li, T. H., and Li, G. (2019). Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 1237–1246.spa
dc.relation.references[Zhu and Yang, 2018] Zhu, C. and Yang, Y. (2018). Face detection and recognition ba- sed on deep learning in the monitoring environment. Communications in Computer and Information Science, pages 698–705.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.lembRedes neuronales (computadores)
dc.subject.lembPredicción en la conducta criminal
dc.subject.proposalSeguridad ciudadanaspa
dc.subject.proposalAprendizaje de máquinaspa
dc.subject.proposalDetección de delitosspa
dc.subject.proposalModelos LSTMspa
dc.subject.proposalRedes Neuronales Convolucionales 3Dspa
dc.subject.proposalPredicción de eventosspa
dc.subject.proposalPublic safetyeng
dc.subject.proposalMachine learningeng
dc.subject.proposalCrime detectioneng
dc.subject.proposalLSTM Modelseng
dc.subject.proposal3D Convolutional Neural Networkseng
dc.subject.proposalEvent Predictioneng
dc.subject.proposalSistemas de videovigilanciaspa
dc.subject.wikidataVideovigilancia IP
dc.titleAplicación de técnicas de aprendizaje de máquina al análisis de archivos de video para la detección de delitosspa
dc.title.translatedApplication of machine learning techniques to video file analysis for crime detectioneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1035421830.2024.pdf
Tamaño:
1.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: