Hydrodyamic connectivity in the Seaflower Reserve system and its potential impact on biological connectivity

dc.contributor.advisorCardona-Orozco, Yuley Mildreyspa
dc.contributor.advisorZapata-Ramírez, Paula Andreaspa
dc.contributor.authorLopera-García, Luisa Fernandaspa
dc.contributor.researchgroupOCEANICOS - Grupo de Oceanografía e Ingeniería Costera de la Universidad Nacionalspa
dc.date.accessioned2020-05-05T19:33:19Zspa
dc.date.available2020-05-05T19:33:19Zspa
dc.date.issued2019-08-31spa
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractThe influence of the ocean currents over marine population connectivity is pivotal in territory planning since they should be considered in marine protected areas (MPA’s) design and its implementation, maritime spatial planning strategies, restoration plans, among others. Their influence is also vital to broadening the relationship knowledge between oceanographic drivers and ecosystems configuration. However, and despite their importance, knowledge of ocean currents and its role in corals connectivity is poorly known at the Seaflower Marine Reserve, an area that harbors the third large true barrier reef in the world and that was declared as Biosphere Reserve in 2000. In consequence, the aim of this work is characterize larval transport patterns associated with the surface currents that lead connectivity at the Reserve. To achieve this aim, we had simulated the advection of buoyant coral larvae of Acropora Palmata during nine spawning events. Larval dispersal patterns were obtained through the offline coupling of a high spatiotemporal resolution hydrodynamic field and a biophysical lagrangian model for particle dispersion. The ocean currents fields were generated through a Regional Ocean Modelling System (ROMS) adequately configured for the domain. Larvae dispersion was carried out throughout an Individual-Based Model (Ichthyop). Results show that there are heterogeneous connectivity patterns during the spawning events at seasonal and inter-annual scales. This behavior seems to be associated with the high spatiotemporal dynamic variability in the region, such as the Caribbean Current bifurcation close to the Nicaraguan Rise, the intrusion-formation of mesoscale or sub-mesoscale eddies, and the semi-permanent presence of the Panamá-Colombia Gyre (PCG). We also identified Serranilla, B.Alicia, and B.Nuevo as the most important sources for potential connectivity (in terms of events recurrence), even when some mortality rates are included (effective connectivity). In contrast, the weakest sources were the southernmost reefs (Albuquerque, San Andrés, and Bolívar) due to the continuous influence of the PCG. In the case of the potential and effective connectivity of the sinks, the most recurrent reefs were Serranilla, Providencia, Quitasueño, and Serrana while the least were B.Nuevo and Roncador. Recruitment distances oscillate between 0 km (for self-recruitment) and 500 km. However, larvae settlement is likelier until 50 km from the release point. In the case of recruitment time, larvae settle until the end of the pelagic larval duration (PLD), but higher rates of settlement were identified between 3 and 4 days after the spawn. Our results highlight the need for the incorporation of the most important source areas in the current MPA zonification, that could lead to the improvement of the MPA effectiveness. Findings also suggest the possibility to implement an MPA network between Jamaica and Colombia that could allow the populations to be resilient to environmental changes and less prone to local extinctions. We also stand out the need for the suitable representation of the dynamic oceanic processes in whole water column since they play a crucial role in larval dispersal. Among the most important dynamical features are: meso and sub-mesoscale eddies, fronts, and filaments.nts.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.format.extent66 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationLopera García, Luisa., & Cardona Orozco, Yuley., & Zapata Ramírez, Paula (2019).Conectividad hidrodinámica entre los cayos, bancos, islas y atolones que conforman la Reserva de la Biósfera Seaflower y su potencial impacto en la conectividad biológica. Universidad Nacional de Colombia, Medellín.spa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77475
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAbderrahim, B. & Fillon, C. (2012). Gridded surface wind elds from metop/ascat measurements.spa
dc.relation.referencesAcero P., A., Tavera, J. J., Polanco F., A., & Bola~nos-Cubillos, N. (2019). Fish biodiversity in three northern islands of the sea ower biosphere reserve (colombian caribbean). Frontiers in Marine Science, 6, 113.spa
dc.relation.referencesAgardy, T., Bridgewater, P., Crosby, M. P., Day, J., Dayton, P. K., Kenchington, R., La oley, D., McConney, P., Murray, P. A., Parks, J. E., et al. (2003). Dangerous targets? unresolved issues and ideological clashes around marine protected areas. Aquatic conservation: marine and freshwater ecosystems, 13 (4), 353{367.spa
dc.relation.referencesAlexander, M. A., Blad e, I., Newman, M., Lanzante, J. R., Lau, N.-C., & Scott, J. D. (2002). The atmospheric bridge: The in uence of enso teleconnections on air{sea interaction over the global oceans. Journal of Climate, 15 (16), 2205{2231.spa
dc.relation.referencesAndrade, C. (2000). The circulation and variability of the Colombian Basin in the Caribbean Sea. PhD thesis, University of Wales.spa
dc.relation.referencesAndrade, C. (2001). Las corrientes super ciales en la cuenca de colombia observadas con boyas de deriva. Revista de la Academia Colombiana de Ciencias Exactas, F sicas y Naturales, 96, 321{335.spa
dc.relation.referencesBalbar, A. C. & Metaxas, A. (2019). The current application of ecological connectivity in the design of marine protected areas. Global Ecology and Conservation, 17, e00569.spa
dc.relation.referencesBaums, I. B., Paris, C. B., & Ch erubin, L. M. (2006). A bio-oceanographic lter to larval dispersal in a reef-building coral. Limnology and Oceanography, 51 (5), 1969{1981.spa
dc.relation.referencesBecker, B. J., Levin, L. A., Fodrie, F. J., & McMillan, P. A. (2007). Complex larval connectivity patterns among marine invertebrate populations. Proceedings of the National Academy of Sciences, 104 (9), 3267{3272.spa
dc.relation.referencesBola~nos, N., Abril, A., Bent, H., Caldas, J., & Acero, A. (2015). Lista de peces conocidos del archipi elago de san andr es, providencia y santa catalina, reserva de la biosfera sea ower, caribe occidental colombiano. Bolet n de Investigaciones Marinas y Costeras- Jos e Benito Vives de Andr esis (INVEMAR), 44 (1), 127{162.spa
dc.relation.referencesCampbell, V., Legendre, P., & Lapointe, F.-J. (2011). The performance of the congruence among distance matrices (cadm) test in phylogenetic analysis. BMC evolutionary biology, 11 (1), 64.spa
dc.relation.referencesChamberland, V. F., Vermeij, M. J., Brittsan, M., Carl, M., Schick, M., Snowden, S., Schrier, A., & Petersen, D. (2015). Restoration of critically endangered elkhorn coral (acropora palmata) populations using larvae reared from wild-caught gametes. Global Ecology and Conservation, 4, 526 { 537.spa
dc.relation.referencesCORALINA-INVEMAR (2012). Atlas de la Reserva de Bi osfera Sea ower. Archipi elago de San Andr es, Providencia y Santa Catalina. Santa Marta, Colombia: Serie de Publicaciones Especiales de INVEMAR 28.spa
dc.relation.referencesCowen, R. (1985). Large scale pattern of recruitment by the labrid, semicossyphus pulcher: causes and implications. Journal of Marine Research, 43 (3), 719{742.spa
dc.relation.referencesCowen, R. K., Gawarkiewicz, G., Pineda, J., Thorrold, S. R., & Werner, F. E. (2007). Population connectivity in marine systems an overview. Oceanography, 20 (3), 14{21.spa
dc.relation.referencesCowen, R. K. & Sponaugle, S. (2009). Larval dispersal and marine population connectivity. Annual review of marine science, 1, 443{466.spa
dc.relation.referencesDee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, d. P., et al. (2011). The era-interim reanalysis: Con guration and performance of the data assimilation system.spa
dc.relation.referencesD az, J. M., Barrios, L. M., Cendales, M. H., Garz on-Ferreira, J., Geister, J., Parra-Velandia, F., Pinz on, J., Lopez-Victoria, M., Ospina, G., Vargas, B., et al. (2000). Areas coralinas de colombia. Invemar Serie Publicaciones Especiales, 5, 176.spa
dc.relation.referencesDUACS, CNES/SALP, & CMEMS. Ssalto/duacs multimission altimeter products.spa
dc.relation.referencesD az, J., Sanch ez, J., & Geister, J. (1996). Development of lagoonal reefs in oceanic reef complexes of the southwestern caribbean: geomorphology, structure and distribution.spa
dc.relation.referencesEndo, C. A. K., Gherardi, D. F. M., Pezzi, L. P., & Lima, L. N. (2019). Low connectivity compromises the conservation of reef shes by marine protected areas in the tropical south atlantic. Scienti c reports, 9 (1), 8634.spa
dc.relation.referencesFerry, N., Parent, L., Garric, G., & Barnier, B. (2010). Jourdain and the mercator ocean team, mercator global eddy permitting ocean reanalysis glorys2v4: Description and results, mercator ocean.spa
dc.relation.referencesFoster, N. L., Paris, C. B., Kool, J. T., Baums, I. B., Stevens, J. R., Sanchez, J. A., Bastidas, C., Agudelo, C., Bush, P., Day, O., et al. (2012). Connectivity of caribbean coral populations: complementary insights from empirical and modelled gene ow. Molecular ecology, 21 (5), 1143{ 1157.spa
dc.relation.referencesGeister, J. & D az, J. (2007). Ambientes arrecifales y geolog a de un archipi elago oce anico: San andr es, providencia y santa catalina (mar caribe, colombia) con gu a de campo. Ingeominas, Bogot a.spa
dc.relation.referencesGeister, J. & Diaz, J. (2007). Ambientes arrecifales y geolog a de un archipi elago oce anico san andr es, providencia y santa catalina (mar caribe, colombia) : con gu a de campo. Technical report, INGEOMINAS.spa
dc.relation.referencesGiannini, A., Cane, M. A., & Kushnir, Y. (2001). Interdecadal changes in the enso teleconnection to the caribbean region and the north atlantic oscillation. Journal of Climate, 14 (13), 2867{2879.spa
dc.relation.referencesGiannini, A., Kushnir, Y., & Cane, M. A. (2000). Interannual variability of caribbean rainfall, enso, and the atlantic ocean. Journal of Climate, 13 (2), 297{311.spa
dc.relation.referencesGreen, A. L., Fernandes, L., Almany, G., Abesamis, R., McLeod, E., Ali~no, P. M., White, A. T., Salm, R., Tanzer, J., & Pressey, R. L. (2014). Designing marine reserves for sheries management, biodiversity conservation, and climate change adaptation. Coastal Management, 42 (2), 143{159.spa
dc.relation.referencesGreen, A. L., Maypa, A. P., Almany, G. R., Rhodes, K. L., Weeks, R., Abesamis, R. A., Gleason, M. G., Mumby, P. J., & White, A. T. (2015). Larval dispersal and movement patterns of coral reef shes, and implications for marine reserve network design. Biological Reviews, 90 (4), 1215{1247.spa
dc.relation.referencesHartanto, S., Furqan, M., Siahaan, A. P. U., & Fitriani, W. (2017). Haversine method in looking for the nearest masjid. International Journal of Engineering Research, 3, 187{195.spa
dc.relation.referencesHoagland, P., Sumaila, U., & Farrow, S. (2001). Marine protected areas. In J. H. Steele (Ed.), Encyclopedia of Ocean Sciences (Second Edition) (Second Edition ed.). (pp. 672 { 677). Oxford: Academic Press.spa
dc.relation.referencesId arraga-Garc a, J. & Le on, H. (2019). Unraveling the underwater morphological features of roncador bank, archipelago of san andres, providencia and santa catalina (colombian caribbean). Frontiers in Marine Science, 6, 77.spa
dc.relation.referencesIMaRS, USF, IRD, UNEP-WCMC,WorldFish, & WRI (2011). Global coral reefs composite dataset compiled from multiple sources for use in the reefs at risk revisited project incorporating products from the millennium coral reef mapping.spa
dc.relation.referencesJapaud, A., Fauvelot, C., & Bouchon, C. (2013). Populations genetic study of the corals acropora palmata and acropora cervicornis of guadeloupe (french west indies) in view of their preservation. Proceedings of the 66 th Gulf and Caribbean Fisheries Institute.spa
dc.relation.referencesJohnson, M., Lustic, C., Bartels, E., Baums, I., Gilliam, D., Larson, L., Lirman, D., Miller, M., Nedimyer, K., & Schopmeyer, S. (2011). Caribbean Acropora Restoration Guide: Best Practices for Propagation and Population Enhancement. Caribbean Acropora restoration guide. The Nature Conservancy.spa
dc.relation.referencesJordan, A. (2018). Patterns in caribbean coral spawning. master's thesis. nova southeastern university. Master's thesis, Nova Southeastern University.spa
dc.relation.referencesJouanno, J., Sheinbaum, J., Barnier, B., & Molines, J.-M. (2009). The mesoscale variability in the caribbean sea. part ii: Energy sources. Ocean Modelling, 26 (3), 226 { 239.spa
dc.relation.referencesJouanno, J., Sheinbaum, J., Barnier, B., Molines, J.-M., Debreu, L., & Lemari e, F. (2008). The mesoscale variability in the caribbean sea. part i: Simulations and characteristics with an embedded model. Ocean Modelling, 23 (3), 82 { 101.spa
dc.relation.referencesKajiya, C., Marcolino, D., Ponzi, L., & Nascimento, L. (2019). Low connectivity compromises the conservation of reef shes by marine protected areas in the tropical south atlantic. Scienti c Reports, 9, 14{21.spa
dc.relation.referencesLegendre, P. (2005). Species associations: the kendall coe cient of concordance revisited. Journal of agricultural, biological, and environmental statistics, 10 (2), 226.spa
dc.relation.referencesLequeux, B. D., Ahumada-Sempoal, M.-A., L opez-P erez, A., & Reyes-Hern andez, C. (2018). Coral connectivity between equatorial eastern paci c marine protected areas: A biophysical modeling approach. PLOS ONE, 13 (8), 1{16.spa
dc.relation.referencesLett, C., Verley, P., Mullon, C., Parada, C., Brochier, T., Penven, P., & Blanke, B. (2008). A lagrangian tool for modelling ichthyoplankton dynamics. Environmental Modelling & Software, 23 (9), 1210{1214.spa
dc.relation.referencesLonin, S., C. Prada, M., & Erick, C. (2010). Simulaci on de dispersi on de las larvas de caracol pala strombus gigas en la reserva de bi osfera sea ower, caribe occidental colombiano. Bolet n Cient co CIOH, 8{24.spa
dc.relation.referencesLundquist, C., Davies, K., & Mccartain, L. (2015). Best practice guidelines for marine protected area network design and evaluation. Technical report.spa
dc.relation.referencesMayorga-Adame, C. G., Batchelder, H. P., & Spitz, Y. H. (2017). Modeling larval connectivity of coral reef organisms in the kenya-tanzania region. Frontiers in Marine Science, 4, 92.spa
dc.relation.referencesMedel, C., Parada, C., E. Morales, C., Pizarro, O., Ernst, B., & Conejero, C. (2018). How biophysical interactions associated with sub- and mesoscale structures and migration behavior a ect planktonic larvae of the spiny lobster in the juan fern andez ridge: A modeling approach. Progress in Oceanography, 162.spa
dc.relation.referencesMontoya, R. (2014). Variabilidad estacional e interanual del balance de calor en la capa de mezcla super cial en el mar caribe. Master's thesis, Universidad Nacional de Colombia.spa
dc.relation.referencesNMFS (2015). Recovery plan for elkhorn (acropora palmata) and staghorn (a. cervicornis) corals. Technical report, National Marine Fisheries Service.spa
dc.relation.referencesNOAAs' & NCEI (2019). Daily reynolds - oisst sea surface temperature (avhrr-only).spa
dc.relation.referencesNorth, E. W., Gallego, A., & Petitgas, P. (2009). Manual of recommended practices for modelling physical{biological interactions during sh early life.spa
dc.relation.referencesPeliz, A., Marchesiello, P., Dubert, J., Marta-Almeida, M., Roy, C., & Queiroga, H. (2007). A study of crab larvae dispersal on the western iberian shelf: Physical processes. Journal of Marine Systems, 68 (1-2), 215{236.spa
dc.relation.referencesPenven, P., Marchesiello, P., Debreu, L., & Lef evre, J. (2008). Software tools for pre-and postprocessing of oceanic regional simulations. Environmental Modelling & Software, 23 (5), 660{662.spa
dc.relation.referencesPrato, J. & Rixcie, N. (2015). Aproximaci on a la valoraci on econ omica ambiental del departamento Archipi elago de San Andr es, Providencia y Santa Catalina { Reserva de la Bi osfera Sea ower. Bogot a, Colombia: Secretar a Ejecutiva de la Comisi on Colombiana del Oc eano SECCO, Corporaci on para el desarrollo sostenible del Archipi elago de San Andr es, Providencia y Santa Catalina - CORALINA.spa
dc.relation.referencesRaitsos, D. E., Brewin, R. J., Zhan, P., Dreano, D., Pradhan, Y., Nanninga, G. B., & Hoteit, I. (2017). Sensing coral reef connectivity pathways from space. Scienti c reports, 7 (1), 9338.spa
dc.relation.referencesRandall, C. J. & Szmant, A. M. (2009). Elevated temperature a ects development, survivorship, and settlement of the elkhorn coral, acropora palmata (lamarck 1816). The Biological Bulletin, 217 (3), 269-282.spa
dc.relation.referencesReynolds, R., Smith, T., Liu, C., Chelton, D., Casey, K., & Schlax, M. (2007). Daily high-resolutionblended analyses for sea surface temperature. Journal of Climate, 20, 5473{5496.spa
dc.relation.referencesRicciardulli, L.,Wentz, F., Jakobsson, M., & D, S. (2011). Remote sensing systems quikscat ku-2011 daily ocean vector winds on 0.25 deg grid, version 4.spa
dc.relation.referencesRichardson, P. (2005). Caribbean current and eddies as observed by surface drifters. Deep Sea Research Part II: Topical Studies in Oceanography, 52 (3), 429 { 463. Direct observations of oceanic ow: A tribute to Walter Zenk.spa
dc.relation.referencesRodr guez-Mart nez, R. E., Banaszak, A. T., McField, M. D., Beltran-Torres, A. U., & Alvarez- Filip, L. (2014). Assessment of acropora palmata in the mesoamerican reef system. PLoS One, 9 (4), e96140.spa
dc.relation.referencesRomero, M., Treml, E., Acosta, A., & Paz, D. (2018). The eastern tropical paci c coral population connectivity and the role of the eastern paci c barrier. Scienti c reports, 8 (1), 9354.spa
dc.relation.referencesRoughgarden, J., Gaines, S., & Possingham, H. (1988). Recruitment dynamics in complex life cycles. Science, 241, 1460{1466.spa
dc.relation.referencesRuiz, M. (2011). \Variabilidad de la Cuenca Colombia (mar Caribe) asociada con El Ni~no- Oscilaci on del Sur, vientos Alisios y procesos locales. PhD thesis, Universidad Nacional de Colombia.spa
dc.relation.referencesSale, P., Cowen, R., Danilowicz, B., Jones, G., Kritzer, J., Lindeman, K., Planes, S., Polunin, N., Russ, G., Sadovy, Y., & Steneck, R. (2005). Critical science gaps impede use of no-take shery reserves. Trends in Ecology Evolution, 20 (2), 74 { 80.spa
dc.relation.referencesSale, P., Van Lavieren, H., Ablan Lagman, M., Atema, J., Butler, M., Fauvelot, C., Hogan, J., Paris, B., Steneck, R., & Stewart, H. (2010). Preserving reef connectivity: A handbook for marine protected area managers. Technical report, Connectivity Working Group, Coral Reef Targeted Research Capacity Building for Management Program, UNU-INWEH.spa
dc.relation.referencesSalinas-de Le on, P., Jones, T., & Bell, J. J. (2012). Successful determination of larval dispersal distances and subsequent settlement for long-lived pelagic larvae. PLOS ONE, 7 (3), 1{9.spa
dc.relation.referencesS anchez-Jabba, A. M. (2012). Manejo ambiental en sea ower, reserva de biosfera en el archipi elago de san andr es, providencia y santa catalina. Documentos de Trabajo Sobre Econom a Regional y Urbana; No. 176.spa
dc.relation.referencesSanvicente-A~norve, L., Zavala-Hidalgo, J., Allende-Arand a, E., & Hermoso-Salazar, M. (2018). Larval dispersal in three coral reef decapod species: In uence of larval duration on the metapopulation structure. PLOS ONE, 13 (3), 1{22.spa
dc.relation.referencesSchill, S. R., Raber, G. T., Roberts, J. J., Treml, E. A., Brenner, J., & Halpin, P. N. (2015). No reef is an island: Integrating coral reef connectivity data into the design of regional-scale marine protected area networks. PLOS ONE, 10 (12), 1{24.spa
dc.relation.referencesSiegel, D. A., Mitarai, S., Costello, C. J., Gaines, S. D., Kendall, B. E., Warner, R. R., & Winters, K. B. (2008). The stochastic nature of larval connectivity among nearshore marine populations. Proceedings of the National Academy of Sciences, 105 (26), 8974{8979.spa
dc.relation.referencesStaaterman, E., Paris, C. B., & Helgers, J. (2012). Orientation behavior in sh larvae: a missing piece to hjort's critical period hypothesis. Journal of theoretical biology, 304, 188{96.spa
dc.relation.referencesSuzuki, G., Arakaki, S., & Hayashibara, T. (2011). Rapid in situ settlement following spawning by acropora corals at ishigaki, southern japan. Marine Ecology Progress Series, 421, 131{138.spa
dc.relation.referencesS anchez, J. (2012). Manejo ambiental en sea ower, reserva de la biosfera en el archipiel ago de san andr es, providencia y santa catalina. Technical report, Banco de la Rep ublica.spa
dc.relation.referencesUNEP-WCMC, WorldFish, WRI, & TNC (2018). Global distribution of warm-water coral reefs, compiled from multiple sources including the millennium coral reef mapping project.spa
dc.relation.referencesUNESCO (2019). What is a biosphere reserve? http://www.unesco.org/new/en/ phnompenh/natural-sciences/biosphere-reserves/tonle-sap-biosphere-reserve/ what-is-a-biosphere-reserve/.spa
dc.relation.referencesVega, J., D az, C., G omez, K., L opez, T., D az, M., & G omez, I. (2015). Biodiversidad marina en bajo nuevo, bajo alicia, y banco serranilla, reserva de biosfera sea ower. Bolet n de Investigaciones Marinas y Costeras- Jos e Benito Vives de Andr esis (INVEMAR), 44 (1), 199{224.spa
dc.relation.referencesWatson, J., Mitarai, S., Siegel, D., Caselle, J., Dong, C., & McWilliams, J. (2010). Realized and potential larval connectivity in the southern california bight. Marine Ecology Progress Series, 401, 31{48.spa
dc.relation.referencesWeatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., & Wigley, R. (2015). A new digital bathymetric model of the world's oceans.spa
dc.relation.referencesWood, S., Paris, C., Ridgwell, A., & Hendy, E. (2014). Modelling dispersal and connectivity of broadcast spawning corals at the global scale. Global Ecology and Biogeography, 23 (1), 1{11.spa
dc.relation.referencesZatsepin, A., Kubryakov, A., Aleskerova, A., Elkin, D., & Kukleva, O. (2018). Physical mechanisms of submesoscale eddies generation: evidences from laboratory modeling and satellite data in the black sea. Ocean Dynamics, 69 (2), 253{266.spa
dc.relation.referencesZhong, Y. & Bracco, A. (2013). Submesoscale impacts on horizontal and vertical transport in the gulf of mexico. Journal of Geophysical Research: Oceans, 118 (10), 5651{5668.spa
dc.relation.referencesZhong, Y., Bracco, A., & Villareal, T. A. (2012). Pattern formation at the ocean surface: Sargassum distribution and the role of the eddy eld. Limnology and Oceanography: Fluids and Environments, 2 (1), 12{27.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.proposalSeaflowereng
dc.subject.proposalOcean modelingeng
dc.subject.proposalModelación Oceánicaspa
dc.subject.proposalCoral dispersaleng
dc.subject.proposalDispersion de coralspa
dc.subject.proposalCorrientes superficialesspa
dc.subject.proposalSurface currentseng
dc.subject.proposalReclutamientospa
dc.subject.proposalRecruitmenteng
dc.subject.proposalEddieseng
dc.titleHydrodyamic connectivity in the Seaflower Reserve system and its potential impact on biological connectivityeng
dc.title.translatedConectividad hidrodinámica entre los cayos, bancos, islas y atolones que conforman la reserva de la Biosfera Seaflower y su potencial impacto en la conectividad biológicaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1039460072.2019pdf.pdf
Tamaño:
14.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: