Data-driven control of interconnected energy systems

dc.contributor.advisorMojica Nava,Eduardo Aliriospa
dc.contributor.advisorRakoto Ravalontsalama, Nalyspa
dc.contributor.authorToro Tovar, Billy Wladimirspa
dc.contributor.researchgroupPrograma de Investigacion sobre Adquisicion y Analisis de Señales Paas-Unspa
dc.contributor.researchgroupLS2N, IMT-Atlantiquespa
dc.date.accessioned2023-02-03T16:38:38Z
dc.date.available2023-02-03T16:38:38Z
dc.date.issued2022-12-14
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractThis research proposed several algorithms for the identification and control of microgrids based on the Koopman operator. The contributions presented in this manuscript are focused on the control of voltage and reactive power. We have considered five control scenarios based on the Koopman operator: (i) a centralized algorithm that regulates the microgrid voltage without sharing information using MPC. (ii) a non-cooperative distributed control, with a consensus term in the restrictions, that regulates the voltage based on the Koopman model of the inverters. (iii) a cooperative distributed MPC that uses the microgrid Koopman model, where the agents share their control inputs to generate the control signals. Here, we identify the input matrices by using data. (iv) a distributed control that uses data to identify the system error to design an ADMM algorithm. (v) an online data-driven controller that regulates the microgrid voltage and an analysis of the eigenvalues of the system and the effects of noisy measurements.eng
dc.description.abstractEsta investigación propone varios algoritmos para la identificación y el control de microrredes eléctricas basados en el operador de Koopman. Las contribuciones que presentamos en este manuscrito se enfocan en el control de voltaje y de la potencia reactiva. Hemos considerado cinco escenarios de control basados en el operador de Koopman: (i) Un algoritmo centralizado que regula el voltaje de la microrred sin necesidad de compartir información y que usa MPC. (ii) un control distribuido no cooperativo, con un término de consenso en las restricciones del problema de optimización, que regula el voltaje y que se basa en el modelo de los inversores en el espacio de Koopman (iii) un control distribuido cooperativo que usa el modelo de la microrred en el espacio de Koopman, en donde los agentes usan las señales de control tomadas por otros agentes para generar sus propias señales. Aquí, identificamos las matrices de entrada usando datos. (iv) Un control distribuido, que usa datos para identificar el error del sistema, para diseñar un algoritmo basado en ADMM. (v) un controlador en línea basado en datos que regula el voltaje de la microrred. También, un análisis de los valores propios del sistema y los efectos de mediciones con ruido. (Texto tomado de la fuente).spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.format.extent123 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83285
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesJean and D. Pitteloud, “Global Wind Power Statistics – Wind Energy International Platform,” 2019.spa
dc.relation.referencesInternational Energy Agency, “Solar PV – Analysis - IEA,” 2020.spa
dc.relation.referencesF. Milano, F. Dorfler, G. Hug, D. J. Hill, and G. Verbič, “Foundations and challenges of low-inertia systems (Invited Paper),” 20th Power Systems Computation Conference, PSCC 2018, 2018.spa
dc.relation.referencesS. Akkari, E. Prieto-Araujo, J. Dai, O. Gomis-Bellmunt, and X. Guillaud, “Impact of the dc cable models on the svd analysis of a multi-terminal hvdc system,” in 2016 Power Systems Computation Conference (PSCC), pp. 1–6, IEEE, 2016.spa
dc.relation.referencesM. Budišić, R. Mohr, and I. Mezić, “Applied koopmanism,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 22, no. 4, p. 047510, 2012.spa
dc.relation.referencesY. Susuki and A. Chakrabortty, “Introduction to Koopman Mode Decomposition for Data-Based Technology of Power System Nonlinear Dynamics,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 327–332, 2018.spa
dc.relation.referencesV. T. Priyanga, M. Chandni, N. Mohan, and K. P. Soman, “Data-driven analysis for low frequency oscillation identification in smart grid using FB-DMD and T-DMD methods,” Proceedings of the 2019 9th International Conference on Advances in Computing and Communication, ICACC 2019, pp. 51–57, 2019.spa
dc.relation.referencesF. Raak, Y. Susuki, and T. Hikihara, “Multi-Way Partitioning of Power Networks via Koopman Mode Analysis,” IFAC-PapersOnLine, vol. 48, no. 30, pp. 421–426, 2015.spa
dc.relation.referencesS. L. Brunton, J. L. Proctor, and J. N. Kutz, “Sparse identification of nonlinear dynamics with control (sindyc),” IFAC-PapersOnLine, vol. 49, no. 18, pp. 710–715, 2016.spa
dc.relation.referencesM. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control,” Automatica, vol. 93, pp. 149–160, 2018.spa
dc.relation.referencesM. Korda, Y. Susuki, and I. Mezić, “Power grid transient stabilization using koopman model predictive control,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 297–302, 2018.spa
dc.relation.referencesT. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H. Johansson, “A survey of distributed optimization,” Annual Reviews in Control, vol. 47, no. xxxx, pp. 278–305, 2019.spa
dc.relation.referencesR. H. Lasseter, “MicroGrids,” IEEE Power Engineering Society winter Meeting, pp. 305–308, 2002.spa
dc.relation.referencesJ. J. Justo, F. Mwasilu, J. Lee, and J. W. Jung, “AC-microgrids versus DC-microgrids with distributed energy resources: A review,” Renewable and Sustainable Energy Reviews, vol. 24, pp. 387–405, 2013.spa
dc.relation.referencesA. Tayyebi, F. Dörfler, F. Kupzog, Z. Miletic, and W. Hribernik, “Grid-Forming Converters - Inevitability , Control Strategies and Challenges in Future Grid Applications and Challenges in Future Grids Application,” CIRED Workshop 2018, no. 0236, pp. 1–5, 2018.spa
dc.relation.referencesS. Sen and V. Kumar, “Microgrid control: A comprehensive survey,” Annual Reviews in Control, vol. 45, no. March, pp. 118–151, 2018.spa
dc.relation.referencesJ. Schiffer, D. Zonetti, R. Ortega, A. M. Stanković, T. Sezi, and J. Raisch, “A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources,” Automatica, vol. 74, pp. 135–150, 2016.spa
dc.relation.referencesS. Moayedi and A. Davoudi, “Distributed Tertiary Control of DC Microgrid Clusters,” IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1717–1733, 2016.spa
dc.relation.referencesF. Dörfler, J. W. Simpson-Porco, and F. Bullo, “Breaking the hierarchy: Distributed control and economic optimality in microgrids,” IEEE Transactions on Control of Network Systems, vol. 3, no. 3, pp. 241–253, 2015.spa
dc.relation.referencesZ. S. Hou and Z. Wang, “From model-based control to data-driven control: Survey, classification and perspective,” Information Sciences, vol. 235, pp. 3–35, 2013.spa
dc.relation.referencesS. Yin, X. Li, H. Gao, and O. Kaynak, “Data-based techniques focused on modern industry: An overview,” IEEE Transactions on Industrial Electronics, vol. 62, no. 1, pp. 657–667, 2015.spa
dc.relation.referencesZ. Hou and S. Xiong, “On model-free adaptive control and its stability analysis,” IEEE Transactions on Automatic Control, vol. 64, no. 11, pp. 4555–4569, 2019.spa
dc.relation.referencesS. L. Brunton and J. N. Kutz, Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press, 2022.spa
dc.relation.referencesF. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming for feedback control,” IEEE Circuits and Systems Magazine, vol. 9, no. 3, pp. 32–50, 2009.spa
dc.relation.referencesL. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko, “Reinforcement learning for control: Performance, stability, and deep approximators,” Annual Reviews in Control, vol. 46, pp. 8–28, 2018.spa
dc.relation.referencesB. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Optimal and Autonomous Control Using Reinforcement Learning: A Survey,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 6, pp. 2042–2062, 2018spa
dc.relation.referencesL. Buşoniu, R. Babuška, and B. De Schutter, “A comprehensive survey of multiagent reinforcement learning,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 38, no. 2, pp. 156–172, 2008.spa
dc.relation.referencesM. L. Li, S. Chen, and J. Chen, “Adaptive Learning: A New Decentralized Reinforcement Learning Approach for Cooperative Multiagent Systems,” IEEE Access, vol. 8, pp. 99404–99421, 2020.spa
dc.relation.referencesF. Dietrich, T. N. Thiem, and I. G. Kevrekidis, “On the koopman operator of algorithms,” SIAM Journal on Applied Dynamical Systems, vol. 19, no. 2, pp. 860–885, 2020.spa
dc.relation.referencesZ. Ping, Z. Yin, X. Li, Y. Liu, and T. Yang, “Deep Koopman model predictive control for enhancing transient stability in power grids,” International Journal of Robust and Nonlinear Control, vol. 31, no. 6, pp. 1964–1978, 2021.spa
dc.relation.referencesC. W. Rowley, I. Mezi, S. Bagheri, P. Schlatter, and D. S. Henningson, “Spectral analysis of nonlinear flows,” Journal of Fluid Mechanics, vol. 641, pp. 115–127, 2009.spa
dc.relation.referencesM. Haseli and J. Cortés, “Approximating the Koopman operator using noisy data: Noise-resilient extended dynamic mode decomposition,” Proceedings of the American Control Conference, vol. 2019-July, pp. 5499–5504, 2019.spa
dc.relation.referencesS. Peitz and S. Klus, “Koopman operator-based model reduction for switched-system control of PDEs,” Automatica, vol. 106, pp. 184–191, 2019.spa
dc.relation.referencesS. Klus, F. Nüske, P. Koltai, H. Wu, I. Kevrekidis, C. Schütte, and F. Noé, “DataDriven Model Reduction and Transfer Operator Approximation,” Journal of Nonlinear Science, vol. 28, no. 3, pp. 985–1010, 2018.spa
dc.relation.referencesJ. N. Kutz, X. Fu, and S. L. Brunton, “Multiresolution dynamic mode decomposition,” SIAM Journal on Applied Dynamical Systems, vol. 15, no. 2, pp. 713–735, 2016.spa
dc.relation.referencesA. Mauroy, Y. Susuki, and I. Mezić, “Introduction to the koopman operator in dynamical systems and control theory,” in The Koopman Operator in Systems and Control, vol. 484, pp. 3–33, Springer, 2020.spa
dc.relation.referencesY. Susuki and I. Mezić, “A prony approximation of Koopman Mode Decomposition,” Proceedings of the IEEE Conference on Decision and Control, vol. 54rd IEEE Conference on Decision and Control,CDC 2015, no. Cdc, pp. 7022–7027, 2015.spa
dc.relation.referencesM. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition,” Journal of Nonlinear Science, vol. 25, no. 6, pp. 1307–1346, 2015.spa
dc.relation.referencesP. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal of Fluid Mechanics, vol. 656, pp. 5–28, 2010.spa
dc.relation.referencesJ. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, “On dynamic mode decomposition: Theory and applications,” Journal of Computational Dynamics, vol. 1, no. 2, pp. 391–421, 2014.spa
dc.relation.referencesI. Mezic, “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlinear Dynamics, vol. 41, pp. 309–325, 2005.spa
dc.relation.referencesJ. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decomposition with control,” SIAM Journal on Applied Dynamical Systems, vol. 15, no. 1, pp. 142–161, 2016.spa
dc.relation.referencesJ. Mann and J. N. Kutz, “Dynamic mode decomposition for financial trading strategies,” Quantitative Finance, vol. 16, no. 11, pp. 1643–1655, 2016spa
dc.relation.referencesN. B. Erichson, S. L. Brunton, and J. N. Kutz, “Compressed dynamic mode decomposition for background modeling,” Journal of Real-Time Image Processing, vol. 16, no. 5, pp. 1479–1492, 2019.spa
dc.relation.referencesA. E. Saldana, E. Barocio, A. R. Messina, J. J. Ramos, R. J. Segundo, and G. A. Tinajero, “Monitoring harmonic distortion in microgrids using dynamic mode decomposition,” IEEE Power and Energy Society General Meeting, vol. 2018-Janua, pp. 1–5, 2018.spa
dc.relation.referencesE. Kaiser, J. N. Kutz, and S. Brunton, “Data-driven discovery of Koopman eigenfunctions for control,” Machine Learning: Science and Technology, vol. 98195, pp. 1–40, 2021.spa
dc.relation.referencesM. Korda and I. Mezic, “Optimal Construction of Koopman Eigenfunctions for Prediction and Control,” IEEE Transactions on Automatic Control, vol. 65, no. 12, pp. 5114–5129, 2020.spa
dc.relation.referencesM. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks. Princeton University Press, 2010.spa
dc.relation.referencesD. P. Bertsekas and J. N. Tsitsiklis, “Comments on "Coordination of groups of mobile autonomous agents using nearest neighbor rules",” IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 968–969, 2007.spa
dc.relation.referencesF. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative Control of Multi-Agent Systems. Communications and Control Engineering, London: Springer London, 2014.spa
dc.relation.referencesA. Mohammed, S. S. Refaat, S. Bayhan, and H. Abu-Rub, “Ac microgrid control and management strategies: Evaluation and review,” IEEE Power Electronics Magazine, vol. 6, no. 2, pp. 18–31, 2019.spa
dc.relation.referencesD. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and J. Lavaei, “A Survey of Distributed Optimization and Control Algorithms for Electric Power Systems,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2941–2962, 2017.spa
dc.relation.referencesR. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007.spa
dc.relation.referencesDörfler, Florian, “Distributed consensus-based optimization review of optimization theory.” https://people.ee.ethz.ch/~floriand/docs/Teaching/ATIC_ 2017/Optimization_Lecture.pdf, 2017. Accessed: 2021-02-06.spa
dc.relation.referencesT. Tatarenko and B. Touri, “Non-Convex Distributed Optimization,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3744–3757, 2017.spa
dc.relation.referencesW. Powell, Approximate Dynamic Programming: Solving the Curses of Dimensionality: Second Edition. United States: Wiley-Blackwell, Sept. 2011.spa
dc.relation.referencesM. Korda, Y. Susuki, and I. Mezić, “Power grid transient stabilization using Koopman model predictive control,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 297–302, 2018.spa
dc.relation.referencesT. Goldstein, B. O’Donoghue, S. Setzep, and R. Baraniuk, “Fast alternating direction optimization methods,” SIAM Journal on Imaging Sciences, vol. 7, no. 3, pp. 1588– 1623, 2014.spa
dc.relation.referencesH. Zhang, C. W. Rowley, E. A. Deem, and L. N. Cattafesta, “Online dynamic mode decomposition for time-varying systems,” SIAM Journal on Applied Dynamical Systems, vol. 18, no. 3, pp. 1586–1609, 2019.spa
dc.relation.referencesM. Wanner and I. Mezić, “Robust approximation of the stochastic koopman operator,” SIAM Journal on Applied Dynamical Systems, vol. 21, no. 3, pp. 1930–1951, 2022.spa
dc.relation.referencesS. Sinha, B. Huang, and U. Vaidya, “On Robust Computation of Koopman Operator and Prediction in Random Dynamical Systems,” Journal of Nonlinear Science, vol. 30, no. 5, pp. 2057–2090, 2020.spa
dc.relation.referencesP. Tielens and D. Van Hertem, “The relevance of inertia in power systems,” Renewable and Sustainable Energy Reviews, vol. 55, no. 2016, pp. 999–1009, 2016.spa
dc.relation.referencesN. Pogaku, M. Prodanović, and T. C. Green, “Modeling, analysis and testing of autonomous operation of an inverter-based microgrid,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 613–625, 2007.spa
dc.relation.referencesJ. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, “Control of power converters in ac microgrids,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734– 4749, 2012.spa
dc.relation.referencesS. Anderson, P. Hidalgo-Gonzalez, R. Dobbe, and C. J. Tomlin, “Distributed Model Predictive Control for Autonomous Droop-Controlled Inverter-Based Microgrids,” Proceedings of the IEEE Conference on Decision and Control, vol. 2019-Decem, no. Cdc, pp. 6242–6248, 2019.spa
dc.relation.referencesQ.-C. Zhong and Y. Zeng, “Universal droop control of inverters with different types of output impedance,” IEEE access, vol. 4, pp. 702–712, 2016.spa
dc.relation.referencesQ. Liu, Y. Tao, X. Liu, Y. Deng, and X. He, “Voltage unbalance and harmonics compensation for islanded microgrid inverters,” IET Power Electronics, vol. 7, no. 5, pp. 1055–1063, 2014.spa
dc.relation.referencesJ. Schiffer, R. Ortega, A. Astolfi, J. Raisch, and T. Sezi, “Conditions for stability of droop-controlled inverter-based microgrids,” Automatica, vol. 50, no. 10, pp. 2457– 2469, 2014.spa
dc.relation.referencesJ. M. Guerrero, J. C. Vasquez, J. Matas, L. G. De Vicuña, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids - A general approach toward standardization,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158–172, 2011.spa
dc.relation.referencesJ. M. Guerrero, M. Chandorkar, T. Lee, and P. C. Loh, “Advanced Control Architectures for Intelligent Microgrids; Part I: Decentralized and Hierarchical Control,” Industrial Electronics, IEEE Transactions on, vol. 60, no. 4, pp. 1254–1262, 2013.spa
dc.relation.referencesJ. Hu, Y. Shan, J. M. Guerrero, A. Ioinovici, K. W. Chan, and J. Rodriguez, “Model predictive control of microgrids – An overview,” Renewable and Sustainable Energy Reviews, vol. 136, no. September 2020, p. 110422, 2021.spa
dc.relation.referencesR. P. Aguilera and D. E. Quevedo, “Predictive control of power converters: Designs with guaranteed performance,” IEEE Transactions on Industrial Informatics, vol. 11, no. 1, pp. 53–63, 2015.spa
dc.relation.referencesG. Qu and N. Li, “Optimal Distributed Feedback Voltage Control under Limited Reactive Power,” IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 315–331, 2020.spa
dc.relation.referencesL. M. Leon, A. S. Bretas, and S. Rivera, “Quadratically constrained quadratic programming formulation of contingency constrained optimal power flow with photovoltaic generation,” Energies, vol. 13, no. 13, 2020.spa
dc.relation.referencesJ. Boudreaux, “Design, Simulation, and Construction of an IEEE 14-Bus Power System,” LSU Master’s Theses, sep 2018.spa
dc.relation.referencesJ. Lofberg, “Yalmip : a toolbox for modeling and optimization in matlab,” in 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), pp. 284–289, 2004.spa
dc.relation.referencesP. D. Christofides, R. Scattolini, D. Muñoz de la Peña, and J. Liu, “Distributed model predictive control: A tutorial review and future research directions,” Computers and Chemical Engineering, vol. 51, pp. 21–41, 2013.spa
dc.relation.referencesJ. Maestre and R. Negenborn, Distributed Model Predictive Control Made Easy, vol. 69 of Intelligent Systems, Control and Automation: Science and Engineering; Distributed Model Predictive Control Made Easy. Springer Netherlands, 2014.spa
dc.relation.referencesS. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2010.spa
dc.relation.referencesP. Šulc, S. Backhaus, and M. Chertkov, “Optimal distributed control of reactive power via the alternating direction method of multipliers,” IEEE Transactions on Energy Conversion, vol. 29, no. 4, pp. 968–977, 2014.spa
dc.relation.referencesF. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John Wiley & Sons, 2012.spa
dc.relation.referencesC. Conte, C. N. Jones, M. Morari, and M. N. Zeilinger, “Distributed synthesis and stability of cooperative distributed model predictive control for linear systems,” Automatica, vol. 69, pp. 117–125, 2016.spa
dc.relation.referencesM. Chen, J. Zhao, Z. Xu, Y. Liu, Y. Zhu, and Z. Shao, “Cooperative distributed model predictive control based on topological hierarchy decomposition,” Control Engineering Practice, vol. 103, no. August, 2020.spa
dc.relation.referencesD. Fu, H.-T. Zhang, A. Dutta, and G. Chen, “A cooperative distributed model predictive control approach to supply chain management,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 12, pp. 4894–4904, 2020.spa
dc.relation.referencesS. P. Nandanoori, S. Pal, S. Sinha, S. Kundu, K. Agarwal, and S. Choudhury, “Data-driven Distributed Learning of Multi-agent Systems: A Koopman Operator Approach,” Proceedings of the IEEE Conference on Decision and Control, vol. 2021- December, no. Cdc, pp. 5059–5066, 2021.spa
dc.relation.referencesB. T. Stewart, A. N. Venkat, J. B. Rawlings, S. J. Wright, and G. Pannocchia, “Cooperative distributed model predictive control,” Systems & Control Letters, vol. 59, no. 8, pp. 460–469, 2010.spa
dc.relation.referencesN. Bastianello, A. Simonetto, and R. Carli, “Distributed prediction-correction admm for time-varying convex optimization,” in 2020 54th Asilomar Conference on Signals, Systems, and Computers, pp. 47–52, 2020.spa
dc.relation.referencesE. Wei and A. Ozdaglar, “Distributed alternating direction method of multipliers,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 5445–5450, 2012.spa
dc.relation.referencesH. Arbabi and I. Mezić, “Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator,” SIAM Journal on Applied Dynamical Systems, vol. 16, no. 4, pp. 2096–2126, 2017.spa
dc.relation.referencesW. W. Hager, “Updating the inverse of a matrix,” SIAM Review, vol. 31, no. 2, pp. 221–239, 1989.spa
dc.relation.referencesX. Zhang, W. Pan, R. Scattolini, S. Yu, and X. Xu, “Robust tube-based model predictive control with Koopman operators,” Automatica, vol. 137, p. 110114, 2022.spa
dc.relation.referencesM. Akinkunmi, Introduction to Statistical Analysis, pp. 1–13. Cham: Springer International Publishing, 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembElectric networkseng
dc.subject.lembRedes eléctricasspa
dc.subject.lembAutomatic controleng
dc.subject.lembControl automáticospa
dc.subject.proposalData-driveneng
dc.subject.proposalKoopman operatoreng
dc.subject.proposalMicrogrideng
dc.subject.proposalDistributed controleng
dc.subject.proposalLinear predictoreng
dc.subject.proposalModel predictive controleng
dc.subject.proposalOperador de Koopmanspa
dc.subject.proposalMicrorredspa
dc.subject.proposalControl distribuidospa
dc.subject.proposalPredictor linealspa
dc.subject.proposalControl predictivo basado en modelospa
dc.subject.unescoAlgoritmosspa
dc.subject.unescoalgorithmseng
dc.titleData-driven control of interconnected energy systemseng
dc.title.translatedControl basado en datos para redes interconectadas de energíaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80251045.2022.pdf
Tamaño:
6.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: