Efecto de dos fuentes de luz LED DR/W y blanca en parámetros fisiológicos y de rendimiento en tres variedades de Cannabis sativa L. bajo condiciones de invernadero en la Sabana de Bogotá

dc.contributor.advisorMoreno Fonseca, Liz Patriciaspa
dc.contributor.advisorBorda Gutiérrez, Ana Maríaspa
dc.contributor.authorCarranza Ramirez, Julian Eduardospa
dc.contributor.orcid0000-0002-6091-5750spa
dc.coverage.cityBogotáspa
dc.coverage.countryColombiaspa
dc.coverage.regionCundinamarcaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000838
dc.date.accessioned2024-06-07T20:09:25Z
dc.date.available2024-06-07T20:09:25Z
dc.date.issued2023-08-01
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa variación en la síntesis de los cannabinoides que se producen en las inflorescencias de la planta de Cannabis sativa L. puede afectar su potencia medicinal. Esta variación se debe a que su producción está regulada por factores ambientales, entre de los cuales uno de los más importantes es la luz. El objetivo de este estudio fue determinar el efecto de dos fuentes de luz sobre parámetros fisiológicos y de rendimiento de tres variedades de C. sativa en condiciones de invernadero. Se utilizaron las variedades no psicoactivas Calotoweed, Higthcol y Souce Cauca, las cuales fueron sembradas bajo luz LED DR/W y luz LED blanca durante la fase vegetativa. No se observó un efecto del tipo de luces en la fenología de las plantas de C. sativa. Sin embargo, bajo luz DR/W se presentó una reducción significativa en la altura (4%-26,7%), el área foliar (21%-55%) y en la masa seca de la parte aérea (1,9%-30,3%), aunque, se observó una mayor distribución de la biomasa hacia las inflorescencias (40,1%-51,6%). También, se observó una reducción significativa en la conductancia estomática (4,7%-27,4%), la eficiencia cuántica del PSII (1%-11,7%) y la tasa de transporte de electrones (9,2%-15,8%) respecto a la luz blanca. En cuanto al rendimiento en términos de flor seca no se observaron diferencias significativas entre el tipo de luces y entre variedades. Por el contrario, bajo luz blanca se presentaron los mayores contenidos de CBD (11,9%-13,4%) y de CBD por gramo de inflorescencia (12,9 CBD g/inflorescencia – 13,8 CBD g/inflorescencia) respecto a la luz DR/W. Por otro lado, bajo luz DR/W se presentaron las mayores concentraciones de THC para las variedades Calotoweed (0,5%) y Soucecauca (0,6%) en comparación con las plantas que crecieron bajo luz blanca. Estos resultados indican que la luz DR/W modificó la arquitectura del dosel, generando plantas más compactas con mayor acumulación de biomasa en la inflorescencia que es donde se produce los metabolitos de interés. En conclusión, las plantas bajo luz DR/W presentaron una mayor translocación de fotoasimilados hacia las inflorescencias, pero hubo una limitación en el desempeño fotosintético, lo que disminuyó la producción de CBD e incrementó la producción de THC. (Texto tomado de la fuente).spa
dc.description.abstractThe variation in cannabinoid synthesis occurring in the inflorescences of Cannabis sativa L. can impact its medicinal potency. This variation is attributed to the regulation of production by environmental factors, with light being one of the most crucial among them. The objective of this study was to determine the effect of two light sources on physiological and yield parameters of three C. sativa varieties under greenhouse conditions. The non-psychotropic varieties Calotoweed, Higthcol, and Souce Cauca were cultivated during the vegetative phase under DR/W LED light and white LED light. No significant effect of light type on the phenology of C. sativa plants was observed. However, under DR/W light, there was a reduction in plant height (4%-26.7%), leaf area (21%-55%), and aerial dry mass (1.9%-30.3%), while there was an increased biomass allocation towards the inflorescences (40.1%-51.6%). Additionally, a decrease in stomatal conductance (4.7%-27.4%), quantum efficiency of PSII (1%-11.7%), and electron transport rate (9.2%-15.8%) was observed compared to white light. Regarding the yield in terms of dry flowers, no significant differences were found between light types or varieties. Conversely, under white light, the highest CBD contents (11.9%-13.4%) and CBD per gram of inflorescence (12.9 CBD g inflorescence-1 – 13.8 CBD g inflorescence-1) were observed compared to DR/W light. On the other hand, the highest THC concentrations were found for the Calotoweed (0.5%) and Soucecauca (0.6%) varieties under DR/W light compared to plants grown under white light. These results indicate that DR/W light altered the canopy architecture, resulting in more compact plants with greater biomass accumulation in the inflorescence, where the targeted metabolites are produced. In conclusion, plants under DR/W light exhibited increased translocation of photoassimilates towards the inflorescences, but there was a limitation in photosynthetic performance, leading to decreased CBD production and increased THC production.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.methodsMaterial vegetal y establecimiento del cultivo El estudio se realizó en la Finca El Candil, La Conejera, Bogotá, Colombia (4°47'02.6"N 74°06'09.8"W) en invernadero, con una temperatura promedio de 16,7°C, humedad relativa del 75,4 %, integral de luz diaria (DLI) promedio de 16,7 Mol m-2 dia-1. Las plántulas se obtuvieron a partir de esquejes enraizados de cuatro semanas de edad y se utilizó una densidad de siembra de 4 plantas m-2. Las plantas se sembraron en suelo y se aplicó un plan de fertilización acorde con el análisis de suelo y los requerimientos de la planta según Cockson et al., (2019) con algunas modificaciones. El riego, las podas y los manejos fitosanitarios se realizaron de la manera convencional para cultivos de C. sativa en invernadero. Se realizó un diseño en parcelas divididas con bloques completos al azar con cinco repeticiones y una unidad experimental de 25 plantas. La parcela principal fue: dos fuentes de luz LED, una blanca (48 bombillas de 30 Watts, con un espectro de luz de 6500 k) y una luz blanca/roja profundo (48 bombillas de 13 Watts, con un espectro de luz Deep Red/White, una alta proporción de rojo y una menor relación Azul:Rojo) y como subparcela: tres variedades de Cannabis sativa L. medicinal: Calotoweed (CW), Higthcol (HC) y Souce Cauca (SC). Los ensayos con cada fuente de luz fueron separados con cortinas plásticas de color negro, para evitar la contaminación lumínica. Las luces dentro del invernadero se encendieron desde las 18:00 h hasta las 0:30 h, con el fin de obtener un fotoperiodo de 18/6 h luz/oscuridad durante la fase vegetativa (desde la siembra hasta los 43 días), una vez transcurrido ese tiempo se apagaron las luces para obtener un fotoperiodo de 12/12 h luz/oscuridad. Las fuentes de luz fueron colocadas a una altura de 2,40 m, espaciadas cada 3 m. Las mediciones de todas las variables fisiológicas se realizaron para un total de 15 plantas por tratamiento (n=15) en tres puntos a lo largo del ciclo del cultivo, a los 20 días después de siembra (dds), 60 dds y 95 dds, excepto para la altura de la planta que se hizo a los 20 dds, 35 dds, 50 dds, 65 dds y 95 dds. Fenología Se midió la fenología a partir de los 8 días después de trasplante (ddt) y hasta el final del ciclo de cultivo se determinó semanalmente la fenología (n=25), con base en la escala propuesta por Mediavilla et al. (1998) con modificaciones. Cada estado fenológico se determinó cuando el 50%+1 de la población se encontraba en el estado de desarrollo específico. Variables de crecimiento Se midió la altura de la planta desde la base del tallo hasta la parte apical del mismo. El área foliar se determinó en 15 plantas por tratamiento usando el sofware ImageJ® (Sala et al., 2015). A partir del área foliar se determinó el área foliar específica (AFE) utilizando la siguiente ecuación (1). (1) 𝐴𝐹𝐸 = Á𝑟𝑒𝑎 𝑓𝑜𝑙𝑖𝑎𝑟 (𝑐𝑚2)/ 𝑀𝑎𝑠𝑎 𝑠𝑒𝑐𝑎 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒 𝑙𝑎 𝑝𝑎𝑟𝑡𝑒 𝑎𝑒𝑟𝑒𝑎 (𝑔) Se determinó la masa seca de la parte aérea, para tal fin ésta se separó en tallo, ramas laterales, hojas y flores, cada parte fue colocada en un horno a 105 °C hasta obtener peso constante. Variables asociadas a la fotosíntesis El contenido relativo de clorofilas (CRC) se determinó con un clorofilómetro SPAD-502 plus (Konica Minolta, Osaka, Japan) en una hoja totalmente expandida del tercio superior de la planta, tomando cinco mediciones en el foliolo central en la parte media (n= 15). La conductancia estomática (gs) se determinó con un porómetro de hoja Decagon SC-1 (Decagon Devices, Inc., Pullman, Washington). Se determinó la temperatura foliar con un psicómetro extech con termómetro infrarrojo modelo HD500. En la misma hoja donde se determinó la temperatura foliar y la gs se determinaron las variables asociadas a la fluorescencia de la clorofila, entre las 9:00 h y las 11:00 h, mediante un analizador de fluorescencia de amplitud de pulso modulado (JUNIOR-PAM, Walz, Germany). Las hojas fueron adaptadas a la oscuridad por 30 min antes de iniciar las mediciones, después las moléculas de clorofila fueron excitadas por 0,8 s con un PPFD de 2000 μmol m-2 s-1 usando luz actínica. Con este proceso de obtuvo los datos de la tasa de transporte de electrones del PSII (ETR) y el rendimiento cuántico máximo potencial del PSII (Fv/Fm) (n = 15). Para estas variables se realizaron seis mediciones durante el ciclo de cultivo. Rendimiento de masa seca de flor El rendimiento se determinó en quince plantas por repetición por tratamiento (n=75). El momento de cosecha se estableció cuando los pistilos de la inflorescencia apical del 50%+1 de la población presentaron color café y el 30% de los tricomas fueron de color ámbar. Para cada planta se cortaron las ramas productivas y se llevaron a un cuarto de secado. Cuando las ramas productivas presentaron un porcentaje de humedad del 9% se realizó el triturado para determinar el rendimiento mediante el peso de flor seca por planta. Contenido total de cannabinoides El contenido de cannabinoides se determinó a partir de 30 g de inflorescencias al momento de la cosecha, en tres plantas por variedad por repetición por tratamiento. Las inflorescencias se colocaron en un horno a 50°C hasta alcanzar una humedad entre el 8% al 10%, luego fueron molidas y se determinó el contenido de cannabidiol (CBD) y del Δ9 tetrahidrocannabinol (THC) con un analizador de potencias GemmaCert Lite (GemmaCert, Germany). El contenido se expresa como porcentaje (%) de peso seco total de las inflorescencias. Análisis de datos El análisis estadístico se realizó con el software R (R Core Team, 2013). Las comparaciones estadísticas entre los tratamientos se realizaron mediante un análisis de medidas repetidas y mediante un análisis de varianza (ANOVA) de tres vías para las variables medidas a través del tiempo para determinar el efecto combinado de las luces:variedad:tiempo. Para la interpretación y discusión de las interacciones se utilizó el criterio de las barras de error estándar descrito por Cumming et al. (2007). Finalmente, para las variables de rendimiento en términos de flor seca y el contenido total de cannabinoides se realizó un ANOVA de una vía. Para la comparación de medias se realizó la prueba de Tukey (p < 0,05).spa
dc.description.researchareaFisiologia de cultivosspa
dc.description.sponsorshipMedcolcanna is a medical cannabis company operating in Colombiaspa
dc.format.extent85 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86217
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAizpurua-Olaizola, O., Omar, J., Navarro, P., Olivares, M., Etxebarria, N., Usobiaga, A. 2014. Identification and quantification of cannabinoids in Cannabis sativa L. plants by high performance liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 406(29), 7549–7560. doi:10.1007/s00216-014-8177-x.spa
dc.relation.referencesAmaki, W., Yamazaki, N., Ichimura, M., Watanabe, H. 2011. EFFECTS OF LIGHT QUALITY ON THE GROWTH AND ESSENTIAL OIL CONTENT IN SWEET BASIL. Acta Horticulturae, (907), 91–94. doi:10.17660/ActaHortic.2011.907.9.spa
dc.relation.referencesBerman, P., Futoran, K., Lewitus, G. M., Mukha, D., Benami, M., Shlomi, T., Meiri, D. 2018. A new ESI-LC/MS approach for comprehensive metabolic profiling of phytocannabinoids in Cannabis. Scientific reports, 8(1), 1-15. doi:10.1038/s41598-018-32651-4.spa
dc.relation.referencesBoth, A. J., Benjamin, L., Franklin, J., Holroyd, G., Incoll, L. D., Lefsrud, M. G., Pitkin, G. 2015. Guidelines for measuring and reporting environmental parameters for experiments in greenhouses. Plant Methods, 11(1). doi:10.1186/s13007-015-0083-5. doi: 10.1186/s13007-015-0083-5.spa
dc.relation.referencesChandra, S., Lata, H., Khan, I. A., Elsohly, M. A. 2008. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO 2 conditions. Physiology and Molecular Biology of Plants, 14(4), 299-306. doi: 10.1007/s12298-008-0027-x.spa
dc.relation.referencesChandra, S., Lata, H., Mehmedic, Z., Khan, I. A., ElSohly, M. A. 2015. Light dependence of photosynthesis and water vapor exchange characteristics in different high Δ9-THC yielding varieties of Cannabis sativa L. Journal of Applied Research on Medicinal and Aromatic Plants, 2(2), 39-47. doi:10.1016/j.jarmap.2015.03.002.spa
dc.relation.referencesChen, L., Zhang, K., Gong, X., Wang, H., Gao, Y., Wang, X., Zeng, Z., Hu, Y. 2020. Effects of different LEDs light spectrum on the growth, leaf anatomy, and chloroplast ultrastructure of potato plantlets in vitro and minituber production after transplanting in the greenhouse. Journal of Integrative Agriculture, 19(1), 108–119. doi:10.1016/s2095-3119(19)62633-x.spa
dc.relation.referencesChory, J. 2010. Light signal transduction: an infinite spectrum of possibilities. Plant J 61:982–991. doi: 10.1111/j.1365-313X.2009.04105.x.spa
dc.relation.referencesCosentino, S.L., Riggi, E., Testa, G., Scordia, D., Copani, V., 2013. Evaluation of European developed fibre hemp genotypes (Cannabis sativa L.) in semi-arid Mediterranean environment. Ind. Crops Prod. 50, 312–324. http://dx.doi.org/10.1016/j.indcrop.2013.07.059.spa
dc.relation.referencesDemura, T., Ye, Z.H., 2010. Regulation of plant biomass production. Curr. Opin. Plant Biol. 13 (3), 298–303. https://doi.org/10.1016/j.pbi.2010.03.002.spa
dc.relation.referencesEichhorn Bilodeau, S., Wu, B. S., Rufyikiri, A. S., MacPherson, S., Lefsrud, M. 2019. An update on plant photobiology and implications for cannabis production. Frontiers in Plant Science, 10, 296. doi: 10.3389/fpls.2019.00296.spa
dc.relation.referencesHogewoning, S. W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W., Harbinson, J. 2010. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of experimental botany, 61(11), 3107-3117. doi:10.1093/jxb/erq132.spa
dc.relation.referencesKhajuria, M., Rahul, V. P., Vyas, D. 2020. Photochemical efficiency is negatively correlated with the Δ9-tetrahydrocannabinol content in Cannabis sativa L. Plant Physiology and Biochemistry. 151, 589 600. doi:10.1016/j.plaphy.2020.04.003.spa
dc.relation.referencesKoehl, K., Tohge, T., Schoettler, M. A. 2017. Performance of Arabidopsis thaliana under different light qualities: comparison of light-emitting diodes to fluorescent lamp. Functional Plant Biology, 44, 727 738. http://dx.doi.org/10.1071/FP17051.spa
dc.relation.referencesKrahmer, J., Ganpudi, A., Abbas, A., Romanowski, A., Halliday, K. J. 2018. Phytochrome, carbon sensing, metabolism, and plant growth plasticity. Plant physiology, 176(2), 1039-1048. https://doi.org/10.1104/pp.17.01437.spa
dc.relation.referencesLee, M.-J., Son, K.-H., and Oh, M.-M. 2016. Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic. Environ. Biotechnol. 57, 139–147.doi: 10.1007/s13580-016-0133-6.spa
dc.relation.referencesMagagnini, G., Grassi, G., Kotiranta, S. 2018. The Effect of Light Spectrum on the Morphology and Cannabinoid Content of Cannabis sativa L. Medical Cannabis and Cannabinoids, 1(1), 19-27. DOI: 10.1159/000489030.spa
dc.relation.referencesMickens, M., Skoog, E., Reese, L., Barnwell, P., Spencer, L., Massa, G., Wheeler, R.M. 2018. A strategic approach for investigating light recipes for ‘Outredgeous’ red romaine lettuce using white and monochromatic LEDs. Life Sci. Space Res. 19, 53–62. doi: 10.1016/j.lssr.2018.09.003spa
dc.relation.referencesMitchell, C. A., Dzakovich, M. P., Gomez, C., Lopez, R., Burr, J. F., Hernández, R., Kubota, C., Currey, C.J., Meng, Q., Runkle, E.S., Bourget, C.M., Morrow, R., Both, A. J. 2015. Light-Emitting Diodes in Horticulture. Horticultural Reviews: Volume 43, 1–88. doi: 10.1002/9781119107781.ch01.spa
dc.relation.referencesMurakami, K., Matsuda, R., Fujiwara, K. 2017. A Basis for Selecting Light Spectral Distribution for Evaluating Leaf Photosynthetic Rates of Plants Grown under Different Light Spectral Distributions. Environment Control in Biology, 55(1), 1–6. doi: 10.2525/ecb.55.1.spa
dc.relation.referencesPaik, I., Huq, E. 2019. Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. Seminars in Cell & Developmental Biology. doi:10.1016/j.semcdb.2019.03.007.spa
dc.relation.referencesPark, Y., and Runkle, E.S. 2018. Far-red radiation and photosynthetic photon flux density independently regulate seedling growth but interactively regulate flowering. Environ. Exp. Bot. 155, 206–216. doi: 10.1016/j.envexpbot.2018.06.033.spa
dc.relation.referencesPatil, G.G., Oi, R., Gissinger, A., Moe, R. 2001. Plant morphology is affected by light quality selective plastic films and alternating day and night temperature. Gartenbauwissenschaft. 66 (2), 53–60.spa
dc.relation.referencesPocock, T. 2015. Light-emitting diodes and the modulation of specialty crops: light sensing and signaling networks in plants. https://doi.org/10.21273/HORTSCI.50.9.1281.spa
dc.relation.referencesRadwan, M.M., Chandra, S., Gul, S., ElSohly, M.A. 2021. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules, 26(9), 2774. doi:10.3390/molecules26092774.spa
dc.relation.referencesSu, J., Liu, B., Liao, J., Yang, Z., Lin, C., Oka, Y. 2017. Coordination of cryptochrome and phytochrome signals in the regulation of plant light responses. Agronomy,7(1), 25. https://doi.org/10.3390/agronomy7010025.spa
dc.relation.referencesTang, K., Struik, P.C., Yin, X., Thouminot, C., Bjelkova, M., Stramkale, V., Amaducci, S. 2016. Comparing hemp (Cannabis sativa L.) cultivars for dual-purposeproduction under contrasting environments. Ind. Crops Prod. 87, 33-44. http://dx.doi.org/10.1016/j.indcrop.2016.04.026.spa
dc.relation.referencesTrouwborst, G., Hogewoning, S. W., van Kooten, O., Harbinson, J., Van Ieperen, W. 2016. Plasticity of photosynthesis after the “red light syndrome” in cucumber. Environmental and Experimental Botany, 121, 75–82. http://dx.doi.org/10.1016/j.envexpbot.2015.05.002.spa
dc.relation.referencesVanhove, W., Van Damme, P., Meert, N. 2011. Factors determining yield and quality of illicit indoor cannabis (Cannabis spp.) production. Forensic Science International, 212(1-3), 158-163. doi:10.1016/j.forsciint.2011.06.006.spa
dc.relation.referencesVu, N.-T., Kim, Y.-S., Kang, H.-M., and Kim, I.-S. 2014. Influence of shortterm irradiation during pre and post-grafting period on the graft-take ratio and quality of tomato seedlings. Hortic. Environ. Biotechnol. 55, 27–35. doi:10.1007/s13580-014-0115-5.spa
dc.relation.referencesWang, Y., Zhang, T., Folta, K.M. 2015. Green light augments far-red-lightinduced shade response. Plant Growth Regul. 77, 147–155. doi: 10.1007/s10725-015-0046-xspa
dc.relation.referencesWei, H., Hu, J., Liu, C., Wang, M., Zhao, J., Kang, D., Jeong, B. 2018. Effect of Supplementary Light Source on Quality of Grafted Tomato Seedlings and Expression of Two Photosynthetic Genes. Agronomy. 8(10), 207.spa
dc.relation.referencesYang, Z., He, W., Mou, S., Wang, X., Chen, D., Hu, X., Chen, L., Bai, J., 2017. Plant growth and development of pepper seedlings under different photoperiods and photon flux ratios of red and blue LEDs. Trans. Chin. Soc. Agric. Eng. 33 (17), 173–180. doi:10.11975/j.issn.1002-6819.2017.17.023.spa
dc.relation.referencesAmaducci, S., Colauzzi, M., Bellocchi, G., Venturi, G. 2008. Modelling post-emergent hemp phenology (Cannabis sativa L.): Theory and evaluation. European Journal of Agronomy, 28(2), 90–102. doi:10.1016/j.eja.2007.05.006.spa
dc.relation.referencesAndre, C. M., Hausman, J.-F.,& Guerriero, G. 2016. Cannabis sativa: The Plant of the Thousand and One Molecules. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00019.spa
dc.relation.referencesAnpo, M., Fukuda, H., Wada, T. (Eds.). 2018. Plant factory using artificial light: adapting to environmental disruption and clues to agricultural innovation. Elsevier. https://doi.org/10.1016/B978 0-12-813973-8.09992-9.spa
dc.relation.referencesAppendino, G., Chianese, G., Taglialatela-Scafati, O. 2011. Cannabinoids: occurrence and medicinal chemistry. Current Medicinal Chemistry, 18(7), 1085–1099. doi: 10.2174/092986711794940888.spa
dc.relation.referencesBacker, R., Schwinghamer, T., Rosenbaum, P., McCarty, V., Eichhorn Bilodeau, S., Lyu, D., Ahmed, B., Robinson, W.G., Lefsrud, M., Wilkins, O., Smith, D. L. 2019. Closing the Yield Gap for Cannabis: A Meta-Analysis of Factors Determining Cannabis Yield. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00495.spa
dc.relation.referencesBantis, F., Ouzounis, T., Radoglou, K. 2016. Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum , but variably affects transplant success. Scientia Horticulturae, 198, 277–283. doi:10.1016/j.scienta.2015.11.014.spa
dc.relation.referencesBattle, M.W., Jones, M.A. 2019. Cryptochromes Integrate Green Light Signals into the Circadian System. Plant, Cell & Environment. doi:10.1111/pce.13643.spa
dc.relation.referencesBeard, K.M., Boling, A.W.H., Bargmann, B.O.R. 2021. Protoplast isolation, transient transformation, and flow-cytometric analysis of reporter-gene activation in Cannabis sativa L. Industrial Crops and Products, 164, 113360. doi:10.1016/j.indcrop.2021.113360.spa
dc.relation.referencesBoccalandro, H.E., Giordano, C.V., Ploschuk, E.L., Piccoli, P.N., Bottini R. CasalJ.J. 2012. Phototropins but not cryptochromes mediate the blue light-specificpromotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight. Plant Physiology158,1475 1484. https://doi.org/10.1104/pp.111.187237.spa
dc.relation.referencesBonini, S. A., Premoli, M., Tambaro, S., Kumar, A., Maccarinelli, G., Memo, M., Mastinu, A. 2018. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. Journal of Ethnopharmacology. doi:10.1016/j.jep.2018.09.004.spa
dc.relation.referencesBooth, J. K., Page, J. E., Bohlmann, J. 2017. Terpene synthases from Cannabis sativa. PLOS ONE, 12(3), e0173911. doi:10.1371/journal.pone.0173911.spa
dc.relation.referencesChandra, S., Lata, H., and Elsohly, M. A. 2017. Cannabis sativa L.- botany and biotechnology. Cham, Switzerland: Springer. doi: 10.1007/978-3-319-54564-6_20.spa
dc.relation.referencesChang, X., Alderson, P.G., Wright, C. J. 2008. Solar irradiance level alters the growth of basil (Ocimum basilicum L.) and its content of volatile oils. Environmental and Experimental Botany, 63(1-3), 216 223. doi:10.1016/j.envexpbot.2007.10.0.spa
dc.relation.referencesChristie, J.M., 2007. Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58, 21–45. doi: 10.1146/annurev.arplant.58.032806.103951.spa
dc.relation.referencesDemotes-Mainard, S., Péron, T., Corot, A., Bertheloot, J., Le Gourrierec, J., Pelleschi-Travier, S., Crespel, L.,Morel, P., Huche´-The´lier, L., Boumaza, R. 2016. Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany, 121, 4–21. doi: 10.1016/j.envexpbot.2015.05.010.spa
dc.relation.referencesDou, H., Niu, G., Gu, M., Masabni, J.G., 2018. Responses of sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional quality. Hortscience 53, 496e503.spa
dc.relation.referencesDou, H., Niu, G. 2020. Plant responses to light. Plant Factory, 153–166. doi:10.1016/b978-0-12 816691-8.00009-1. https://doi.org/10.1016/B978-0-12-816691-8.00009-1.spa
dc.relation.referencesEckstein, A., Zięba, P., Gabryś, H. 2011. Sugar and Light Effects on the Condition of the Photosynthetic Apparatus of Arabidopsis thaliana Cultured in vitro. Journal of Plant Growth Regulation, 31(1), 90–101. doi:10.1007/s00344-011-9222-z.spa
dc.relation.referencesEaves, J., Eaves, S., Morphy, C., Murray, C. 2019. The relationship between light intensity, cannabis yields, and profitability. Agronomy Journal, 112(2), 1466–1470. doi:10.1002/agj2.20008.spa
dc.relation.referencesFang, S., Lang, T., Cai, M., Han, T. 2022. Light keys open locks of plant photoresponses: A review of phosphors for plant cultivation LEDs. Journal of Alloys and Compounds, 902 (163825). https://doi.org/10.1016/j.jallcom.2022.163825.spa
dc.relation.referencesFarag, S., Kayser, O. 2017. The Cannabis Plant: Botanical Aspects. Handbook of Cannabis and Related Pathologies, 3–12. doi:10.1016/b978-0-12-800756-3.00001-6.spa
dc.relation.referencesFischedick, J. T., Hazekamp, A., Erkelens, T., Choi, Y. H., Verpoorte, R. 2010. Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry, 71, 2058–2073. doi: 10.1016/j.phytochem.2010.10.001.spa
dc.relation.referencesFiorini, D., Molle, A., Nabissi, M., Santini, G., Benelli, G., Maggi, F., 2019. Valorizing industrial hemp (Cannabis sativa L.) by-products: cannabidiol enrichment in the inflorescence essential oil optimizing sample pre-treatment prior to distillation. Ind. Crop. Prod. 128, 581–589. https://doi.org/10.1016/j.indcrop.2018.10.045.spa
dc.relation.referencesFu, W., Li, P., Wu, Y. 2012. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Scientia Horticulturae, 135, 45–51. doi: 10.1016/j.scienta.2011.12.004.spa
dc.relation.referencesGagne, S. J., Stout, J. M., Liu, E., Boubakir, Z., Clark, S. M., Page, J. E. 2012. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proceedings of the National Academy of Sciences, 109(31), 12811–12816. doi:10.1073/pnas.1200330109spa
dc.relation.referencesGlas, J., Schimmel, B., Alba, J., Escobar-Bravo, R., Schuurink, R., Kant, M. 2012. Plant Glandular Trichomes as Targets for Breeding or Engineering of Resistance to Herbivores. International Journal of Molecular Sciences, 13(12), 17077–17103. doi:10.3390/ijms131217077.spa
dc.relation.referencesGómez, C.; Morrow, R.C.; Bourget, C.M.; Massa, G.D.; Mitchell, C.A. 2013. Comparison of intracanopy light-emitting diode towers and overhead high-pressure sodium lamps for supplemental lighting of greenhouse-grown tomatoes. Hortic. Technol. 23, 93–98. doi:10.21273/HORTTECH.23.1.93.spa
dc.relation.referencesHanuš, L. O., Meyer, S. M., Muñoz, E., Taglialatela-Scafati, O., Appendino, G. 2016. Phytocannabinoids: a unified critical inventory. Natural Product Reports, 33(12), 1357–1392. doi:10.1039/c6np00074fspa
dc.relation.referencesHappyana, N., Agnolet, S., Muntendam, R., Van Dam, A., Schneider, B., Kayser, O. 2013. Analysis of cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR. Phytochemistry, 87, 51–59. http://dx.doi.org/10.1016/j.phytochem.2012.11.001.spa
dc.relation.referencesHasan, M.M., Bashir, T., Ghosh, R., Lee, S.K., Bae, H. 2017. An Overview of LEDs’ Effects on the Production of Bioactive Compounds and Crop Quality. Molecules, 22(9), 1420. doi:10.3390/molecules22091420.spa
dc.relation.referencesHawley, D., Graham, T., Stasiak, M., Dixon, M. 2018. Improving Cannabis Bud Quality and Yield with Subcanopy Lighting. HortScience, 53(11), 1593–1599. doi:10.21273/hortsci13173-18.spa
dc.relation.referencesHe, R., Zhang, Y., Song, S., Su, W., Hao, Y., Liu, H. 2021. UV-A and FR Irradiation Improves Growth and Nutritional Properties of Lettuce Grown in an Artificial Light Plant Factory. Food Chemistry, 128727. doi:10.1016/j.foodchem.2020.128727.spa
dc.relation.referencesHesami, M., Pepe, M., Monthony, A. S., Baiton, A., Phineas Jones, A.M. 2021. Modeling and optimizing in vitro seed germination of industrial hemp (Cannabis sativa L.). Industrial Crops and Products, 170, 113753. doi:10.1016/j.indcrop.2021.113753.spa
dc.relation.referencesHosseini, A., Zare Mehrjerdi, M., Aliniaeifard, S. 2018. Alteration of Bioactive Compounds in Two Varieties of Basil (Ocimum basilicum) Grown Under Different Light Spectra. Journal of Essential Oil Bearing Plants, 21(4), 913–923. doi:10.1080/0972060x.2018.1526126.spa
dc.relation.referencesHogewoning, S. W., Trouwborst, G., Meinen, E., van Ieperen, W. (2012). FINDING THE OPTIMAL GROWTH-LIGHT SPECTRUM FOR GREENHOUSE CROPS. Acta Horticulturae, (956), 357–363. doi:10.17660/actahortic.2012.956.41.spa
dc.relation.referencesHosseini, A., Zare Mehrjerdi, M., Aliniaeifard, S. 2018. Alteration of Bioactive Compounds in Two Varieties of Basil (Ocimum basilicum) Grown Under Different Light Spectra. Journal of Essential Oil Bearing Plants, 21(4), 913–923. doi:10.1080/0972060x.2018.1526126.spa
dc.relation.referencesHu, H., Liu, H., Liu, F., 2018. Seed germination of hemp (Cannabis sativa L.) cultivars responds differently to the stress of salt type and concentration. Ind. Crops Prod. 123, 254–261. https://doi.org/10.1016/j.indcrop.2018.06.089.spa
dc.relation.referencesHuang, Y.M., Li, D.F., Zhao, L.N., Chen, A.G., Li, J.J., Tang, H.J., Pan, G., Chang, L., Deng, Y., Huang, S.Q., 2019. Comparative transcriptome combined with physiological analyses revealed key factors for differential cadmium tolerance in two contrasting hemp (Cannabis sativa L.) cultivars. Ind. Crop. Prod. 140, 11638. https://doi.org/10.1016/j.indcrop.2019.111638.spa
dc.relation.referencesHuchelmann, A., Boutry, M., Hachez, C. 2017. Plant Glandular Trichomes: Natural Cell Factories of High Biotechnological Interest. Plant Physiology, 175(1), 6–22. doi:10.1104/pp.17.00727.spa
dc.relation.referencesHwang, C.H., Park, Y.G., Jeong, B.R. 2014. Changes in content of total polyphenol and activities of antioxidizing enzymes in Perilla frutescens var. acuta Kudo and Salvia plebeia R. Br. as affected by light intensity. Horticulture, Environment, and Biotechnology, 55(6), 489–497. doi:10.1007/s13580 014-0010-0.spa
dc.relation.referencesJansen, M.A.K., Bornman, J.F. 2012. UV-B radiation: from generic stressor to specific regulator. Physiologia Plantarum, 145(4), 501–504. doi:10.1111/j.1399-3054.2012.01656.x.spa
dc.relation.referencesKang, J.H., Krishnakumar, S., Atulba, S.L.S., Jeong, B.R., Hwang, S.J., 2013. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed type plant factory system. Hortic. Environ. Biotech. 54, 501e509. doi:10.1007/s13580-013-0109-8.spa
dc.relation.referencesKlem, K., Gargallo-Garriga, A., Rattanapichai, W., Oravec, M., Holub, P., Vesela, B., et al., 2019. Distinct Morphological, Physiological, and Biochemical Responses to Light Quality in Barley Leaves and Roots. Front. Plant Sci. 10, 1026. https://doi.org/ 10.3389/fpls.2019.01026.spa
dc.relation.referencesKlose, C., Nagy, F., Schäfer, E. (2019). Thermal reversion of plant phytochromes. Molecular Plant. doi:10.1016/j.molp.2019.12.004.spa
dc.relation.referencesKong, Y., Zheng, Y. 2020. Phototropin is partly involved in blue-light-mediated stem elongation, flower initiation, and leaf expansion: A comparison of phenotypic responses between wild Arabidopsis and its phototropin mutants. Environmental and Experimental Botany, 103967 doi:10.1016/j.envexpbot.2019.1039.spa
dc.relation.referencesKowalczyk, K., Gajc-Wolska, J., Mirgos, M., Geszprych, A., Kowalczyk, W., Sieczko, L., Niedzińska, M., Gajewski, M. 2020. Mineral nutrients needs of cucumber and its yield in protected winter cultivation, with HPS and LED supplementary lighting. Scientia Horticulturae, 265, 109217. doi:10.1016/j.scienta.2020.109217.spa
dc.relation.referencesKusuma, P., Pattison, P.M., Bugbee, B. 2020. From physics to fixtures to food: current and potential LED efficacy. Hortic Res 7, 56. https://doi.org/10.1038/s41438-020-0283-7.spa
dc.relation.referencesLata, H., Chandra, S., Khan, I. A., ElSohly, M.A. 2010. High frequency plant regeneration from leaf derived callus of high delta(9)-tetrahydrocannabinol yielding Cannabis sativa L. Planta Medica, 76(14), 1629–1633. doi: 10.1055/s-0030-1249773.spa
dc.relation.referencesLata, H., Chandra, S., Mehmedic, Z., Khan, I. A., ElSohly, M. A. 2012. In vitro germplasm conservation of high Delta(9)-tetrahydrocannabinol yielding elite clones of Cannabis sativa L. under slow growth conditions. Acta Physiologiae Plantarum, 34(2), 743–750. doi:10.1007/s11738-011-0874-x.spa
dc.relation.referencesLata, H., Chandra, S., Techen, N., Khan, I. A., ElSohly, M. A. 2016. In vitro mass propagation of Cannabis sativa L.: A protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. Journal of Applied Research on Medicinal and Aromatic Plants, 3(1), 18–26. doi:10.1016/j.jarmap.2015.12.001.spa
dc.relation.referencesLi, J., Li, G., Wang, H., Deng, X.W., 2011. Phytochrome signaling mechanisms. In: The Arabidopsis Book, vol. 9. American Society of Plant Biologists. doi: 10.1199/tab.0148.spa
dc.relation.referencesLi, H.M., Lu, X.M., Gao, Q.H., 2016. Effect of different light qualities on the growth, photosynthetic pigments and stomatal characteristics of okra (Abelmoschus esculentus) seedlings. Acta Pratac Sin. 25, 26–70. doi:10.11686/cyxb2016035.spa
dc.relation.referencesManivannan, A., Soundararajan, P., Halimah, N., Ko, C. H., Jeong, B. R. 2015. Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Horticulture, Environment, and Biotechnology, 56(1), 105–113. doi:10.1007/s13580 015-0114-1.spa
dc.relation.referencesMarcu, J. P. 2016. An Overview of Major and Minor Phytocannabinoids. Neuropathology of Drug Addictions and Substance Misuse, 672–678. doi:10.1016/b978-0-12-800213-1.00062-6spa
dc.relation.referencesMcPartland, J. M. 2017. Cannabis sativa and Cannabis indica versus “Sativa” and ‘”ndica”. Cannabis sativa L.-botany and biotechnology eds. S. Chandra, H. Lata and M. A. Elsohly (Cham, Switzerland: Springer), 101–121. doi:10.1007/978-3-319-54564-6_4.spa
dc.relation.referencesMitchell, C. A., Dzakovich, M. P., Gomez, C., Lopez, R., Burr, J. F., Hernández, R., Kubota, c., Currey, C.J., Meng, Q., Runkle, E., Bourget, C.M., Morrow, R.C., Both, A. J. 2015. Light-Emitting Diodes in Horticulture. Horticultural Reviews: Volume 43, 1–88. doi:10.1002/9781119107781.ch01spa
dc.relation.referencesMiyazaki, Y., Takase, T., Kiyosue, T., 2015. ZEITLUPE positively regulates hypocotyl elongation at warm temperature under light in Arabidopsis thaliana. Plant Signal. Behav. 10, e998540. doi: 10.1080/15592324.2014.998540spa
dc.relation.referencesMockler, T., Yang, H., Yu, X., Parikh, D., Cheng, Y.-C., Dolan, S., Lin, C. 2003. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proceedings of the National Academy of Sciences, 100(4), 2140–2145. doi:10.1073/pnas.0437826100.spa
dc.relation.referencesMurakami, K., Matsuda, R., Fujiwara, K. 2017. A basis for selecting light spectral distribution for evaluating leaf photosynthetic rates of plants grown under different light spectral distributions. 2017. Environ. Control Biol. 55, 1–6. 10.2525/ecb.55.1.spa
dc.relation.referencesNamdar, D., Charuvi, D., Ajjampura, V., Mazuz, M., Ion, A., Kamara, I., Koltai, H. 2019. LED lighting affects the composition and biological activity of Cannabis sativa secondary metabolites. Industrial Crops and Products, 132, 177–185. doi:10.1016/j.indcrop.2019.02.016.spa
dc.relation.referencesOnofri, C., de Meijer, E. P. M., Mandolino, G. 2015. Sequence heterogeneity of cannabidiolic- and tetrahydrocannabinolic acid-synthase in Cannabis sativa L. and its relationship with chemical phenotype. Phytochemistry, 116, 57–68. doi:10.1016/j.phytochem.2015.03.0.spa
dc.relation.referencesPanda, D., Kumar, G. D., Mohanty, S., Sekhar, S., Roy, A., Tudu, C., Behera, L., Tripathy, C.B., Baig, J. M. 2023. Phytochrome A mediated modulation of photosynthesis, development and yield in rice (Oryza sativa L.) in fluctuating light environment. Environmental and Experimental Botany, 206. https://doi.org/10.1016/j.envexpbot.2022.105183.spa
dc.relation.referencesParadiso, R., Proietti, S. 2021. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. Journal of Plant Growth Regulation. doi:10.1007/s00344-021-10337-y.spa
dc.relation.referencesPark, Y., Runkle, E.S. 2017. Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environmental and Experimental Botany, 136, 41–49. doi:10.1016/j.envexpbot.2016.12.013.spa
dc.relation.referencesPedmale, U.V., Huang, S.C., Zander, M., Cole, B.J., Hetzel, J., Ljung, K., Reis, P.A.B, Sridevi, P., Nito, K., Nery, R.J., Exker, J.R., Chory, J. 2016. Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light. Cell, 164(1-2), 233–245. doi:10.1016/j.cell.2015.12.018.spa
dc.relation.referencesPierik, R., Ballaré, C.L. 2020. Control of Plant Growth and Defense by Photoreceptors: From Mechanisms to Opportunities in Agriculture. Molecular Plant. doi:10.1016/j.molp.2020.11.021.spa
dc.relation.referencesQian, H., Liu, T., Deng, M., Miao, H., Cai, C., Shen, W., Wang, Q. 2016. Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts. Food Chemistry, 196, 1232–1238. doi:10.1016/j.foodchem.2015.10.055.spa
dc.relation.referencesRodziewicz, P., Loroch, S., Marczak, Ł., Sickmann, A., Kayser, O. 2019. Cannabinoid synthases and osmoprotective metabolites accumulate in the exudates of Cannabis sativa L. glandular trichomes. Plant Science. doi:10.1016/j.plantsci.2019.04.00.spa
dc.relation.referencesRusso, E.B., 2011. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 163, 1344–1364. https://doi.org/10.1111/j.1476 5381.2011.01238.x.spa
dc.relation.referencesSakalauskaite, J., Viskelis, P., Dambrauskien, E., Sakalauskien, S., Samuolien, G., Brazaityt, A., Duchovskis, P., Urbonavi, D., 2013. The effects of different UV-B radiation intensities on morphological and biochemical characteristics in Ocimum basilicum L. J. Sci. Food Agric. 93, 1266e1271. doi:10.1002/jsfa.5879.spa
dc.relation.referencesSavvides, A., Fanourakis, D., van Ieperen, W. 2011. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. Journal of Experimental Botany, 63(3), 1135 1143. doi:10.1093/jxb/err348.spa
dc.relation.referencesSchreiner, M., Mewis, I., Huyskens-Keil, S., Jansen, M.a.K., Zrenner, R., Winkler, J.B., O’brien, N., Krumbein, A., 2012. UV-B-induced secondary plant metabolites-potential benefits for plant and human health. Crit. Rev. Plant Sci. 31, 229e240.spa
dc.relation.referencesSipos, L., Boros, I. F., Csambalik, L., Székely, G., Jung, A., Balázs, L. 2020. Horticultural lighting system optimalization: A review. Scientia Horticulturae, 273, 109631. doi:10.1016/j.scienta.2020.109631.spa
dc.relation.referencesSorokin, A., Yadav, N.S., Gaudet, D., Kovalchuk, I., 2021. Development and standardization of rapid and efficient seed germination protocol for Cannabis sativa. Bioprotocol 11, e3875. https://doi.org/10.21769/BioProtoc.3875.spa
dc.relation.referencesSpitzer-Rimon, B., Duchin, S., Bernstein, N., Kamenetsky, R. 2019. Architecture and Florogenesis in Female Cannabis sativa Plants. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00350.spa
dc.relation.referencesSun, H., Zhang, S.-B., Liu, T., Huang, W. 2019. Decreased photosystem II activity facilitates acclimation to fluctuating light in the understory plant Paris polyphylla. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 148135. doi:10.1016/j.bbabio.2019.148135.spa
dc.relation.referencesTaulavuori, K., Hyöky, V., Oksanen, J., Taulavuori, E., Julkunen-Tiitto, R. 2016. Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environmental and Experimental Botany, 121, 145–150. doi:10.1016/j.envexpbot.2015.04.0.spa
dc.relation.referencesTaulavuori, E., Taulavuori, K., Holopainen, J.K., Julkunen-Tiitto, R., Acar, C., Dincer, I., 2017. Targeted use of LEDs in improvement of production efficiency through phytochemical enrichment. J. Sci. Food Agricult. 97, 5059–5064. doi:10.1002/jsfa.8492.spa
dc.relation.referencesTaura, F., Sirikantaramas, S., Shoyama, Y., Yoshikai, K., Shoyama, Y., Morimoto, S. 2007. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-typeCannabis sativa. FEBS Letters, 581(16), 2929–2934. doi:10.1016/j.febslet.2007.05.043.spa
dc.relation.referencesTrouwborst, G., Hogewoning, S. W., van Kooten, O., Harbinson, J., Van Ieperen, W. 2016. Plasticity of photosynthesis after the “red light syndrome” in cucumber. Environmental and Experimental Botany, 121, 75–82. doi:10.1016/j.envexpbot.2015.05.0.spa
dc.relation.referencesVanhove, W., Surmont, T., Van Damme, P., De Ruyver, B. 2012. Yield and turnover of illicit indoor cannabis (Cannabis spp.) plantations in Belgium. Forensic Science International, 220(1-3), 265–270. doi:10.1016/j.forsciint.2012.03.013.spa
dc.relation.referencesViršilė, A., Samuolienė, G., Miliauskienė, J., Duchovskis, P. 2019. Applications and Advances in LEDs for Horticulture and Crop Production. Ultraviolet LED Technology for Food Applications, 35–65. doi:10.1016/b978-0-12-817794-5.00003-0.spa
dc.relation.referencesWang, Y., Folta, K. M. 2013. Contributions of green light to plant growth and development. American Journal of Botany, 100(1), 70–78. doi:10.3732/ajb.1200354.spa
dc.relation.referencesWei, X., Zhao, X., Long, S., Xiao, Q., Guo, Y., Qiu, C., Qiu, C., Qiu, H., Wang, Y. 2021. Wavelengths of LED light affect the growth and cannabidiol content in Cannabis sativa L. Industrial Crops and Products, 165, 113433. doi:10.1016/j.indcrop.2021.113433.spa
dc.relation.referencesXu, Y., Liang, Y., Yang, M. 2019. Effects of Composite LED Light on Root Growth and Antioxidant Capacity of Cunninghamia lanceolata Tissue Culture Seedlings. Scientific Reports, 9(1). doi:10.1038/s41598-019-46139-2.spa
dc.relation.referencesYan, Z., He, D., Niu, G., Zhai, H. 2019. Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Scientia Horticulturae, 248, 138–144. doi:10.1016/j.scienta.2019.01.002.spa
dc.relation.referencesYep, B., Gale, N. V., Zheng, Y. 2020. Comparing hydroponic and aquaponic rootzones on the growth of two drug-type Cannabis sativa L. cultivars during the flowering stage. Industrial Crops and Products, 157, 112881. doi:10.1016/j.indcrop.2020.112881spa
dc.relation.referencesYin, R., Ulm, R. 2017. How plants cope with UV-B: from perception to response. Current Opinion in Plant Biology, 37, 42–48. doi:10.1016/j.pbi.2017.03.013spa
dc.relation.referencesZhang, X., He, D., Niu, G., Yan, Z., Song, J., 2018. Effects of lighting environment on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int. J. Agric. Biol. Eng. 11 (2), 33e40.spa
dc.relation.referencesZhen, S., van Iersel, M.W. 2017. Far-red light is needed for efficient photochemistry and photosynthesis. Journal of Plant Physiology, 209, 115–122. doi:10.1016/j.jplph.2016.12.004.spa
dc.relation.referencesZoratti, L., Karppinen, K., Luengo Escobar, A., Häggman, H., Jaakola, L. 2014. Light-controlled flavonoid biosynthesis in fruits. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00534.spa
dc.relation.referencesAllen, J.I., Guo, K., Zhang, D., Ince, M., Jammes, F., 2019. ABA-glucose ester hydrolyzing enzyme ATBG1 and PHYB antagonistically regulate stomatal development. PLoS One 14, e0218605. https://doi.org/10.1371/journal.pone.0218605.spa
dc.relation.referencesBernstein, N., Gorelick, J., Koch, S. 2019. Interplay between chemistry and morphology in medical cannabis (Cannabis sativa L.). Industrial Crops and Products, 129, 185–194. doi:10.1016/j.indcrop.2018.11.039.spa
dc.relation.referencesBian, Z. H., Yang, Q. C., Liu, W.K. 2015. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. Journal of the Science of Food and Agriculture, 95(5), 869–877. doi:10.1002/jsfa.6789.spa
dc.relation.referencesClaypool, N. B., Lieth, J. H. 2021. Modeling morphological adaptations of bell pepper (Capsicum annuum) to light spectra. Scientia Horticulturae, 285, 110135. doi:10.1016/j.scienta.2021.110135.spa
dc.relation.referencesCockson, P., Landis, H., Smith, T., Hicks, K., Whipker, B.E. 2019. Characterization of Nutrient Disorders of Cannabis sativa. Appl. Sci. 9, 4432. https://doi.org/10.3390/app9204432.spa
dc.relation.referencesCourbier, S., Pierik, R. 2019. Canopy light quality modulates stress responses in plants. Iscience, 22, 441-452.spa
dc.relation.referencesCumming, G., Fidler, F., Vaux, D.L. 2007. Error bars in experimental biology. The Journal of Cell Biology, 177(1), 7–11. doi:10.1083/jcb.200611141.spa
dc.relation.referencesDanziger, N., Bernstein, N. 2021. Light matters: Effect of light spectra on cannabinoid profile and plant development of medical cannabis (Cannabis sativa L.). Industrial Crops and Products, 164, 113351. doi:10.1016/j.indcrop.2021.113351.spa
dc.relation.referencesCosentino, S. L., Testa, G., Scordia, D., Copani, V. 2012. Sowing time and prediction of flowering of different hemp (Cannabis sativa L.) genotypes in southern Europe. Industrial Crops and Products, 37(1), 20–33. doi:10.1016/j.indcrop.2011.11.017.spa
dc.relation.referencesGautam, P., Terfa, M.T., Olsen, J.E., Torre, S. 2015. Red and blue light effects on morphology and flowering of Petunia× hybrida. Scientia Horticulturae, 184, 171-178.spa
dc.relation.referencesHuché-Thélier, L., Crespel, L., Gourrierec, J. L., Morel, P., Sakr, S., Leduc, N. 2016. Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environmental and Experimental Botany, 121, 22–38. doi:10.1016/j.envexpbot.2015.06.009.spa
dc.relation.referencesHuckstadt, A.B., Mortensen, L.M., Gislerod, H.R., 2013. The effect of high maxi-mum day temperatures and coloured film cover on growth and morphogenesis of some herbs in a CO2enriched greenhouse atmosphere. Eur. J. Hort. Sci. 5,203–208.spa
dc.relation.referencesJi, Y., Ouzounis, T., Courbier, S., Kaiser, E., Nguyen, P. T., Schouten, H. J., Visseer, R.G.F., Pierik, R., Marcelis, L.F.M., Heuvelink, E. 2019. Far-red radiation increases dry mass partitioning to fruits but reduces Botrytis cinerea resistance in tomato. Environmental and Experimental Botany, 103889. doi: 10.1016/j.envexpbot.2019.103889.spa
dc.relation.referencesKaiser, S., Scheuring, D. 2020. To lead or to follow: contribution of the plant vacuole to cell growth. Front. Plant Sci. 11, 553. https://doi.org/10.3389/fpls.2020.00553.spa
dc.relation.referencesKim, H.-J., Lin, M.-Y., Mitchell, C.A. 2018. Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Environmental and Experimental Botany. doi:10.1016/j.envexpbot.2018.10.0spa
dc.relation.referencesKong, Y., Stasiak, M., Dixon, M. A., Zheng, Y. 2018. Blue light associated with low phytochrome activity can promote elongation growth as shade-avoidance response: A comparison with red light in four bedding plant species. Environmental and Experimental Botany, 155, 345-359.spa
dc.relation.referencesLalge, A. J. I. N. K. Y. A., Cerny, P. E. T. R., Trojan, V. A. C. L. A. V., Vyhnanek, T. O. M. A. S. 2017. The effects of red, blue and white light on the growth and development of Cannabis sativa L. Mendel Net, 8(9), 646-651. ISBN 978-80-7509-529-9.spa
dc.relation.referencesLandi, M., Zivcak, M., Sytar, O., Brestic, M., Allakhverdiev, S. I. 2020. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 148131. doi:10.1016/j.bbabio.2019.148131.spa
dc.relation.referencesLi, J., Yi, C., Zhang, C., Pan, F., Xie, C., Zhou, W., Zhou, C. 2021. Effects of light quality on leaf growth and photosynthetic fluorescence of Brasenia schreberi seedlings. Heliyon, 7(1), e06082. doi:10.1016/j.heliyon.2021.e06082.spa
dc.relation.referencesLiu, Y., Wang, T., Fang, S., Zhou, M., Qin, J. 2018. Responses of Morphology, Gas Exchange, Photochemical Activity of Photosystem II, and Antioxidant Balance in Cyclocarya paliurus to Light Spectra. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01704.spa
dc.relation.referencesMoradi, S., Kafi, M., Aliniaeifard, S., Salami, S. A., Shokrpour, M., Pedersen, C., Moosavi-Nezhad, M., Wróbel, J., Kalaji, H. M. 2021. Blue Light Improves Photosynthetic Performance and Biomass Partitioning toward Harvestable Organs in Saffron (Crocus sativus L.). Cells, 10(8), 1994. doi:10.3390/cells10081994.spa
dc.relation.referencesOuzounis, T., Rosenqvist, E., Ottosen, C.O., 2015. Spectral effects of artificial light on plant physiology and secondary metabolism: a review. HortScience 50, 1128–1135.spa
dc.relation.referencesPennisi, G., Pistillo, A., Orsini, F., Cellini, A., Spinelli, F., Nicola, S., Fernández, J.A., Crepaldi, A., Gianquinto, G., Marcelis, L. F. M. 2020. Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Scientia Horticulturae, 272, 109508. doi:10.1016/j.scienta.2020.109508.spa
dc.relation.referencesReichel, P., Munz, S., Hartung, J., Präger, A., Kotiranta, S., Burgel, L., Schober, T., Graeff-Hönninger, S. 2021. Impact of Three Different Light Spectra on the Yield, Morphology and Growth Trajectory of Three Different Cannabis sativa L. Strains. Plants (Basel). 10(9):1866. doi: 10.3390/plants10091866.spa
dc.relation.referencesRusso, E. B. 2019. The Case for the Entourage Effect and Conventional Breeding of Clinical Cannabis: No “Strain,” No Gain. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01969.spa
dc.relation.referencesShengxin, C., Chunxia, L., Xuyang, Y., Song, C., Xuelei, J., Xiaoying, L., Zhigang, X., Rongzhan, G. 2016. Morphological, Photosynthetic, and Physiological Responses of Rapeseed Leaf to Different Combinations of Red and Blue Lights at the Rosette Stage. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01144spa
dc.relation.referencesSmith, H. L., McAusland, L., Murchie, E. H. 2017. Don’t ignore the green light: exploring diverse roles in plant processes. Journal of Experimental Botany, 68(9), 2099–2110. doi:10.1093/jxb/erx098.spa
dc.relation.referencesSong, Y. H., Shim, J. S., Kinmonth-Schultz, H. A., Imaizumi, T. 2015. Photoperiodic Flowering: Time Measurement Mechanisms in Leaves. Annual Review of Plant Biology, 66(1), 441–464. doi:10.1146/annurev-arplant-043014-115555.spa
dc.relation.referencesSpaninks, K., Lamers, G., van Lieshout, J., Offringa, R. 2023. Light quality regulates apical and primary radial growth of Arabidopsis thaliana and Solanum lycopersicum. Scientia Horticulturae, 317. https://doi.org/10.1016/j.scienta.2023.112082.spa
dc.relation.referencesSu, J., Liu, B., Liao, J., Yang, Z., Lin, C., Oka, Y. 2017. Coordination of Cryptochrome and Phytochrome Signals in the Regulation of Plant Light Responses. Agronomy, 7(1), 25. doi:10.3390/agronomy7010025.spa
dc.relation.referencesTerfa, M. T., Solhaug, K. A., Gislerød, H. R., Olsen, J. E., Torre, S. 2013. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa×hybrida but does not affect time to flower opening. Physiologia Plantarum, 148(1), 146–159. doi:10.1111/j.1399 3054.2012.01698.x.spa
dc.relation.referencesTinyane, P. P., Sivakumar, D., Soundy, P. 2013. Influence of photo-selective netting on fruit quality parameters and bioactive compounds in selected tomato cultivars. Scientia Horticulturae, 161, 340 349. doi:10.1016/j.scienta.2013.06.024.spa
dc.relation.referencesTrouwborst, G., Hogewoning, S. W., van Kooten, O., Harbinson, J., Van Ieperen, W. 2016. Plasticity of photosynthesis after the “red light syndrome” in cucumber. Environmental and Experimental Botany, 121, 75–82. doi:10.1016/j.envexpbot.2015.05.0.spa
dc.relation.referencesVitale, L., Vitale, E., Guercia, G., Turano, M., Arena, C. 2020. Effects of different light quality and biofertilizers on structural and physiological traits of spinach plants. Photosynthetica, 58(4), 932-943.spa
dc.relation.referencesWang, Y., Tong, Y., Chu, H., Chen, X., Guo, H., Yuan, H., Yan, D., Zheng, B. 2017. Effects of different light qualities on seedling growth and chlorophyll fluorescence parameters of Dendrobium officinale. Biologia, 72(7). doi:10.1515/biolog-2017-0081.spa
dc.relation.referencesZahid, G., Iftikhar, S., Shimira, F., Ahmad, H.M., Kaçar, Y.A. 2023. An overview and recent progress of plant growth regulators (PGRs) in the mitigation of abiotic stresses in fruits: A review. Scientia Horticulturae, 309. https://doi.org/10.1016/j.scienta.2022.111621.spa
dc.relation.referencesZhang, M., Park, Y., Runkle, E. S. 2020. Regulation of extension growth and flowering of seedlings by blue radiation and the red to far-red ratio of sole-source lighting. Scientia Horticulturae, 272, 109478. doi:10.1016/j.scienta.2020.109478.spa
dc.relation.referencesZhen, S., Bugbee, B. 2020. Far‐red photons have equivalent efficiency to traditional photosynthetic photons: implications for re‐defining photosynthetically active radiation. Plant, Cell & Environment. doi:10.1111/pce.13730.spa
dc.relation.referencesZheng, L., He, H., Song, W., 2019. Application of light-emitting diodes and the effect of light quality on horticultural crops: a review. HortScience 54, 1656–166. https://doi.org/10.21273/HORTSCI14109-19spa
dc.relation.referencesAasamaa, K., Aphalo, P. J. 2016. Effect of vegetational shade and its components on stomatal responses to red, blue and green light in two deciduous tree species with different shade tolerance. Environmental and experimental http://dx.doi.org/10.1016/j.envexpbot.2015.01.004.spa
dc.relation.referencesAgarwal, A., Gupta, S. D., Barman, M., Mitra, A. 2018. Photosynthetic apparatus plays a central role in photosensitive physiological acclimations affecting spinach (Spinacia oleracea L.) growth in response to blue and red photon flux ratios. Environmental and Experimental Botany, 156, 170-182. https://doi.org/10.1016/j.envexpbot.2018.09.009.spa
dc.relation.referencesAllorent, G., Petroutsos, D. 2017. Photoreceptor-dependent regulation of photoprotection. Current Opinion in Plant Biology, 37, 102–108. doi:10.1016/j.pbi.2017.03.016.spa
dc.relation.referencesCaplan, D., Dixon, M., Zheng, Y. 2019. Increasing inflorescence dry weight and cannabinoid content in medical cannabis using controlled drought stress. HortScience, 54, 964–969. https://doi.org/10.21273/HORTSCI13510-18.spa
dc.relation.referencesIslam, M. J., Ryu, B. R., Azad, M. O. K., Rahman, M. H., Cheong, E. J., Lim, J.-D., Lim, Y.-S. 2021. Cannabinoids Accumulation in Hemp (Cannabis sativa L.) Plants under LED Light Spectra and Their Discrete Role as a Stress Marker. Biology, 10(8), 710. doi:10.3390/biology10080710.spa
dc.relation.referencesChen, L., Zhang, K., Gong, X., Wang, H., Gao, Y., Wang, X., Zeng, Z., Hu, Y. 2020. Effects of different LEDs light spectrum on the growth, leaf anatomy, and chloroplast ultrastructure of potato plantlets in vitro and minituber production after transplanting in the greenhouse. Journal of Integrative Agriculture, 19(1), 108–119. doi:10.1016/s2095-3119(19)62633-x.spa
dc.relation.referencesDieleman, J. A., De Visser, P. H., Meinen, E., Grit, J. G., Dueck, T. 2019. Integrating morphological and physiological responses of tomato plants to light quality to the crop level by 3D modelling. Frontiers in plant science, 10, 839. doi: 10.3389/fpls.2019.00839.spa
dc.relation.referencesDumont, J., Spicher, F., Montpied, P., Dizengremel, P., Jolivet, Y., Le Thiec, D. 2013. Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoides × Populus nigra genotypes. Environmental Pollution, 173, 85-96. http://dx.doi.org/10.1016/j.envpol.2012.09.026.spa
dc.relation.referencesGiacoppo, S., Gugliandolo, A., Trubiani, O., Pollastro, F., Grassi, G., Bramanti, P., Mazzon, E. 2017. Cannabinoid CB2 receptors are involved in the protection of RAW264.7 macrophages against the oxidative stress: an in vitro study. European Journal of Histochemistry, 61(1). doi:10.4081/ejh.2017.2749.spa
dc.relation.referencesHacke, A. C., Lima, D., de Costa, F., Deshmukh, K., Li, N., Chow, A., Marques, J.A., Pereira, R.P., Kerman, K. 2019. PROBING THE ANTIOXIDANT ACTIVITY OF Δ9- TETRAHYDROCANNABINOL AND CANNABIDIOL IN CANNABIS SATIVA EXTRACTS. The Analyst. doi:10.1039/c9an00890j.spa
dc.relation.referencesIzzo, L. G., Mele, B. H., Vitale, L., Vitale, E., Arena, C. 2020. The role of monochromatic red and blue light in tomato early photomorphogenesis and photosynthetic traits. Environmental and Experimental Botany, 179, 104195.spa
dc.relation.referencesLi, T., Heuvelink, E., Dueck, T. A., Janse, J., Gort, G., Marcelis, L. F. M. 2014. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors. Annals of Botany, 114(1), 145 156. doi:10.1093/aob/mcu071.spa
dc.relation.referencesLong, S. P., Marshall-Colon, A., Zhu, X.-G. 2015. Meeting the Global Food Demand of the Future by Engineering Crop Photosynthesis and Yield Potential. Cell, 161(1), 56–66. doi:10.1016/j.cell.2015.03.019.spa
dc.relation.referencesMeas, S., Luengwilai, K., Thongket, T. 2020. Enhancing growth and phytochemicals of two amaranth microgreens by LEDs light irradiation. Scientia Horticulturae, 265, 109204. doi:10.1016/j.scienta.2020.109204.spa
dc.relation.referencesMiao, Y., Chen, Q., Qu, M., Gao, L., Hou, L. 2019. Blue light alleviates ‘red light syndrome’ by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber plants. Scientia Horticulturae, 257, 108680. https://doi.org/10.1016/j.scienta.2019.108680.spa
dc.relation.referencesMinisterio de Salud y Protección social. 2021. DECRETO NÚMERO 811 DE 2021 Por el cual se sustituye el Título 11 de la Parte 8 del Libro 2 del Decreto 780 de 2016, Único Reglamentario del Sector Salud y Protección Social, en relación con el acceso seguro e informado al uso del cannabis y de la planta de cannabis. https://www.minjusticia.gov.co/programas-co/cannabis-con-fines medicinales-y cientificos/Documents/2021/DECRETO%20811%20DEL%2023%20DE%20JULIO%20DE%202021. pdf.spa
dc.relation.referencesMuneer, S., Kim, E., Park, J., Lee, J. 2014. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca sativa L.). International Journal of Molecular Sciences, 15(3), 4657–4670. doi:10.3390/ijms15034657.spa
dc.relation.referencesRodrigues Soares, J.D., Dias, G.M.G., Silva, R.A.L., Pasqual, M., Labory, C.R.G., Asmar, S.A., Ramos, J.D., 2017. Photosynthetic pigments content and chloroplast characteristics of tamarind leaves in response to different colored shading nets. Aust. J. Crop Sci. 11 (3), 296.spa
dc.relation.referencesSirikantaramas, S., Taura, F., Tanaka, Y., Ishikawa, Y., Morimoto, S., Shoyama, Y. 2005. Tetrahydrocannabinolic Acid Synthase, the Enzyme Controlling Marijuana Psychoactivity, is Secreted into the Storage Cavity of the Glandular Trichomes. Plant and Cell Physiology, 46(9), 1578–1582. doi:10.1093/pcp/pci166spa
dc.relation.referencesTaschwer, M., Schmid, M. G. 2015. Determination of the relative percentage distribution of THCA and Δ9-THC in herbal cannabis seized in Austria – Impact of different storage temperatures on stability. Forensic Science International, 254, 167–171. doi:10.1016/j.forsciint.2015.07.019.spa
dc.relation.referencesSu, N., Wu, Q., Shen, Z., Xia, K., Cui, J. 2014. Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings. Plant Growth Regulation, 73(3), 227–235. doi:10.1007/s10725-013-9883-7.spa
dc.relation.referencesWang, J., Lu, W., Tong, Y., Yang, Q. 2016. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00250.spa
dc.relation.referencesWu, Q., Su, N., Shen, W., Cui, J. 2014. Analyzing photosynthetic activity and growth of Solanum lycopersicum seedlings exposed to different light qualities. Acta Physiologiae Plantarum, 36(6), 1411 1420. doi:10.1007/s11738-014-1519-7.spa
dc.relation.referencesYang, X., Xu, H., Shao, L., Li, T., Wang, Y., Wang, R. 2018. Response of photosynthetic capacity of tomato leaves to different LED light wavelength. Environmental and Experimental Botany, 150, 161 171. doi:10.1016/j.envexpbot.2018.03.0.spa
dc.relation.referencesYoshida, H., Mizuta, D., Fukuda, N., Hikosaka, S., Goto, E. 2016. Effects of varying light quality from single-peak blue and red light-emitting diodes during nursery period on flowering, photosynthesis, growth, and fruit yield of everbearing strawberry. Plant Biotechnology, 33(4), 267–276. doi:10.5511/plantbiotechnology.16.spa
dc.relation.referencesZhao, H. J., Zou, Q. 2002. Protective effects of exogenous antioxidants and phenolic compounds on photosynthesis of wheat leaves under high irradiance and oxidative stress. Photosynthetica, 40(4), 523-527. https://doi.org/10.1023/A:1024339716382.spa
dc.relation.referencesZhu, X.-G., Long, S. P., Ort, D. R. 2010. Improving Photosynthetic Efficiency for Greater Yield. Annual Review of Plant Biology, 61(1), 235–261. doi:10.1146/annurev-arplant-042809-112206.spa
dc.relation.referencesAkula, R., Ravishankar, G. A. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11), 1720–1731. doi:10.4161/psb.6.11.17613.spa
dc.relation.referencesArena, C., Tsonev, T., Doneva, D. 2016. The effect of light quality on growth, photosynthesis, leaf anatomy and volatile isoprenoids of a monoterpene-emitting herbaceous species (Solanum lycopersicum L.) and an isoprene-emitting tree (Platanus orientalis L.). Environmental and ExperimentalBotany, 130: 122–132.spa
dc.relation.referencesBabaei, M., Ajdanian, L., Lajayer, B. A. 2022. Morphological and phytochemical changes of Cannabis sativa L. affected by light spectra. In New and Future Developments in Microbial Biotechnology and Bioengineering, pp. 119-133.spa
dc.relation.referencesBayat, L., Arab, M., Aliniaeifard, S., Seif, M., Lastochkina, O., Li, T. 2018. Effects of growth under different light spectra on the subsequent high light tolerance in rose plants. AoB PLANTS, 10(5), ply052. https://doi.org/10.1093/aobpla/ply052.spa
dc.relation.referencesBou-Torrent, J., Roig-Villanova, I., Martínez-García, J. F. 2008. Light signaling: back to space. Trends in Plant Science, 13(3), 108–114. doi:10.1016/j.tplants.2007.12.003.spa
dc.relation.referencesBrunetti, C., Guidi, L., Sebastiani, F., Tattini, M. 2015. Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress. Environmental and Experimental Botany, 119, 54–62. doi:10.1016/j.envexpbot.2015.04.0.spa
dc.relation.referencesChaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Brettel, K., et al., 2011. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62, 335–364. https://doi.org/10.1146/annurev-arplant-042110-103759.spa
dc.relation.referencesChen, L., Wang, H., Gong, X., Zheng, Z., Xue, X., Hu, Y. 2021. Transcriptome analysis reveals effects of red and blue light-emitting diodes (LEDs) on the growth, chlorophyll fluorescence and endogenous plant hormones of potato (Solanum tuberosum L.) plantlets cultured in vitro. Journal of Integrative Agriculture, 20(11): 2914–2931. doi: 10.1016/S2095-3119(20)63393-7.spa
dc.relation.referencesDe Carbonnel, M., Davis, P., Roelfsema, M. R. G., Inoue, S.i., Schepens, I., Lariguet, P., Geisler, M., Shimazaki, k., Hangarter, R., Fankhauser, C. 2010. The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 Protein Is a Phototropin Signaling Element That Regulates Leaf Flattening and Leaf Positioning. PLANT PHYSIOLOGY, 152(3), 1391–1405. doi:10.1104/pp.109.150441.spa
dc.relation.referencesDe Backer, B., Maebe, K., Verstraete, A. G., Charlier, C. 2012. Evolution of the Content of THC and Other Major Cannabinoids in Drug-Type Cannabis Cuttings and Seedlings During Growth of Plants*. Journal of Forensic Sciences, 57(4), 918–922. doi:10.1111/j.1556-4029.2012.02068.xspa
dc.relation.referencesDegenhardt, F., Stehle, F., Kayser, O. 2017. The Biosynthesis of Cannabinoids. Handbook of Cannabis and Related Pathologies, 13–23. doi:10.1016/b978-0-12-800756-3.00002-8spa
dc.relation.referencesFolta, K. M., Koss, L. L., McMorrow, R., Kim, H.-H., Kenitz, J. D., Wheeler, R., Sager, J. C. 2005. Design and fabrication of adjustable red-green-blue LED light arrays for plant research. BMC Plant Biology, 5(1), 17. doi:10.1186/1471-2229-5-17.spa
dc.relation.referencesHamdani, S., Khan, N., Perveen, S., Qu, M., Jiang, J., Govindjee, Zhu, X.-G. 2018. Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. Photosynthesis Research. doi:10.1007/s11120-018-0589-6.spa
dc.relation.referencesHernández, R., Kubota, C. 2016. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 121, 66–74. doi:10.1016/j.envexpbot.2015.04.0.spa
dc.relation.referencesLuo, Y., Shi, H. 2019. Direct regulation of phytohormone actions by photoreceptors. Trends in plant science, 24(2), 105-108. https://doi.org/10.1016/j.tplants.2018.11.009.spa
dc.relation.referencesMatsuda, R., Ohashi-Kaneko, K., Fujiwara, K., Goto, E., Kurata, K. 2004. Photosynthetic Characteristics of Rice Leaves Grown under Red Light with or without Supplemental Blue Light. Plant and Cell Physiology, 45(12), 1870–1874. doi:10.1093/pcp/pch203.spa
dc.relation.referencesMiao, Y., Wang, X., Gao, L., Chen, Q., Qu, M. 2016. Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves. Journal of Integrative Agriculture, 15(1), 87–100. doi:10.1016/s2095 3119(15)61202-3.spa
dc.relation.referencesOkello, R.C.O. de Visser, P.H.B. Heuvelink, E. Marcelis, L.F.M. Struik, P.C. 2015. Light mediated regulation of cell division, endoreduplication and cell expansion. Environmental and Experimental Botany, 121, 39-47. doi:10.1016/j.envexpbot.2015.04.003.spa
dc.relation.referencesRobson, T. M., Klem, K., Urban, O., Jansen, M. A. K. 2015. Re-interpreting plant morphological responses to UV-B radiation. Plant, Cell & Environment, 38(5), 856–866. doi:10.1111/pce.12374.spa
dc.relation.referencesWang, Z., Tian, J., Yu, B., Yang, L., Sun, Y. 2015. LED light spectrum affects the photosynthetic performance of Houttuynia cordata seedlings. Am. J. Opt. Photonics, 3(3), 38-42. doi: 10.11648/j.ajop.20150303.12.spa
dc.relation.referencesWang, Z., Qiu, H., Chen, Y., Xu, Y., Shan, F., Li, H., Yan, C., Ma, C. 2022. Red light regulates metabolic pathways of soybean hypocotyl elongation and thickening. Environmental and Experimental Botany, 199. https://doi.org/10.1016/j.envexpbot.2022.104890.spa
dc.relation.referencesWei, X.Y., Zhang, W.Q., Zhang, Q., Sun, P., Li, Z.H., Zhang, M.C., Li, J.M., Duan, L.S., 2016. Analysis of differential expression of genes induced by ethephon in elongating internodes of maize plants. Front. Agr. Sci. Eng. 3, 263–282.spa
dc.relation.referencesWies, G., Mantese, A.I., Casal, J.J., Maddonni, G.A., ´ 2019. Phytochrome B enhances plant growth, biomass and grain yield in field-grown maize. Ann. Bot. 123, 1079–1088. Yang, X., Xu, H., Shao, L., Li, T., Wang, Y., Wang, R., 2018. Response of photosynthetic capacity of tomato leaves to different LED light wavelength. Environ. Exp. Bot. 150, 161–171. doi: 10.1093/aob/mcz015.spa
dc.relation.referencesXiao, L., Shibuya, T., Kato, K., Nishiyama, M., Kanayama, Y. 202. Effects of light quality on plant development and fruit metabolism and their regulation by plant growth regulators in tomato. Scientia Horticulturae, 300. https://doi.org/10.1016/j.scienta.2022.111076.spa
dc.relation.referencesXu, F., He, S., Zhang, J., Mao, Z., Wang, W., Li, T., Hua, J., Du, S., Xu, P., Li, L., Lian, H., Yang, .H.. Q. 2018. Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis. Mol. Plant 11, 523–541. https://doi.org/10.1016/j.molp.2017.12.003.spa
dc.relation.referencesYano, A., Fujiwara, K. 2012. Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control. Plant Methods, 8(1), 46. doi:10.1186/1746-4811 8-46.spa
dc.relation.referencesYu, W., Liu, Y., Song, L., Jacobs, D. F., Du, X., Ying, Y., Shao, Qingsong, Wu, J. 2016. Effect of Differential Light Quality on Morphology, Photosynthesis, and Antioxidant Enzyme Activity in Camptotheca acuminata Seedlings. Journal of Plant Growth Regulation, 36(1), 148–160. doi:10.1007/s00344-016-9625-y.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocCultivos de invernaderospa
dc.subject.agrovocgreenhouse cropseng
dc.subject.agrovocFisiología vegetalspa
dc.subject.agrovocplant physiologyeng
dc.subject.agrovocEstímulos de luzspa
dc.subject.agrovoclight stimulieng
dc.subject.agrovocCannabis sativaspa
dc.subject.agrovocCannabis sativaeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalArquitectura del doselspa
dc.subject.proposalDesempeño fotosintéticospa
dc.subject.proposalCannabinoidesspa
dc.subject.proposalAcumulación de biomasaspa
dc.subject.proposalLuzspa
dc.subject.proposalLighteng
dc.subject.proposalCanopy architectureeng
dc.subject.proposalBiomass accumulationeng
dc.subject.proposalInflorescenceseng
dc.subject.proposalPhotosynthetic performanceeng
dc.subject.proposalCannabinoidseng
dc.titleEfecto de dos fuentes de luz LED DR/W y blanca en parámetros fisiológicos y de rendimiento en tres variedades de Cannabis sativa L. bajo condiciones de invernadero en la Sabana de Bogotáspa
dc.title.translatedEffect of two LED light sources DR/W and White on physiological and yield parameters in three varieties of Cannabis sativa L. under greenhouse conditions in the Bogotá Savannaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMedcolcannaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1.015.439.557.2023.pdf
Tamaño:
1.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: