Identifying rebound effects in consequential LCA

dc.contributor.advisorHernández-Riveros, Jesús-Antonio
dc.contributor.advisorMöller, Andreas
dc.contributor.advisorViere, Tobias
dc.contributor.authorVelez Henao, Johan Andres
dc.date.accessioned2021-09-06T17:06:13Z
dc.date.available2021-09-06T17:06:13Z
dc.date.issued2021-07-28
dc.descriptionilustraciones, diagramasspa
dc.description.abstractOne of the Colombian strategies to diversify and decarbonize the energy sector is encouraging the use of non-conventional renewable resources (NCRR). For doing so the government issued in 2014 the Law 1715 to promote NCRR and energy efficiency improvements into the sector. While presumably it will help to achieve the international and national commitment to reduce the CO2 emission by 20% in 2030, this assumption cannot be tested broader without taking in account the environmental consequence that such initiatives may produce in the household sector, the greatest electricity consuming sector in Colombia This thesis measures the environmental rebound effect (ERE) when increasing the shares of wind power into the Colombian power grid in the residential (household) sector. For doing so, a process-based Life Cycle Assessment (P-LCA), an environmental extended input output (EEIO) model and re-spending models (almost ideal demand system AIDS) were applied. Direct rebound effect was measured thought the elasticity price of the electricity demand; furthermore, the environmental savings for increasing the shares of wind power into the grid were calculated via P-LCA. For doing so, a P-LCA for a wind farm in Colombia was performed, whereas the information for other energy resources (Hydro, Coal, Gas, Solar and Thermal) where collected from Ecoinvent 3.4 database. To calculate the environmental indirect rebound effect the monetary savings obtained for the environmental efficiency were calculated. For doing so, an AIDS was applied to obtain the marginal budget shares (MBS). Combining the MBS obtained with the EEIO model the monetary savings were translated into environmental indicators. The ERE is presented for ten impact categories (climate change (CC), acidification (A), ecotoxicity (E), marine eutrophication (MEUT), terrestrial eutrophication (TEUT), carcinogenic effects (CE), non-carcinogenic effects (NCE), ozone layer depletion (OD), photochemical ozone creation (POC), and respiratory effects, inorganics (RES)). Moreover, a sensitive analysis was conducted to measure the variability of the ERE to different values of the direct rebound effect and different percentages of price efficiency. The results show that the inclusion of the environmental rebound effect has generally a non-negligible impact on the overall environmental indicators across all studied years. Such impacts ranging across impact categories from 5% (eutrophication) and 6,109% (photochemical oxidant creation) for the combined model, whereas for the single model the values fall on the ranges of 1% (eutrophication) and 9,277% (photochemical oxidant creation). Further, a sensitivity analysis of the elasticity price of the electricity and the price of the electricity reveals that the ERE varies in different ways, specifically, changes in these parameters could vary the impacts, respectively, by up to about <1% and 38%. Backfire effects are present for 8 of the 10 environmental impacts studied in different magnitudes across the years, depending meanly of the savings available to re-invest.eng
dc.description.abstractUna de las estrategias colombianas para diversificar y descarbonizar el sector energético es fomentar el uso de recursos renovables no convencionales (RNNC). Para ello, el gobierno emitió en 2014 la Ley 1715 para promover los RNNC y las mejoras de eficiencia energética en el sector. Si bien esto ayudará a cumplir el compromiso internacional y nacional de reducir las emisiones de CO2 en un 20% en 2030, este supuesto no puede ser probado de manera amplia sin tener en cuenta las consecuencias ambientales que tales iniciativas pueden producir en el sector doméstico, el mayor sector consumidor de electricidad en Colombia. Esta tesis mide el efecto rebote ambiental (ERE) de aumentar la participación de energía eólica en la red eléctrica colombiana en el sector residencial (hogares). Para ello se aplicó un modelo de evaluación del ciclo de vida basada en procesos (P-LCA), un modelo de entrada y salida ambiental extendido (EEIO) y modelos de gastos adicionales (sistema de demanda casi ideal AIDS). El efecto rebote directo se midió a través del precio de la elasticidad de la demanda de electricidad; además, el ahorro medioambiental por el aumento de la participación de energía eólica en la red se calculó a través de P-LCA. Para ello se realizó un P-LCA para un parque eólico en Colombia, mientras que la información para otros recursos energéticos (Hidro, Carbón, Gas, Solar) se tomó de la base de datos Ecoinvent 3.4. Para calcular el efecto rebote indirecto ambiental se calcularon los ahorros monetarios obtenidos por la eficiencia ambiental. Para ello se aplicó un AIDS para obtener las participaciones presupuestarias marginales (MBS). Combinando las MBS obtenidas con el modelo EEIO, el ahorro monetario se tradujo en indicadores ambientales. El ERE se presenta para diez categorías de impacto (cambio climático (CC), acidificación (A), ecotoxicidad (E), eutrofización marina (MEUT), eutrofización terrestre (TEUT), efectos cancerígenos (CE), efectos no cancerígenos (NCE), agotamiento de la capa de ozono (OD), creación fotoquímica de ozono (POC), y efectos respiratorios, inorgánicos (RES)). Además, se realizó un análisis de sensibilidad para medir la variabilidad del ERE con respecto a los diferentes valores del efecto rebote directo y los diferentes porcentajes de eficiencia de los precios. Los resultados muestran que la inclusión del efecto de rebote ambiental tiene generalmente un impacto no despreciable en los indicadores ambientales globales a lo largo de todos los años estudiados. Estos impactos oscilan entre el 5% (eutrofización) y el 6,109% (creación de oxidantes fotoquímicos) para el modelo combinado, mientras que para el modelo único los valores caen en los rangos del 1% (eutrofización) y el 9,277% (creación de oxidantes fotoquímicos). Además, un análisis de sensibilidad del precio de la elasticidad de la electricidad y del precio de la electricidad revela que la ERE varía de diferentes maneras, específicamente, los cambios en estos parámetros podrían variar los impactos, respectivamente, hasta entre un Los resultados muestran que la inclusión del efecto de rebote ambiental tiene generalmente un impacto no despreciable en los indicadores ambientales globales a lo largo de todos los años estudiados. Estos impactos oscilan entre el 5% (eutrofización) y el 6,109% (creación de oxidantes fotoquímicos) para el modelo combinado, mientras que para el modelo único los valores caen en los rangos del 1% (eutrofización) y el 9,277% (creación de oxidantes fotoquímicos). Además, un análisis de sensibilidad del precio de la elasticidad de la electricidad y del precio de la electricidad revela que la ERE varía de diferentes maneras, específicamente, los cambios en estos parámetros podrían variar los impactos, respectivamente, hasta entre un <1% y 38%. En 8 de 10 los impactos ambientales. (Texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.format.extentxxii, 227 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80100
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisherLeuphana Universität Lüneburgspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Procesos y Energíaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.referencesAbo-Khalil, A., 2013. Impacts of Wind Farms on Power System Stability, in: Modeling and Control Aspects of Wind Power Systems. pp. 132–151. doi:http://dx.doi.org/10.5772/55090spa
dc.relation.referencesAlfredsson, E.C., 2004. “Green” consumption - no solution for climate change. Energy 29, 513–524. doi:10.1016/j.energy.2003.10.013 Amusat, O.O., Shearing, P.R., Fraga, E.S., 2018. Optimal design of hybrid energy systems incorporating stochastic renewable resources fl uctuations. J. Energy Storage 15, 379–399. doi:10.1016/j.est.2017.12.003spa
dc.relation.referencesBanco de la Republica, 2019. Total por grupo de gasto [WWW Document]. Índice precios al Consum. URL http://www.banrep.gov.co/es/indice-precios-consumidor-ipc (accessed 5.8.19).spa
dc.relation.referencesBarelli, L., Bidini, G., Bonucci, F., 2016. A micro-grid operation analysis for cost-effective battery energy storage and RES plants integration. Energy 113, 831–844. doi:10.1016/j.energy.2016.07.117spa
dc.relation.referencesBarelli, L., Desideri, U., Ottaviano, A., 2015. Challenges in load balance due to renewable energy sources penetration : The possible role of energy storage technologies relative to the Italian case. Energy 93, 393–405. doi:10.1016/j.energy.2015.09.057spa
dc.relation.referencesBerkhout, P., Muskens, J., Velthuijsen, J., 2000. Defining the rebound effect. Energy Policy 28, 425–432.spa
dc.relation.referencesBinswanger, M., 2001. Technological progress and sustainable development: what about the rebound effect? Ecol. Econ. 36, 119–132. doi:10.1016/S0921-8009(00)00214-7spa
dc.relation.referencesBoardman, B., 1991. Fuel Poverty: from cold homes to affordable warmthe, Belhaven P. ed. United Kingdom.spa
dc.relation.referencesBrännlund, R., Ghalwash, T., Nordström, J., 2007. Increased energy efficiency and the rebound effect: Effects on consumption and emissions. Energy Econ. 29, 1–17. doi:10.1016/j.eneco.2005.09.003136spa
dc.relation.referencesBrookes, L., 1990. Communications The greenhouse effect : the fallacies in the energy efficiency. Energy Policy 18, 199–201.spa
dc.relation.referencesChakravarty, D., Dasgupta, S., Roy, J., 2015. Rebound effect : how much to worry ? Curr. Opin. Environ. Sustain. 5, 216–228. doi:10.1016/j.cosust.2013.03.001spa
dc.relation.referencesChitnis, M., Sorrell, S., Druckman, A., Firth, S., 2012. The rebound effect : to what extent does it vary with income ?spa
dc.relation.referencesCiupageanu, Dana-Alexandra; Barelli, L., Ottaviano, A., Pelosi, D., Gheorghe, L., 2019. Innovative power management of hybrid energy storage systems coupled to RES plants : the Simultaneous Perturbation Stochastic Approximation approach. 2019 IEEE PES Innov. Smart Grid Technol. Eur. 1–5. doi:10.1109/ISGTEurope.2019.8905775spa
dc.relation.referencesCiupageanu, D.A., Lazaroiu, G., Barelli, L., 2019. Wind energy integration : Variability analysis and power system impact assessment z a. Energy 185. doi:10.1016/j.energy.2019.07.136spa
dc.relation.referencesCongreso de la Republica, 2014. LEY 1715 de 2014, Presidencia de la Republica. Bogota. doi:10.1007/s13398-014-0173-7.2spa
dc.relation.referencesCREG, C. de R. de E. y G., 2005. Definición de la fórmula tarifaria de energía eléctrica, para el próximo periodo tarifario. Bogota.spa
dc.relation.referencesDeaton, A., Muellbauer, J., 1980. An Almost Ideal Demand System. Am. Econ. Rev. 70, 312–326.spa
dc.relation.referencesEuropean Commission, 2014. LICD Method [WWW Document]. Eur. Platf. Life Cycle Assess. URL eplca.jrc.ec.europa.eu/LCDN/developerILCDDataFormat.xhtml (accessed 11.14.19).spa
dc.relation.referencesFlynn, D., Rather, Z., Ardal, A., Arco, S.D., Hansen, A.D., Cutululis, N.A., Sorensen, P., Estanquiero, A., Gómez, E., Menemenlis, N., Smith, C., Wang, Y., 2016. Technical impacts of high penetration levels of wind power on power system stability. doi:10.1002/wene.216spa
dc.relation.referencesFont Vivanco, D., Kemp, R., Van der Voet, E., 2015. The relativity of eco-innovation : environmental rebound effects from past transport innovations in Europe. J. Clean. Prod. 101, 71–85. doi:10.1016/j.jclepro.2015.04.019spa
dc.relation.referencesFont Vivanco, D., Kemp, R., Voet, E. Van Der, 2016a. How to deal with the rebound effect ? A policy-oriented approach. Energy Policy 94, 114–125.spa
dc.relation.referencesFont Vivanco, D., Mcdowall, W., Freire-gonzález, J., Kemp, R., Voet, E. Van Der, 2016b. The foundations of the environmental rebound effect and its contribution towards a general framework. Ecol. Econ. 125, 60–69. doi:10.1016/j.ecolecon.2016.02.006spa
dc.relation.referencesFont Vivanco, D., Tukker, A., Kemp, R., 2016c. Do Methodological Choices in Environmental Modeling Bias Rebound Eff ects? A Case Study on Electric Cars. Environ. Sci. Policy 50, pp 11366–11376. doi:10.1021/acs.est.6b01871spa
dc.relation.referencesFont Vivanco, D., van der Voet, E., 2014. The rebound effect through industrial ecology’s eyes: a review of LCA-based studies. Int. J. Life Cycle Assess. 19. doi:10.1007/s11367-014-0802-6137spa
dc.relation.referencesFont Vivanco, D., Voet, E. Van Der, 2014. The Remarkable Environmental Rebound Effect of Electric Cars: A Microeconomic Approach. Environ. Sci. Technol. 48, 12063–12072. doi:10.1021/es5038063spa
dc.relation.referencesFreire-González, J., 2011. Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households. Ecol. Modell. 223, 32–40. doi:10.1016/j.ecolmodel.2011.09.001spa
dc.relation.referencesFreire-González, J., 2010. Empirical evidence of direct rebound effect in Catalonia. Energy Policy 38, 2309–2314. doi:10.1016/j.enpol.2009.12.018spa
dc.relation.referencesFreire-González, J., Font Vivanco, D., 2017. The influence of energy efficiency on other natural resources use: An input-output perspective. J. Clean. Prod. 162, 336–345. doi:10.1016/j.jclepro.2017.06.050spa
dc.relation.referencesFreire-González, J., Font Vivanco, D., Puig-ventosa, I., 2017. Economic structure and energy savings from energy efficiency in households. Ecol. Econ. 131, 12–20. doi:10.1016/j.ecolecon.2016.08.023spa
dc.relation.referencesFreire-gonzález, J., Puig-ventosa, I., 2015. Energy Efficiency Policies and the Jevons Paradox. Int. J. Energy Econ. Policy 5, 69–79.spa
dc.relation.referencesGarcia-Mazo, C.M., 2019. Decisiones estratégicas de inversión en tecnologías renovables y no renovables para los generadores de energía en un mercado eléctrico competitivo. Medellin.spa
dc.relation.referencesGielen, D., Boshell, F., Saygin, D., Morgan D., B., Wagner, N., 2019. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 38–50. doi:doi.org/10.1016/j.esr.2019.01.006spa
dc.relation.referencesGirod, B., de Haan, P., Scholz, R.W., 2010. Consumption-as-usual instead of ceteris paribus assumption for demand. Int. J. Life Cycle Assess. 16, 3–11. doi:10.1007/s11367-010-0240-zspa
dc.relation.referencesGitHub, 2018. MRIOT [WWW Document]. Font Vivanco,David. URL https://github.com/dfontv/Rtools (accessed 11.14.19).spa
dc.relation.referencesGoedkoop, Mark J., van Halen, C.J.G., te Riele, H.R.M., Rommens, P.J.M., 1999. Product service systems, ecological and economic basics, Report for Dutch Ministries of Environment (VROM) and Economic Affairs (EZ). doi:10.1111/j.1365-294X.2004.02125.xspa
dc.relation.referencesGoedkoop, Mark J, Van Halen, C.J.G., Te Riele, H.R.M., Rommens, P.J.M., 1999. Product Service systems , Ecological and Economic Basics, Economic Affairs. doi:10.1111/j.1365-294X.2004.02125.xspa
dc.relation.referencesGreening, L.A., Greene, D.L., Di, C., 2000. Energy efficiency and consumption - the rebound effect -a survey. Energy Policy 28, 389–401. Haas, R., Biermayr, P., 2000. The rebound effect for space heating empirical evidence from Austria. Energy Policy 28, 403–410. doi:10.1016/S0301-4215(00)00023-9spa
dc.relation.referencesIDEAM, PNUD, MADS, DNP, Cancilleria, 2018. Segundo Reporte Bienal de Actualización de Colombia a la Convención Marco de las Naciones Unidas para el Cambio Climático (CMNUCC). Bogotá.spa
dc.relation.referencesKaberger, T., 2018. Progress of renewable electricity replacing fossil fuels. Glob. Energy Interconnect. 1, 48–52. doi:10.14171/j.2096-5117.gei.2018.01.006 Khazzoom, J.D., 1980. Economic Implications of Mandated Efficiency in Standards for Household Appliances. Energy J. 1, 21–40.spa
dc.relation.referencesLu, M., Wang, Z., 2016. Rebound effects for residential electricity use in urban China : an aggregation analysis based E-I-O and scenario simulation. Ann. Oper. Res. 1–22. doi:10.1007/s10479-016-2153-0spa
dc.relation.referencesMADS, 2017. Política nacional de cambio climático.spa
dc.relation.referencesMakov, T., Font Vivanco, D., 2018. Does the Circular Economy Grow the Pie? The Case of Rebound Effects From Smartphone Reuse. Front. Energy Res. 6, 1–11. doi:10.3389/fenrg.2018.00039spa
dc.relation.referencesMiller, R.E., Blair, P.D., 2009. Input-output analysis: foundations and extensions. Cambridge University Press, Cambridge, United Kingdom.spa
dc.relation.referencesMurray, C.K., 2013. What if consumers decided to all “go green”? Environmental rebound effects from consumption decisions. Energy Policy 54, 240–256. doi:10.1016/j.enpol.2012.11.025spa
dc.relation.referencesNansai, K., Kagawa, S., Suh, S., Fujii, M., Inaba, R., Hashimoto, S., 2009. Material and Energy Dependence of Services and Its Implications for Climate Change. Environ. Sci. Technol. 43, 4241–4246.spa
dc.relation.referencesPeters, G.P., Andrew, R., Lennox, J., 2011. CONSTRUCTING AN ENVIRONMENTALLY- EXTENDED MULTI-REGIONAL INPUT – OUTPUT TABLE USING THE GTAP DATABASE. Econ. Syst. Res. 23, 151–152. doi:10.1080/09535314.2011.563234spa
dc.relation.referencesRoy, J., 2000. The rebound effect: Some empirical evidence from India. Energy Policy 28, 433–438. doi:10.1016/S0301-4215(00)00027-6spa
dc.relation.referencesSorrell, S., 2007. The Rebound Effect: an assessment of the evidence for economy-wide energy savings from improved energy efficiency.spa
dc.relation.referencesSorrell, S., Dimitropoulos, J., 2007. The rebound effect : Microeconomic definitions , limitations and extensions. Ecol. Econ. 5, 636–64. doi:10.1016/j.ecolecon.2007.08.013spa
dc.relation.referencesSorrell, S., Dimitropoulos, J., Sommerville, M., 2009. Empirical estimates of the direct rebound effect : A review. Energy Policy 37, 1356–1371. doi:10.1016/j.enpol.2008.11.026spa
dc.relation.referencesSpielmann, M., de Haan, P., Scholz, R.W., 2008. Environmental rebound effects of high-speed transport technologies: a case study of climate change rebound effects of a future underground maglev train system. J. Clean. Prod. 16, 1388–1398. doi:10.1016/j.jclepro.2007.08.001spa
dc.relation.referencesSuh, S., 2006. Are services better for climate change? Environ. Sci. Technol. 40, 6555–6560. doi:10.1021/es0609351spa
dc.relation.referencesSUI, S. de S.P.D., 2018. Servicios publicos. Energia [WWW Document]. URL http://www.sui.gov.co/web/energia (accessed 8.22.18).spa
dc.relation.referencesTakase, K., Kondo, Y., Washizu, A., 2005. An Analysis of Sustainable Consumption by the Waste Input-Output Model. J. Ind. Ecol. 9, 201–219.spa
dc.relation.referencesThe Word Bank, 2010. Share of Each Sector in Household Total Consumption [WWW Document]. Glob. Consum. DATABASE. URL http://datatopics.worldbank.org/consumption/country/Colombia (accessed 7.22.19).spa
dc.relation.referencesThomas, B.A., Azevedo, I.L., 2013a. Estimating direct and indirect rebound effects for U.S. households with input–output analysis. Part 2: Simulation. Ecol. Econ. 86, 188–198. doi:10.1016/j.ecolecon.2012.12.002spa
dc.relation.referencesThomas, B.A., Azevedo, I.L., 2013b. Estimating direct and indirect rebound effects for U.S. households with input-output analysis Part 1: Theoretical framework. Ecol. Econ. 86, 199–210. doi:10.1016/j.ecolecon.2012.12.003spa
dc.relation.referencesTurconi, R., Boldrin, A., Astrup, T., 2013. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renew. Sustain. Energy Rev. 28, 555–565. doi:10.1016/j.rser.2013.08.013spa
dc.relation.referencesUN, U.N., 2018. Individual consumption expenditure of households [WWW Document]. Statistics (Ber). URL http://data.un.org/Data.aspx?d=SNA&f=group_code%3A302 (accessed 5.8.19).spa
dc.relation.referencesUnited Nations, 2017. Sustainable development goals [WWW Document]. URL http://www.un.org/sustainabledevelopment/ (accessed 12.21.17). UPME, 2019a. Balance Energetico Colombiano BECO [WWW Document]. BECO Anu. URL http://www1.upme.gov.co/InformacionCifras/Paginas/BalanceEnergetico.aspx (accessed 5.6.19).spa
dc.relation.referencesUPME, 2019b. BALANCE ENERGETICO COLOMBIANO - BECO [WWW Document]. Inf. y cifras Sect. URL http://www1.upme.gov.co/InformacionCifras/Paginas/BalanceEnergetico.aspx (accessed 2.6.19).spa
dc.relation.referencesUPME, 2019c. Long-term auctions [WWW Document]. Rep. 46 Publ. results CLPE Auction No.02-2019. URL https://www1.upme.gov.co/PromocionSector/Subastas-largo-plazo/Paginas/Subasta-CLPE-No-02-2019.aspx (accessed 4.22.20).spa
dc.relation.referencesUPME, 2016a. Plan de Expansión de Referencia Generación – Transmisión 2016 – 2030. Bogota.spa
dc.relation.referencesUPME, 2016b. Plan De Accion Indicativo De Eficiencia Energética 2017-2022.spa
dc.relation.referencesvan den Bergh, J.C.J.M., 2011. Energy Conservation More Effective With Rebound Policy. Environ. Resour. Econ. 48, 43–58. doi:10.1007/s10640-010-9396-zspa
dc.relation.referencesVélez Henao, J.A., Garcia Mazo, C.M., 2019. Marginal technology based on consequential life cycle assessment . The case of Colombia Tecnología marginal basada en la evaluación del ciclo de vida consecuencial . El caso de ARTICLE INFO : AVAILABLE ONLINE : Rev. Fac. Ing. 51–61. doi:10.17533/udea.redin.n90a07spa
dc.relation.referencesWang, Z., Lu, M., Wang, J., 2014. Direct rebound effect on urban residential electricity use : An empirical study in China. Renew. Sustain. Energy Rev. 30, 124–132. doi:10.1016/j.rser.2013.09.002spa
dc.relation.referencesWeidema, B.P., 2008. Rebound effects of sustainable production, in: Presentation to the “Sustainable Consumption and Production” Session of the Conference “Bridging the Gap; Responding to Environmental Change – From Words to Deeds”, Portorož, Slovenia, 2008.05.14-16. p. 5.spa
dc.relation.referencesWen, F., Ye, Z., Yang, H., Li, K., 2018. Exploring the rebound effect from the perspective of household: An analysis of China’s provincial level. Energy Econ. 75, 345–356. doi:10.1016/j.eneco.2018.08.018spa
dc.relation.referencesXM-Filial de ISA, 2018. Reporte integral de sostenibilidad, operación y mercado 2018spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lemRecursos energéticos renovables
dc.subject.proposalEnvironmental rebound effecteng
dc.subject.proposalLCAeng
dc.subject.proposalSTIRPATeng
dc.subject.proposalEnvironmental efficiency improvementseng
dc.subject.proposalNon-conventional renewable resourceseng
dc.subject.proposalMejoras en la eficiencia ambientalspa
dc.subject.proposalEfecto de rebote ambientalspa
dc.subject.proposalRecursos renovables no convencionalesspa
dc.titleIdentifying rebound effects in consequential LCAeng
dc.title.translatedIdentificando efectos rebotes en análisis de ciclo de vida consecuencialspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1128283453.2021.pdf
Tamaño:
3.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de doctorado en ingeniería. Sistemas energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: