Una arquitectura de información para estudios de cohorte en epidemiología ambiental

dc.contributor.advisorVilla Garzón, Fernán Alonsospa
dc.contributor.advisorPiñeros, Juan Gabrielspa
dc.contributor.authorUribe Díez, Laura Maríaspa
dc.contributor.researchgroupSenda R&D Group: Software Engineering And Data Science Research And development Groupspa
dc.date.accessioned2022-09-13T15:19:32Z
dc.date.available2022-09-13T15:19:32Z
dc.date.issued2022-09-12
dc.descriptionIlustraciones, diagramas de flujo, tablasspa
dc.description.abstractLos estudios de cohorte en epidemiología ambiental son ampliamente utilizados para determinar la ocurrencia de un evento específico en un grupo de individuos. Estos estudios experimentan numerosos desafíos debido a que la información que se requiere para llevarse a cabo requiere un rango temporal de observación amplio y un seguimiento constante de los participantes. El desarrollo de conceptos y técnicas para llevar a cabo la investigación de la relación con el medio ambiente y eventos de salud es el punto focal de dichos desafíos. Las causas de estos desafíos incluyen varios factores. El primer factor es un proceso ineficiente en la recuperación de la información médica de cada participante. El segundo factor son los datos inexactos. Y el tercer factor es la mala calidad de la información que da como resultado la falta de información que los investigadores requieren para planificar una estrategia de solución al problema de investigación. Este trabajo abarca una solución de integración de información basada en modelos lógicos y modelos físicos empleando soluciones tecnológicas. Este estudio se centra en un diseño para gestionar datos arrojados en el estudio de cohorte en epidemiología ambiental. El trabajo consiste en desarrollar una arquitectura de información para los estudios de cohorte en epidemiología ambiental capturando los desafíos mencionados anteriormente para desarrollar conceptos y técnicas basadas en la arquitectura para ayudar a resolver los problemas de gestión de datos. Los objetivos son definir e implementar un modelo para disminuir los problemas asociados a los estudios de cohorte en epidemiología ambiental utilizando conceptos de arquitectura de la información basada en bases de datos relacionales. La implementación de estos conceptos tiene beneficios como agilidad, integridad y una posible estrategia de diseño a largo plazo para la continuidad de los estudios de cohorte en epidemiología ambiental. Se espera que los diseños basados en arquitecturas de información permitan a los investigadores realizar la gestión de la información relevante para el proyecto. Entonces en este trabajo se ha propuesto el diseño de una arquitectura de información para estudios de cohorte en epidemiología ambiental en la cual se caracterizan y definan los artefactos (modelos) requeridos y su verificación en un caso de aplicación, con sistemas de gestión de bases de datos que permitan a agregar, administrar, extraer y analizar grandes cantidades de datos. (Texto tomado de la fuente)spa
dc.description.abstractCohort studies in environmental epidemiology are widely used to determine the occurrence of a specific event in a group of individuals. These studies experience numerous challenges due to the fact that the information required to be carried out needs a wide observation time range and constant monitoring of the participants. The development of concepts and techniques to carry out research on the relationship with the environment and health events is the focal point of these challenges. The causes of these challenges include several factors. The first factor is an inefficient process in retrieving the medical information of each participant. The second factor is inaccurate data. And the third factor is the poor quality of the information that results in the lack of information that researchers need to plan a solution strategy to the research problem. This work covers an information integration solution based on logical models and physical models using technological solutions. This study focuses on a design to manage data yielded in the cohort study in environmental epidemiology. The work consists of developing an information architecture for cohort studies in environmental epidemiology capturing the challenges mentioned above to develop concepts and techniques based on the architecture to help solve data management problems. The objectives are to define and implement a model to reduce the problems associated with cohort studies in environmental epidemiology using information architecture concepts based on relational databases. The implementation of these concepts has benefits such as agility, integrity and a possible long-term design strategy for the continuity of cohort studies in environmental epidemiology. It is expected that designs based on information architectures will allow researchers to carry out the management of information relevant to the project. Therefore, in this work, the design of an information architecture for cohort studies in environmental epidemiology has been proposed in which the required artifacts (models) are characterized and defined and their verification in an application case, with database management systems that allow adding, managing, extracting and analyzing large amounts of data.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.description.researchareaArquitectura de Softwarespa
dc.description.researchareaEpidemiología Computacionalspa
dc.format.extent135 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82285
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.referencesAlmeida, J. R., Coelho, L., & Oliveira, J. L. (2021). BIcenter: A collaborative Web ETL solution based on a reflective software approach. SoftwareX, 2352-7110.spa
dc.relation.referencesBader, A., Ellen, P. L., & Steve, D. (2021). Validation of Architectural Requirements for Tackling Cloud Computing Barriers: Cloud Provider Perspective, Volume 181. Procedia Computer Science.spa
dc.relation.referencesBourbonnais, P.-L., & Morency, C. (2018). A robust datawarehouse as a requirement to the increasing quantity and complexity of travel survey data. Transportation Research Procedia, 436-447.spa
dc.relation.referencesCalvera, J. (05 de 05 de 2021). Integración e Interoperabilidad, de compartir datos a comunicar conocimiento. InterSystems.spa
dc.relation.referencesDuarte, G., Luís, F., & Nuno, C. (2021). Enterprise architecture for high flexible and agile company in automotive industry, Volume 181. Procedia Computer Science.spa
dc.relation.referencesElena, K., & Judith, B. (2020). Industry 4.0 Impact Propagation on Enterprise Architecture Models, Volume 176. Procedia Computer Science.spa
dc.relation.referencesF., S., Paulina, M. D., Carlos, Q. S., Guissela, G. M., Nayely, O. H., Tamara, M. V., & Miriann, &. D. (2019). Estudios de cohortes. 1ᵃ parte. Descripción, metodología y aplicaciones. Revista de cirugía, 482-493.spa
dc.relation.referencesGabriel, P. J. (2019). Exposición a contaminación del aire (PM2.5 PM10 y O3) y eventos cardiovasculares y respiratorios en Medellín. Salud y Ambiente, Departamento de ciencias específicas, 2018-2020.spa
dc.relation.referencesGetmanskiy, A., Sechenev, S., Ryadchikov, I., Gusev, A., Mikhalkov, N., Kazakov, D., . . . Sokolov, D. (2021). Real-time system architecture design practices. Procedia Computer Science, 769-776.spa
dc.relation.referencesKohlmayer, F., Prasser, F., Eckert, C., & Kuhn, K. A. (2014). A flexible approach to distributed data anonymization. Journal of Biomedical Informatics, 62-76.spa
dc.relation.referencesKory, K., Matthew, F., Abhishek, P., Nina, A., Gwendolyn, H., F, J. S., . . . Taxiarchis, B. (2017). Natural language processing systems for capturing and standardizing unstructured clinical information: A systematic review, Volume 73. Journal of Biomedical Informatics.spa
dc.relation.referencesKurnia, S., Kotusev, S., Shanks, G., Dilnutt, R., & Milton, S. (2021). Stakeholder engagement in enterprise architecture practice: What inhibitors are there? Information and Software Technology.spa
dc.relation.referencesLee, N.-W., Wang, H.-Y., Du, C.-L., Yuan, T.-H., Chen, C.-Y., Yu, C.-J., & Chan, C.-C. (2021). Air-polluted environmental heavy metal exposure increase lung cancer incidence and mortality: A population-based longitudinal cohort study. Science of The Total Environment, 152186.spa
dc.relation.referencesLouis, R., Peter, M., & Jorge, A. (2015). Information Architecture, 4th Edition. O’Reilly media Inc.spa
dc.relation.referencesMarkus, K., Stefan, S., & Andrea, B. (2015). Secondary use of electronic health records for building cohort studies through top-down information extraction, Volume 53. Journal of Biomedical Informatics.spa
dc.relation.referencesMinisterio de Salud y Protección Social; Juan Pablo Uribe Restrepo; Iván Dario Gonzalez Ortiz; Diana Isabel Cardenas Gamboa; Gerardo Burgos Bernal; Dolly Esperanza Ovalle Carranza; Aicardo Oliveros Castrillón; Germán Alfredo Gil Forero . (2019). Lineamiento Técnico para el Registro y envío de los datos del Registro Individual de Prestaciones de Salud – RIPS, desde las Instituciones Prestadoras de Servicios de Salud a las EAPB. Bogotá: Oficina de Tecnología de la Información y la Comunicación – OTIC.spa
dc.relation.referencesNina, A., Binariswanto, & Nilo, L. (2019). Cloud Computing Adoption Strategic Planning Using ROCCA and TOGAF 9.2: A Study in Government Agency, Volume 161. Procedia Computer Science.spa
dc.relation.referencesPhilippe, D., & Gilbert, R. (2014). Modeling Enterprise Architecture with TOGAF: a practica guide using UML and BPMN, 1st Edition. Waltham, Massachusetts: Morgan Kaufmann.spa
dc.relation.referencesRubin, K. S. (2012). Essential Scrum: A Practical Guide to the Most Popular Agile Process, 2th Edition. O’Reilly media Inc.spa
dc.relation.referencesSebastian, M., Thomas, B., A., K. L., Dennis, T., & Marvin, K. (2019). A method for the graphical modeling of relative temporal constraints. Journal of Biomedical Informatics.spa
dc.relation.referencesSetia, M. (2016). Methodology series module 1: Cohort studies. Indian Journal of Dermatology, 21-25.spa
dc.relation.referencesSprinkle, J., & Karsai, G. (2004). A domain-specific visual language for domain model evolution. Journal of Visual Languages & Computing, 291-307.spa
dc.relation.referencesSusan, R., Jyotishman, P., Guergana, S., A., O. T., Les, W., E., B. C., . . . G, C. C. (2012). Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: The SHARPn Project, Volume 45. Journal of Biomedical Informatics.spa
dc.relation.referencesT., S. E., A., D. M., Joseph, K., Z., S. J., I., V. V., L., C. C., & R., C. T. (2018). A scalable method for supporting multiple patient cohort discovery projects using i2b2, Volume 84. Journal of Biomedical Informatics.spa
dc.relation.referencesTamakoshi, A., Ozasa, K., Fujino, Y., Suzuki, K., Sakata, K., Mori, M., . . . Hoshiya, Y. (2013). Cohort profile of the Japan Collaborative Cohort Study at final follow-up, Volume 23. J Epidemiol.spa
dc.relation.referencesTian, F., Liang, P., & Babar, M. A. (2022). Relationships between software architecture and source code in practice: An exploratory survey and interview. Information and Software Technology, 0950-5849.spa
dc.relation.referencesUrbanczyk, T., & Peter, L. (2016). Database Development for the Urgent Department of Hospital based on Tagged Entity Storage Following the IoT Concept. IFAC-PapersOnLine, 278-283.spa
dc.relation.referencesZhang, J., Chen, H., Yao, X., & Fu, X. (2021). CPFinder: Finding an unknown Caller's profession from anonymized mobile phone data. Digital Communications and Networks, 2352-8648.spa
dc.relation.referencesZondergeld, J. J., Scholten, R. H., Vreede, B. M., Hessels, R. S., Pijl, A., Buizer-Voskamp, J. E., . . . Veldkamp, C. L. (2020). FAIR, safe and high-quality data: The data infrastructure and accessibility of the YOUth cohort study. Developmental Cognitive Neuroscience, 1878-9293.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.lembSalud públicaspa
dc.subject.lembSaneamiento ambientalspa
dc.subject.proposalArquitectura de la informaciónspa
dc.subject.proposalEpidemiología ambientalspa
dc.subject.proposalBases de datosspa
dc.subject.proposalInformation architectureeng
dc.subject.proposalEnvironmental epidemiologyeng
dc.subject.proposalDatabaseseng
dc.titleUna arquitectura de información para estudios de cohorte en epidemiología ambientalspa
dc.title.translatedAn information architecture for cohort studies in environmental epidemiologyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036642686_2022.pdf
Tamaño:
1.68 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: