Síntesis de películas delgadas de Sb2Se3 con propiedades adecuadas para su uso como capa absorbente en celdas solares
dc.contributor.advisor | Gordillo Guzmán, Gerardo | spa |
dc.contributor.author | Méndez Acuña, Alvaro Iván | spa |
dc.contributor.cvlac | Méndez Acuña, Alvaro Iván [0000087988] | spa |
dc.contributor.googlescholar | Méndez Acuña, Alvaro Iván [Alvaro Iván Méndez Acuña] | spa |
dc.contributor.orcid | Méndez Acuña, Alvaro Iván [0009-0005-3396-0221] | spa |
dc.contributor.researchgroup | Grupo de Materiales Semiconductores y Energía Solar | spa |
dc.date.accessioned | 2025-04-24T18:43:37Z | |
dc.date.available | 2025-04-24T18:43:37Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Las celdas solares basadas en el compuesto seleniuro de antimonio (Sb2Se3) ofrecen una alternativa interesante respecto a las tecnologías fotovoltaicas de CIGS y CdTe dominantes en la actualidad. La importancia de su aplicación como capa absorbente en celdas solares radica en la abundancia de sus precursores, su baja toxicidad y sus notables propiedades ópticas y eléctricas. En este trabajo, se realizó el estudio de los parámetros de deposición de una capa delgada de Sb2Se3 que incluyó las variables: masa de Se, temperatura y tiempo de selenización; además, se enfatizó en el desarrollo de un reactor automatizado que permitiera la síntesis de las capas absorbentes de Sb2Se3. Este reactor, con diseño novedoso, permite crecer cualquier tipo de compuesto calcogenuro mediante calcogenización de sus precursores metálicos. El proceso de recocido incluye selenización del precursor metálico (Sb) en una atmósfera controlada de mezcla de Argón e Hidrógeno, seguido de calentamiento en presencia de selenio por medio del reactor diseñado. Este proceso de selenización se lleva a cabo controlando el tiempo y la temperatura de selenización con la ayuda de un algoritmo de control PID desarrollado utilizando el entorno de programación LabVIEW. Los resultados del estudio permitieron encontrar los factores adecuados para la síntesis de películas de Sb2Se3 libres de fase secundarias, con buenas propiedades estructurales, ópticas y morfológicas, lo que indica que las películas de Sb2Se3 preparadas mediante la rutina de calcogenización desarrollada en este trabajo podrían usarse, posteriormente, como capa absorbente en celdas solares. De esta forma, se logró obtener muestras de Sb2Se3 con buena reproducibilidad de sus propiedades. En este trabajo de tesis se presentan también resultados de caracterización SEM, EDX, XRD y reflectancia difusa realizada a las películas de Sb2Se3 depositadas que permitió evaluar las propiedades ópticas, morfológicas y estructurales. (Texto tomado de la fuente). | spa |
dc.description.abstract | Solar cells based on antimony selenide compound (Sb2Se3) offer an interesting alternative to the currently dominant CIGS and CdTe photovoltaic technologies. The importance of its application as an absorber layer in solar cells lies in the abundance of its precursors, its low toxicity and its remarkable optical and electrical properties. In this work, the study of the deposition parameters of a thin film of Sb2Se3 was carried out including the variables: mass of Se, temperature and selenization time; in addition, emphasis was placed on the development of an automated reactor which allows the synthesis of Sb2Se3 absorber layers. This reactor, with a novel design, allows the growth of any type of chalcogenide compound by chalcogenization of its metallic precursors. The annealing process includes selenization of the metal precursor (Sb) in a controlled atmosphere of Argon and Hydrogen mixture, followed by heating in the presence of selenium by means of the designed reactor. This selenization process is carried out by controlling the selenization time and temperature with the help of a PID control algorithm developed using LabVIEW programming environment. The results of the study allowed finding the proper factors for the synthesis of secondary phase free Sb2Se3 films, with good structural, optical and morphological properties, which indicates that the Sb2Se3 films prepared by the chalcogenization routine developed in this work could be used, later on, as an absorbing layer in solar cells. In this way, it was possible to obtain Sb2Se3 samples with good reproducibility of their properties. In this thesis work, we also present results of SEM, EDX, XRD and diffuse reflectance characterization of the deposited Sb2Se3 films, which allowed us to evaluate the optical, morphological and structural properties. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería Mecánica | spa |
dc.description.researcharea | Ingeniería de materiales y procesos de manufactura | spa |
dc.format.extent | xviii, 76 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88114 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería Mecánica y Mecatrónica | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica | spa |
dc.relation.references | C. Zhao et al., “Advances in CIGS thin film solar cells with emphasis on the alkali element post-deposition treatment,” Aug. 01, 2023, KeAi Communications Co. doi: 10.1016/j.matre.2023.100214. | spa |
dc.relation.references | Y. Wang et al., “Research progress in doped absorber layer of CdTe solar cells,” Sep. 01, 2023, Elsevier Ltd. doi: 10.1016/j.rser.2023.113427. | spa |
dc.relation.references | A. Mavlonov et al., “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells,” May 01, 2020, Elsevier Ltd. doi: 10.1016/j.solener.2020.03.009. | spa |
dc.relation.references | M. Cellura, L. Q. Luu, F. Guarino, and S. Longo, “A review on life cycle environmental impacts of emerging solar cells,” Jan. 15, 2024, Elsevier B.V. doi: 10.1016/j.scitotenv.2023.168019. | spa |
dc.relation.references | W. Wang et al., “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency.,” Adv Energy Mater, vol. 4, no. 7, 2014. | spa |
dc.relation.references | A. W. Welch et al., “Trade-Offs in Thin Film Solar Cells with Layered Chalcostibite Photovoltaic Absorbers,” Adv Energy Mater, vol. 7, no. 11, p. 1601935, Jun. 2017, doi: https://doi.org/10.1002/aenm.201601935. | spa |
dc.relation.references | Z. Li et al., “9.2%-efficient core-shell structured antimony selenide nanorod array solar cells,” Nat Commun, vol. 10, no. 1, Dec. 2019, doi: 10.1038/s41467-018-07903-6. | spa |
dc.relation.references | R. Baier, C. Leendertz, D. Abou-Ras, M. Ch. Lux-Steiner, and S. Sadewasser, “Properties of electronic potential barriers at grain boundaries in Cu(In,Ga)Se2 thin films,” Solar Energy Materials and Solar Cells, vol. 130, pp. 124–131, 2014, doi: https://doi.org/10.1016/j.solmat.2014.07.002. | spa |
dc.relation.references | M. S. Leite, M. Abashin, H. J. Lezec, A. Gianfrancesco, A. A. Talin, and N. B. Zhitenev, “Nanoscale imaging of photocurrent and efficiency in CdTe solar cells,” ACS Nano, vol. 8, no. 11, pp. 11883–11890, 2014. | spa |
dc.relation.references | A. Zakutayev, L. L. Baranowski, A. W. Welch, C. A. Wolden, and E. S. Toberer, “Comparison of Cu 2 SnS 3 and CuSbS 2 as potential solar cell absorbers,” in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), IEEE, 2014, pp. 2436–2438. | spa |
dc.relation.references | Y. Zhou et al., “Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries,” Nat Photonics, vol. 9, no. 6, pp. 409–415, Jun. 2015, doi: 10.1038/nphoton.2015.78. | spa |
dc.relation.references | Y. Singh et al., “Sb2Se3 heterostructure solar cells: Techniques to improve efficiency,” Jan. 01, 2023, Elsevier Ltd. doi: 10.1016/j.solener.2022.11.033. | spa |
dc.relation.references | L. Guo et al., “Improved stability and efficiency of CdSe/Sb2Se3 thin-film solar cells,” Solar Energy, vol. 188, pp. 586–592, Aug. 2019, doi: 10.1016/j.solener.2019.06.042. | spa |
dc.relation.references | W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p–n junction solar cells,” in Renewable energy, Routledge, 2018, p. Vol2_35-Vol2_54. | spa |
dc.relation.references | P. Würfel, “Physics of solar cells: From principles to new concepts. Verlag GmbH & Co KGaA,” 2005, Weinheim, Wiley-VCH. | spa |
dc.relation.references | R. N. Bhattacharya and P. Pramanik, “A photoelectrochemical cell based on chemically deposited Sb2Se3 thin film electrode and dependence of deposition on various parameters,” Solar Energy Materials, vol. 6, no. 3, pp. 317–322, 1982. | spa |
dc.relation.references | X. Liu et al., “Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells,” ACS Appl Mater Interfaces, vol. 6, no. 13, pp. 10687–10695, Jul. 2014, doi: 10.1021/am502427s. | spa |
dc.relation.references | M. Leng et al., “Selenization of Sb2Se3 absorber layer: An efficient step to improve device performance of CdS/Sb2Se3 solar cells,” Appl Phys Lett, vol. 105, no. 8, p. 083905, Aug. 2014, doi: 10.1063/1.4894170. | spa |
dc.relation.references | X. Wen et al., “Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency,” Nat Commun, vol. 9, no. 1, Dec. 2018, doi: 10.1038/s41467-018-04634-6. | spa |
dc.relation.references | C. Chen et al., “6.5% Certified Efficiency Sb2Se3 Solar Cells Using PbS Colloidal Quantum Dot Film as Hole-Transporting Layer,” ACS Energy Lett, vol. 2, no. 9, pp. 2125–2132, Sep. 2017, doi: 10.1021/acsenergylett.7b00648. | spa |
dc.relation.references | Y. Di Luo et al., “An effective combination reaction involved with sputtered and selenized Sb precursors for efficient Sb2Se3 thin film solar cells,” Chemical Engineering Journal, vol. 393, Aug. 2020, doi: 10.1016/j.cej.2020.124599. | spa |
dc.relation.references | W. A. Badawy, “A review on solar cells from Si-single crystals to porous materials and Quantum dots,” 2015, Elsevier B.V. doi: 10.1016/j.jare.2013.10.001. | spa |
dc.relation.references | A. Maalouf, T. Okoroafor, Z. Jehl, V. Babu, and S. Resalati, “A comprehensive review on life cycle assessment of commercial and emerging thin-film solar cell systems,” Oct. 01, 2023, Elsevier Ltd. doi: 10.1016/j.rser.2023.113652. | spa |
dc.relation.references | K. Yoshikawa et al., “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat Energy, vol. 2, no. 5, p. 17032, 2017, doi: 10.1038/nenergy.2017.32. | spa |
dc.relation.references | First Solar Press, “ First Solar achieves yet another cell conversion efficiency world record,” First Solar press release. First Solar achieves yet another cell conversion efficiency world record. Accessed: Oct. 18, 2024. [Online]. Available: https://investor.firstsolar.com/news/press-release-details/2016/First-Solar-Achieves-Yet-Another-Cell-Conversion-Efficiency-World-Record/ | spa |
dc.relation.references | First Solar Press, “First Solar achieves world record 18.6% thin film module conversion efficiency,” First Solar press release. First Solar achieves world record 18.6% thin film module conversion efficiency. Accessed: Oct. 18, 2024. [Online]. Available: https://investor.firstsolar.com/news/press-release-details/2015/First-Solar-Achieves-World-Record-186--Thin-Film-Module-Conversion-Efficiency/default.aspx | spa |
dc.relation.references | Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, “ZSW Sets New World Record for Thin-film Solar Cells,” ZSW Sets New World Record for Thin-film Solar Cells. Accessed: Oct. 18, 2024. [Online]. Available: https://www.zsw-bw.de/en/newsroom/news/news-detail/news/detail/News/zsw-sets-new-world-record-for-thin-film-solar-cells.html | spa |
dc.relation.references | H. Sugimoto, “High efficiency and large volume production of CIS-based modules,” in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014, pp. 2767–2770. doi: 10.1109/PVSC.2014.6925503. | spa |
dc.relation.references | C. J. Brabec, V. Dyakonov, J. Parisi, and N. S. Sariciftci, Organic photovoltaics: concepts and realization, vol. 60. Springer Science & Business Media, 2003. | spa |
dc.relation.references | M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Progress in Photovoltaics: Research and Applications, vol. 23, no. 1, pp. 1–9, Jan. 2015, doi: https://doi.org/10.1002/pip.2573. | spa |
dc.relation.references | A. G. Pattantyus-Abraham et al., “Depleted-Heterojunction Colloidal Quantum Dot Solar Cells,” ACS Nano, vol. 4, no. 6, pp. 3374–3380, Jun. 2010, doi: 10.1021/nn100335g. | spa |
dc.relation.references | NREL, “Best Research-Cell Efficiency Chart,” Best Research-Cell Efficiency Char. Accessed: Oct. 18, 2024. [Online]. Available: https://www.nrel.gov/pv/cell-efficiency.html | spa |
dc.relation.references | A. Shongalova et al., “Growth of Sb2Se3 thin films by selenization of RF sputtered binary precursors,” Solar Energy Materials and Solar Cells, vol. 187, pp. 219–226, Dec. 2018, doi: 10.1016/j.solmat.2018.08.003. | spa |
dc.relation.references | Y. Zhou et al., “Solution-processed antimony selenide heterojunction solar cells,” Adv Energy Mater, vol. 4, no. 8, Jun. 2014, doi: 10.1002/aenm.201301846. | spa |
dc.relation.references | C. Chen et al., “Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics,” Frontiers of Optoelectronics, vol. 10, no. 1, pp. 18–30, 2017, doi: 10.1007/s12200-017-0702-z. | spa |
dc.relation.references | D. Lee, J. Y. Cho, and J. Heo, “Improved efficiency of Sb2Se3/CdS thin-film solar cells: The effect of low-temperature pre-annealing of the absorbers,” Solar Energy, vol. 173, pp. 1073–1079, Oct. 2018, doi: 10.1016/j.solener.2018.08.065. | spa |
dc.relation.references | R. Jakomin, S. Rampino, G. Spaggiari, and F. Pattini, “Advances on Sb2Se3 Solar Cells Fabricated by Physical Vapor Deposition Techniques,” Solar, vol. 3, no. 4, pp. 566–595, Oct. 2023, doi: 10.3390/solar3040031. | spa |
dc.relation.references | X. Hu et al., “Improving the efficiency of Sb2Se3 thin-film solar cells by post annealing treatment in vacuum condition,” Solar Energy Materials and Solar Cells, vol. 187, pp. 170–175, Dec. 2018, doi: 10.1016/j.solmat.2018.08.006. | spa |
dc.relation.references | Y. C. Choi et al., “Sb2Se3-sensitized inorganic-organic-heterojunction solar cells fabricated using a single-source precursor,” Angewandte Chemie - International Edition, vol. 53, no. 5, pp. 1329–1333, Jan. 2014, doi: 10.1002/anie.201308331. | spa |
dc.relation.references | Y. Zhao et al., “Regulating deposition kinetics via a novel additive-assisted chemical bath deposition technology enables fabrication of 10.57%-efficiency Sb2Se3 solar cells,” Energy Environ Sci, vol. 15, no. 12, pp. 5118–5128, 2022, doi: 10.1039/D2EE02261C. | spa |
dc.relation.references | R. Vadapoo, S. Krishnan, H. Yilmaz, and C. Marin, “Electronic structure of antimony selenide (Sb2Se3) from GW calculations,” physica status solidi (b), vol. 248, no. 3, pp. 700–705, Mar. 2011, doi: https://doi.org/10.1002/pssb.201046225. | spa |
dc.relation.references | M. Huang, P. Xu, D. Han, J. Tang, and S. Chen, “Complicated and Unconventional Defect Properties of the Quasi-One-Dimensional Photovoltaic Semiconductor Sb2Se3,” ACS Appl Mater Interfaces, vol. 11, no. 17, pp. 15564–15572, May 2019, doi: 10.1021/acsami.9b01220. | spa |
dc.relation.references | C. Chen, K. Li, and J. Tang, “Ten years of Sb2Se3 thin film solar cells,” Solar RRL, vol. 6, no. 7, p. 2200094, 2022. | spa |
dc.relation.references | J. Dong, Y. Liu, Z. Wang, and Y. Zhang, “Boosting VOC of antimony chalcogenide solar cells: A review on interfaces and defects,” Nano Select, vol. 2, no. 10, pp. 1818–1848, 2021. | spa |
dc.relation.references | Y. Wang, S. Ji, and B. Shin, “Interface engineering of antimony selenide solar cells: A review on the optimization of energy band alignments,” Journal of Physics: Energy, vol. 4, no. 4, p. 044002, 2022. | spa |
dc.relation.references | Z. Duan et al., “Sb2Se3 Thin-Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology,” Advanced Materials, vol. 34, no. 30, Jul. 2022, doi: 10.1002/adma.202202969. | spa |
dc.relation.references | S. Giraldo, Z. Jehl, M. Placidi, V. Izquierdo‐Roca, A. Pérez‐Rodríguez, and E. Saucedo, “Progress and perspectives of thin film kesterite photovoltaic technology: a critical review,” Advanced materials, vol. 31, no. 16, p. 1806692, 2019. | spa |
dc.relation.references | Z. Li et al., “Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization,” Solar Energy Materials and Solar Cells, vol. 161, pp. 190–196, Mar. 2017, doi: 10.1016/j.solmat.2016.11.033. | spa |
dc.relation.references | K. Ogata, Ingeniería de control moderna. Pearson educación, 2003. | spa |
dc.relation.references | G. Gordillo, E. Abril, J. C. Pena, and E. A. Ramirez, “Novel design of reactor to grow CuSbS2 films by chalcogenisation of metal precursors sequentially evaporated,” Journal of Materials Research and Technology, vol. 15, pp. 1642–1652, Nov. 2021, doi: 10.1016/j.jmrt.2021.08.144. | spa |
dc.relation.references | National Instruments, “NI-9210 Specifications,” 2024. Accessed: Oct. 18, 2024. [Online]. Available: https://www.ni.com/docs/en-US/bundle/ni-9210-specs/page/specs.html | spa |
dc.relation.references | National Instruments, “NI USB-6008 Specifications,” 2024. Accessed: Oct. 18, 2024. [Online]. Available: https://www.ni.com/es-co/support/model.usb-6008.html?srsltid=AfmBOopghXRcDtoBfFd20HrgfhfRNM202WVLGd-Z2Zt_yOts9fLpXBtQ | spa |
dc.relation.references | R. Tang et al., “Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film,” Nano Energy, vol. 64, Oct. 2019, doi: 10.1016/j.nanoen.2019.103929. | spa |
dc.relation.references | P. Kubelka, “Ein beitrag zur optik der farbanstriche,” Z. tech. Phys, vol. 12, pp. 593–601, 1931. | spa |
dc.relation.references | P. M. P. Salomé, H. Rodriguez-Alvarez, and S. Sadewasser, “Incorporation of alkali metals in chalcogenide solar cells,” Jul. 06, 2015, Elsevier B.V. doi: 10.1016/j.solmat.2015.06.011. | spa |
dc.relation.references | D. Hauschild et al., “Impact of a RbF Postdeposition Treatment on the Electronic Structure of the CdS/Cu(In,Ga)Se2 Heterojunction in High-Efficiency Thin-Film Solar Cells,” ACS Energy Lett, vol. 2, no. 10, pp. 2383–2387, Oct. 2017, doi: 10.1021/acsenergylett.7b00720. | spa |
dc.relation.references | T. Kodalle et al., “Elucidating the Mechanism of an RbF Post Deposition Treatment in CIGS Thin Film Solar Cells,” Solar RRL, vol. 2, no. 9, p. 1800156, Sep. 2018, doi: https://doi.org/10.1002/solr.201800156. | spa |
dc.relation.references | M. D. Heinemann et al., “Evaluation of recombination losses in thin film solar cells using an LED sun simulator − the effect of RbF post-deposition on CIGS solar cells,” EPJ Photovolt., vol. 9, 2018, [Online]. Available: https://doi.org/10.1051/epjpv/2018006 | spa |
dc.relation.references | O. Nwakanma, S. Velumani, and A. Morales-Acevedo, “Review on the effects due to alkali metals on copper–indium–gallium–selenide solar cells,” Jun. 01, 2021, Elsevier Ltd. doi: 10.1016/j.mtener.2020.100617. | spa |
dc.relation.references | Altomare, A., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., Rizzi, R. QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD, J. Appl. Cryst. (2015). 48, 598-603. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales | spa |
dc.subject.proposal | Películas delgadas | spa |
dc.subject.proposal | Sb2Se3 | spa |
dc.subject.proposal | Selenización | spa |
dc.subject.proposal | Evaporación | spa |
dc.subject.proposal | Thin films | eng |
dc.subject.proposal | Selenization | eng |
dc.subject.proposal | LabVIEW | eng |
dc.subject.proposal | Evaporation | eng |
dc.subject.wikidata | panel fotovoltaico | spa |
dc.subject.wikidata | solar cell panel | eng |
dc.subject.wikidata | recubrimiento | spa |
dc.subject.wikidata | coating | eng |
dc.subject.wikidata | seleniuro | spa |
dc.subject.wikidata | selenide | |
dc.title | Síntesis de películas delgadas de Sb2Se3 con propiedades adecuadas para su uso como capa absorbente en celdas solares | spa |
dc.title.translated | Synthesis of Sb2Se3 thin films with suitable properties for use as an absorber layer in solar cells | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1121909101.2024.pdf
- Tamaño:
- 3.94 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Mecánica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: