Traffic accident energy loss estimation using three-dimensional computer vision

dc.contributor.advisorPrieto Ortiz, Flavio Augusto
dc.contributor.authorToquica, Hans
dc.date.accessioned2022-02-22T21:24:51Z
dc.date.available2022-02-22T21:24:51Z
dc.date.issued2021-09
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractPhotogrammetry is the technique that allows to obtain information from objects in image captures. Structure from Motion is a computer vision technique by which it is possible to obtain a three-dimensional representation of objects visible in a set of image captures. On the other hand, Traffic Accident Reconstruction refers to the set of techniques used for the analysis of traffic accidents. Within this set of techniques, the energy loss models can be found. These models allow to obtain a measure of the severity of a particular traffic accident. In this work, indirect photogrammetry (namely, Structure from Motion) is applied on a set of crash tests images obtained with BeamNG.drive, in order to estimate the energy equivalent speed based on the McHenry energy loss model. The results of this work show that three-dimensional computer vision techniques, such as Structure from Motion, are capable of providing estimations that are comparable to the results provided in other works related to the analysis traffic accidents.eng
dc.description.abstractLa fotogrametría es la técnica que permite obtener información de objectos en capturas de imágenes. Structure from Motion es una técnica de visión de máquina mediante la cual es posible obtener una representación tridimensional de los objetos visibles en un set de captura de imágenes. Por otro lado, la reconstrucción de accidentes de tránsito (Traffic Accident Reconstruction) hace referencia al conjunto de técnicas usadas para el análisis de accidentes de tránsito. En este conjunto de técnicas se pueden encontrar los modelos de pérdida energética. Estos modelos permiten obtener una medida de la severidad de un accidente de tránsito en particular. En este trabajo, la fotogrametría indirecta (específicamente, Structure from Motion) es aplicada en un set de imágenes de pruebas de choque obtenidas con BeamNG.drive, con el fin de estimar la velocidad equivalente a la energía (Energy Equivalent Speed) basada en el modelo de pérdida energética de McHenry. Los resultados de este trabajo muestran que las técnicas de visión tridimensional, tales como Structure from Motion, son capaces de proporcionar estimaciones comparables con otros trabajos relacionados ael análisis de accidentes de tránsito. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaSistemas Inteligentesspa
dc.format.extent75 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81041
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesJ. F. Kerkhoff, “Photographic techniques for accident reconstruction,” SAE Transactions, vol. 94, pp. 292–305, 1985, ISSN: 0096736X. [Online]. Available: http://www.jstor.org/stable/44467584.spa
dc.relation.referencesH. Xu and G. Lu, “Application of photogrammetry to measurement of traffic accident scene,” Traffic and Transportation Studies, 2002.spa
dc.relation.referencesL. Zhang, W. H. Qin, T. J. He, and W. N. Li, “Special considerations for tdoa application to the reconstruction of traffic accidents,” Advanced Materials Research, vol. 255-260, pp. 4090–4094, 2011. DOI: 10.4028/www.scientific.net/amr.255-260.4090.spa
dc.relation.referencesM. Pepe, J. Sobek, and G. Huett, “Three dimensional computerized photogrammetry and its application to accident reconstruction,” International Congress and Exposition Motor Vehicle Accident Reconstruction:, 1989.spa
dc.relation.referencesD. Behring, J. Thesing, H. Becker, and R. Zobel, “Optical coordinate measuring techniques for the determination and visualization of 3d displacements in crash investigations,” Society of Automotive Engineers, 2001.spa
dc.relation.referencesK. Breen and C. Anderson, “The application of photogrammetry to accident reconstruction,” Society of Automotive Engineers, 1986.spa
dc.relation.referencesB. Dierckx, C. De Veuster, and P.-A. Guidault, “Measuring a geometry by photogrammetry: Evaluation of the approach in view of experimental modal analysis on automotive structures,” Proceedings of the 2001 Noise and Vibration Conference, 2020.spa
dc.relation.referencesE. J. Manuel, R. Mink, and D. Kruger, “Videogrammetry in vehicle crash reconstruction with a moving video camera,” SAE Technical Paper Series, 2018. DOI: 10.4271/2018-01-0532.spa
dc.relation.referencesP. Niederer, B. Birchler, F. Mesqui, and Y. Lehareinger, “Computer assisted single-view photogrammetry for accident scene documentation,” SAE International, 1985.spa
dc.relation.referencesM. R. Osman and K. N. Tahar, “3d accident reconstruction using low-cost imaging technique,” Advances in Engineering Software, vol. 100, pp. 231–237, 2016. DOI: 10 . 1016 / j .advengsoft.2016.07.007.spa
dc.relation.referencesL. Pádua, J. Sousa, J. Vanko, J. Hruška, T. Adão, E. Peres, A. Sousa, and J. J. Sousa, “Digital reconstitution of road traffic accidents: A flexible methodology relying on uav surveying and complementary strategies to support multiple scenarios,” International Journal of Environmental Research and Public Health, vol. 17, no. 6, p. 1868, 2020. DOI: 10.3390/ijerph17061868.spa
dc.relation.referencesB. Randles, B. Jones, J. Welcher, T. Szabo, D. Elliott, and C. MacAdams, “The accuracy of photogrammetry vs. hands-on measurement techniques used in accident reconstruction,” SAE International, 2010.spa
dc.relation.referencesT. Terpstra, T. Voitel, and A. Hashemian, “A survey of multi-view photogrammetry software for documenting vehicle crush,” SAE Technical Paper Series, 2016. DOI: 10.4271/2016- 01-1475.spa
dc.relation.referencesX. Du, X. Jin, X. Zhang, J. Shen, and X. Hou, “Geometry features measurement of traffic accident for reconstruction based on close-range photogrammetry,” Advances in Engineering Software, vol. 40, no. 7, pp. 497–505, 2009. DOI: 10.1016/j.advengsoft.2008.09.002.spa
dc.relation.referencesI. Han and H. Kang, “Three-dimensional crush scanning methods for reconstruction of vehicle collision accidents,” International Journal of Automotive Technology, vol. 17, no. 1, pp. 91–98, 2016. DOI: 10.1007/s12239-016-0008-y.spa
dc.relation.referencesK. L. Campbell, “Energy basis for collision severity,” SAE Transactions, vol. 83, pp. 2114–2126, 1974, ISSN: 0096736X, 25771531. [Online]. Available: http://www.jstor.org/stable/44657484.spa
dc.relation.referencesUnited States. National Highway Traffic Safety Administration. Accident Investigation Division, CRASH3 User’s Guide and Technical Manual. The Division, 1981. [Online]. Available: https://books.google.com.co/books?id=tv85AQAAMAAJ.spa
dc.relation.referencesR. A. Smith and J. T. Noga, “Accuracy and sensitivity of crash,” SAE Technical Paper Series, 1982. DOI: 10.4271/821169.spa
dc.relation.referencesR. L. Woolley, C. Y. Warner, and M. D. Tagg, “Inaccuracies in the crash3 program,” SAE Transactions, vol. 94, pp. 380–398, 1985, ISSN: 0096736X. [Online]. Available: http://www.jstor.org/stable/44467589.spa
dc.relation.referencesB. McHenry, “The algorithm of CRASH,” United States: McHenry Software, Inc., 2001.spa
dc.relation.referencesA. G. Fonda, “Principles of crush energy determination,” SAE Transactions, vol. 108, pp. 392–406, 1999, ISSN: 0096736X, 25771531. [Online]. Available: http://www.jstor.org/stable/44667911.spa
dc.relation.referencesD. Vangi, “Energy loss in vehicle to vehicle oblique impact,” International Journal of Impact Engineering, vol. 36, no. 3, pp. 512–521, 2009. DOI: 10.1016/j.ijimpeng.2008.09.001.spa
dc.relation.referencesM. Gidlewski, L. Prochowski, L. Jemioł, and D. Żardecki, “The process of front-to-side collision of motor vehicles in terms of energy balance,” Nonlinear Dynamics, vol. 97, no. 3, pp. 1877–1893, 2018. DOI: 10.1007/s11071-018-4688-x.spa
dc.relation.referencesG. A. Nystrom, G. Kost, and S. M. Werner, “Stiffness parameters for vehicle collision analysis,” SAE Transactions, vol. 100, pp. 169–176, 1991, ISSN: 0096736X, 25771531. [Online]. Available: http://www.jstor.org/stable/44632021.spa
dc.relation.referencesJ. A. Neptune, G. Y. Blair, and J. E. Flynn, “A method for quantifying vehicle crush stiffness coefficients,” SAE Technical Paper Series, 1992. DOI: 10.4271/920607.spa
dc.relation.referencesA. R. Várkonyi-kóczy, A. Rövid, and P. Várlaki, “Intelligent methods for car deformation modeling and crash speed estimation,” 2004.spa
dc.relation.referencesI. Han and H. Kang, “Determination of the collision speed of a vehicle from evaluation of the crush volume using photographs,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 230, no. 4, pp. 479–490, 2015. DOI: 10.1177/0954407015586906.spa
dc.relation.referencesJ. Goicolea, “Estructuras sometidas a impacto,” 2000.spa
dc.relation.referencesR. Burdzik, P. Folega, L. Konieczny, B. Lazarz, Z. Stanik, and J. Warczek, “Analysis of material deformation work measures in determination of a vehicle’s collision speed,” Archives of Materials Science and Engineering, 2020.spa
dc.relation.referencesF. Berg, F. Walz, M. Muser, H. Bürkle, and J. Epple, “Implications of Velocity Change Delta-V and Energy Equivalent Speed EES for Injury Mechanism Assesment in Various Colission Configurations,” IRCOBI Conference - Göteborg, 1998.spa
dc.relation.referencesG. Păduraru, “Vehicle speed correlation with deformation amplitude due to adult pedestrian impact in car traffic accidents,” Ovidius University Annals of Mechanical, Industrial and Maritime Engineering, 2008.spa
dc.relation.referencesA. Toglia, G. Stephens, D. Michalski, and J. Rodriguez, “Applications of photomodeler in accident reconstruction,” 2005 ASME International Mechanical Engineering Congress and Exposition, 2005.spa
dc.relation.referencesC. Fraser, “Accident reconstruction via digital close-range photogrammetry,” 2006.spa
dc.relation.referencesA. Morales, D. Gonzalez-Aguilera, M. Gutiérrez, and A. López, “Energy analysis of road accidents based on close-range photogrammetry,” Remote Sensing, vol. 7, no. 11, pp. 15 161–15 178, 2015. DOI: 10.3390/rs71115161.spa
dc.relation.referencesD. A. Jurkofsky, “Accuracy of suas photogrammetry for use in accident scene diagramming,” SAE International Journal of Transportation Safety, vol. 3, no. 2, pp. 136–152, 2015. DOI: 10 .4271/2015-01-1426.spa
dc.relation.referencesZ. Bo, X. Haitao, L. Lulu, J. Jun, Z. Jianyue, and T. Yiping, “Development of coordinate-machine of the scene of road traffic accident based on binocular stereo omni-directional vision sensors,” Procedia Engineering, vol. 24, pp. 262–266, 2011. DOI: 10.1016/j.proeng.2011.11.2638.spa
dc.relation.referencesF. Mesqui, P. Niederer, M. Schlumpf, Y. Lehareinger, and J. Walton, “Semi-automatic reconstruction of the spatial trajectory of an impacted pedestrian surrogate using high-speed cinephotogrammetry and digital image analysis,” Journal of Biomechanical Engineering, vol. 106, no. 4, pp. 357–359, 1984. DOI: 10.1115/1.3138505.spa
dc.relation.referencesV. Žuraulis, L. Levulytė, and E. Sokolovskij, “Vehicle speed prediction from yaw marks using photogrammetry of image of traffic accident scene,” Procedia Engineering, vol. 134, pp. 89–94, 2016. DOI: 10.1016/j.proeng.2016.01.043.spa
dc.relation.referencesB. Epstein and B. G. Westlake, “Determination of vehicle speed from recorded video using reverse projection photogrammetry and file metadata,” Journal of Forensic Sciences, vol. 64, no. 5, pp. 1523–1529, 2019. DOI: 10.1111/1556-4029.14053.spa
dc.relation.referencesD. F. Tandy, C. Coleman, J. Colborn, T. Hoover, and J. Bae, “Benefits and methodology for dimensioning a vehicle using a 3d scanner for accident reconstruction purposes,” SAE Technical Paper Series, 2012. DOI: 10.4271/2012-01-0617.spa
dc.relation.referencesJ. Arnold, H. Bösch, and M. Braun, “Reconstruction of a multi vehicle collision on a highway: Combining forensic evidence examination, 3d-scanning and 3d-photogrammetry with numerical accident reconstruction methods,” IRCOBI Conference - Bern (Switzerland), 2008.spa
dc.relation.referencesL. Barazzetti, R. Sala, M. Scaioni, C. Cattaneo, D. Gibelli, A. Giussani, P. Poppa, F. Roncoroni, and A. Vandone, “3d scanning and imaging for quick documentation of crime and accident scenes,” Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense XI, 2012. DOI: 10.1117/12.920728.spa
dc.relation.referencesU. Buck, K. Buße, L. Campana, F. Gummel, C. Schyma, and C. Jackowski, “What happened before the run over? morphometric 3d reconstruction,” Forensic Science International, vol. 306, p. 110 059, 2020. DOI: 10.1016/j.forsciint.2019.110059.spa
dc.relation.referencesU. Buck, S. Naether, M. Braun, S. Bolliger, H. Friederich, C. Jackowski, E. Aghayev, A. Christe, P. Vock, and R. Dirnhofer, “Application of 3d documentation and geometric reconstruction methods in traffic accident analysis: With high resolution surface scanning, radiological msct/mri scanning and real data based animation,” Forensic Science International, vol. 170, no. 1, pp. 20–28, 2007. DOI: 10.1016/j.forsciint.2006.08.024.spa
dc.relation.referencesW. Baier, M. J. Donnelly, M. Payne, and M. A. Williams, “A holistic multi-scale approach to using 3d scanning technology in accident reconstruction,” Journal of Forensic Sciences, vol. 65, no. 5, pp. 1774–1778, 2020. DOI: 10.1111/1556-4029.14405.spa
dc.relation.referencesU. Buck, S. Naether, B. Räss, C. Jackowski, and M. J. Thali, “Accident or homicide - virtual crime scene reconstruction using 3d methods,” Forensic Science International, vol. 225, no. 1-3, pp. 75–84, 2013. DOI: 10.1016/j.forsciint.2012.05.015.spa
dc.relation.referencesC. Strother, R. Kent, and C. Warner, “Estimating vehicle deformation energy for vehicles struck in the side,” Advances in Safety Technology, 1998.spa
dc.relation.referencesN. Carter, A. Hashemian, N. Rose, and W. Neale, “Evaluation of the accuracy of image based scanning as a basis for photogrammetric reconstruction of physical evidence,” SAE International, 2020.spa
dc.relation.referencesWilliam Kevin Peach v. Lynsey E. McGovern. Supreme Court of the State of Illinois No:123156, 2018.spa
dc.relation.referencesR. Fay, “Analytical applications of 3-d imaging in vehicle accident studies,” Accident Reconstruction: Technology and Animation VI, 1996.spa
dc.relation.referencesD. Rudny and D. Sallmann, “The use of electronic survey equipment in the creation of accident scene diagrams,” Accident Reconstruction: Technology and Animation V, 1995.spa
dc.relation.referencesH. Toquica, “Estado de arte: Visión de máquina y técnicas de inteligencia artificial para la deteccion de infracciones de tránsito por alta velocidad,” Humanities Commons, 2020. DOI:10.17613/81qy-1r28.spa
dc.relation.referencesSiniestros en las vías, un problema de salud pública, El Tiempo, Feb. 2018. [Online]. Available: https://www.eltiempo.com/salud/informe-de-la-oms-sobre-accidentes-de-transito-en-el-mundo-302888 (visited on 05/01/2020).spa
dc.relation.referencesN. Tumbas, R. Kinney, and G. Smith, “Photogrammetry and accident reconstruction: Experimental results,” Accident Reconstruction: Technology and Animation IV, 1994.spa
dc.relation.referencesR. Hernández Sampieri, C. Fernández Collado, and M. d. P. Baptista Lucio, Metodología de la investigación (5a. ed.) McGraw-Hill Interamericana, 2000.spa
dc.relation.referencesG. Agudelo, M. Aigneren, and J. Ruiz Restrepo, “Experimental y no-experimental,” La Sociología en sus Escenarios, no. 18, Aug. 2010. [Online]. Available: https://revistas.udea.edu.co/index.php/ceo/article/view/6545.spa
dc.relation.referencesC. Manterola and T. Otzen, “Estudios Observacionales: Los Diseños Utilizados con Mayor Frecuencia en Investigación Clínica,” es, International Journal of Morphology, vol. 32, pp. 634–645, Jun. 2014, ISSN: 0717-9502. [Online]. Available: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022014000200042&nrm=iso.spa
dc.relation.referencesJ. Creswell, Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research, ser. Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research. Pearson, 2012, ISBN: 9780131367395.spa
dc.relation.referencesC. Fraser, SLAM, SfM and Photogrammetry: What’s in a Name? Interview at the ISPRS Technical Commision II Symposium, 2018. [Online]. Available: https://www.isprs.org/tc2-symposium2018/images/ISPRS-Interview-Fraser.pdf.spa
dc.relation.referencesK. Hata and S. Savarese, CS231A Course Notes 1: Camera Models, Standford University, 2017. [Online]. Available: https://web.stanford.edu/class/cs231a/course_notes/01-camera-models.pdf.spa
dc.relation.referencesK. Hata and S. Savarese, CS231A Course Notes 3: Epipolar Geometry, Standford University, 2017. [Online]. Available: https://web.stanford.edu/class/cs231a/course_notes/03- epipolar-geometry.pdf.spa
dc.relation.referencesK. Hata and S. Savarese, CS231A Course Notes 4: Stereo Systems and Structure from Motion, Standford University, 2017. [Online]. Available: https://web.stanford.edu/class/cs231a/course_notes/04-stereo-systems.pdf.spa
dc.relation.referencesJ. Civera, A. J. Davison, and J. M. Martínez Montiel, Structure from motion using the extended kalman filter. Springer, 2012.spa
dc.relation.referencesWöhler, Christian, 3D computer vision. Springer, 2013.spa
dc.relation.referencesD. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004. DOI: 10.1023/b:visi.0000029664.99615.94.spa
dc.relation.referencesM. A. R. Ahad, Computer Vision and Action Recognition: A Guide for Image Processing and Computer Vision Community for Action Understanding, ser. Atlantis Ambient and Pervasive Intelligence. Atlantis Press, 2011, ISBN: 9789491216206.spa
dc.relation.referencesC. Stachniss, SIFT - 5 Minutes with Cyrill, YouTube, 2020. [Online]. Available: https://www.youtube.com/watch?v=4AvTMVD9ig0.spa
dc.relation.referencesS. Krig, Computer Vision Metrics: Survey, Taxonomy, and Analysis, ser. SpringerLink : Bücher. Apress, 2014, ISBN: 9781430259305.spa
dc.relation.referencesD. Tyagi, Introduction to feature detection and matching, Medium, 2019. [Online]. Available: https://medium.com/data-breach/introduction-to-feature-detection-and-matching-65e27179885d.spa
dc.relation.referencesR. Szeliski, Computer Vision: Algorithms and Applications, ser. Texts in Computer Science. Springer London, 2010, ISBN: 9781848829350.spa
dc.relation.referencesD. Lowe, “Object recognition from local scale-invariant features,” Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999. DOI: 10.1109/iccv.1999.790410.spa
dc.relation.referencesR. Brach, “Calculation of crush stiffness coefficients from two-vehicle collisions,” University of Notre Dame, 1997.spa
dc.relation.referencesJ. Neades, “From test collisions to stiffness coefficients,” AiTS, South Cerney, Glos., 2013.spa
dc.relation.referencesD. E. Siddall and T. D. Day, “Updating the vehicle class categories,” SAE Technical Paper Series,1996. DOI: 10.4271/960897.spa
dc.relation.referencesD. Vomhof III, Kinetic energy equivalent speed: What is it?, why calculate it?, how to calculate it? 2001. [Online]. Available: http://www.4n6xprt.com/KEES5-4.pdf.spa
dc.relation.referencesBeamNG GmbH, BeamNG.research, version 1.3.0.0, Oct. 11, 2018. [Online]. Available: https://www.beamng.gmbh/research.spa
dc.relation.referencesC. Wu, “Towards linear-time incremental structure from motion,” 2013 International Conference on 3D Vision, 2013. DOI: 10.1109/3dv.2013.25.spa
dc.relation.referencesY. Furukawa, Clustering Views for Multi-View Stereo, Département d’Informatique de l’ENS, 2010. [Online]. Available: https://www.di.ens.fr/cmvs/.spa
dc.relation.referencesY. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Towards internet-scale multi-view stereo,” 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010. DOI: 10.1109/cvpr.2010.5539802.spa
dc.relation.referencesY. Furukawa and J. Ponce, Patch-based Multi-view Stereo Software, Département d’Informatique de l’ENS, 2010. [Online]. Available: https://www.di.ens.fr/pmvs/.spa
dc.relation.referencesY. Furukawa and J. Ponce, “Accurate, dense, and robust multiview stereopsis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 8, pp. 1362–1376, 2010. DOI: 10.1109/tpami.2009.161.spa
dc.relation.referencesCloudCompare: 3D point cloud and mesh processing software, Open Source Project, 2009. [Online]. Available: https://www.cloudcompare.org/.spa
dc.relation.referencesAlignment and registration, CloudCompare Wiki, 2015. [Online]. Available: https://www.cloudcompare.org/doc/wiki/index.php?title=Alignment_and_Registration.spa
dc.relation.referencesICP, CloudCompare Wiki, 2015. [Online]. Available: https://www.cloudcompare.org/doc/wiki/index.php?title=ICP.spa
dc.relation.referencesP. Besl and N. McKay, “A method for registration of 3-d shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256, 1992. DOI: 10.1109/34.121791.spa
dc.relation.referencesF. Prieto, Visión Tridimensional: Registro o Puesta en Correspondencia. Universidad Nacional de Colombia, 2020.spa
dc.relation.referencesNHTSA Vehicle Crash Test Database, National Highway Traffic Safety Administration. [Online]. Available: https://www-nrd.nhtsa.dot.gov/database/veh/veh.htm.spa
dc.relation.referencesD. Margaritis and R. de Vos, Pan-european co-ordinated accident and injury databases, 2002. [Online]. Available: https://ec.europa.eu/transport/road_safety/sites/default/files/pdf/projects_sources/crashtest_database_d4.pdf.spa
dc.relation.referencesEuro NCAP, YouTube. [Online]. Available: https://www.youtube.com/c/EuroNCAP _forsafercars/videos.spa
dc.relation.referencesIIHS, YouTube. [Online]. Available: https://www.youtube.com/user/iihs/videos.spa
dc.relation.referencesProtocole - eléments d’architecture, Tools and Acquisition Protocols for Enchancing Artefacts Documentation. [Online]. Available: http://www.tapenade.gamsau.archi.fr/TAPEnADe/PR_elements_files/PR_elements-fr_1.pdf.spa
dc.relation.referencesJ. Friedt, “Photogrammetric 3d structure reconstruction using micmac,” 2014.spa
dc.relation.referencesTom999 and Ghost187, B.I.H.S. Crash Hall, BeamNG, 2018. [Online]. Available: https://www.beamng.com/resources/b-i-h-s-crash-hall.3205/.spa
dc.relation.referencesJ. Morgan and D. Brogan, “How to VisualSFM,” Colorado State University, 2016.spa
dc.relation.referencesF. Peter, “Generating a Photogrammetric model using VisualSFM, and post-processing with Meshlab,” 2016.spa
dc.relation.referencesInstruction on reconstruction workflow, Carnegie Mellon University, 2014. [Online]. Available: https://www.cs.cmu.edu/~reconstruction/basic_workflow.html.spa
dc.relation.referencesG. D. Osterholt, J. R. Cummings, B. Biller, and V. Calhoun, “Updating generic crush stiffness coefficients for accident reconstruction,” SAE Technical Paper 2010-01-1581, 2010. DOI:10.4271/2010-01-1581.spa
dc.relation.referencesA. C. Sankaranarayanan, A. Veeraraghavan, O. Tuzel, and A. Agrawal, “Specular surface reconstruction from sparse reflection correspondences,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 1245–1252. DOI: 10.1109/CVPR.2010.5539826.spa
dc.relation.referencesS. Konrad, Reconstruction of specular surfaces from reflectance correspondences, Technische Universität Darmstadt, Darmstadt, 2016.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.proposalEnergy loss estimationeng
dc.subject.proposalEnergy equivalent speedeng
dc.subject.proposalTraffic accident reconstructioneng
dc.subject.proposalStructure from motioneng
dc.subject.proposalEstimación de pérdida de energíaspa
dc.subject.proposalReconstrucción de accidentes de tránsitospa
dc.subject.proposalFotogrametríaspa
dc.subject.proposalPhotogrammetryeng
dc.subject.unescoFotogrametríaspa
dc.subject.unescoPhotogrammetryeng
dc.subject.unescoReconocimiento topográficospa
dc.titleTraffic accident energy loss estimation using three-dimensional computer visioneng
dc.title.translatedEstimación de pérdida de energía en accidentes de tránsito usando visión tridimensionalspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1033757650.2021.pdf
Tamaño:
20.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias de la Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: