Estudio del potencial oncolítico del aislamiento rotaviral humano Wt1-5 en adenocarcinoma gástrico

dc.contributor.advisorGuerrero Fonseca, Carlos Arturo
dc.contributor.authorSossa Rojas, Henry
dc.contributor.orcid0000-0001-7854-0689spa
dc.contributor.researchgroupBiología Celularspa
dc.contributor.researchgroupBiología Molecular de Virusspa
dc.contributor.researchgroupBiotecnología Microbianaspa
dc.date.accessioned2023-04-24T13:40:56Z
dc.date.available2023-04-24T13:40:56Z
dc.date.issued2022-07-01
dc.descriptionilustraciones, fotografías a colorspa
dc.description.abstractA pesar de los avances en la investigación en ciencias biomédicas, el cáncer gástrico sigue siendo una de las principales causas de morbilidad y mortalidad en el mundo debido a la limitada eficacia de las terapias convencionales. El objetivo de este estudio fue examinar el potencial oncolítico del aislamiento rotaviral Wt1-5 en muestras de adenocarcinomas gástricos obtenidas de seis pacientes sometidos a gastrectomías radicales en el Hospital Universitario de la Samaritana. Para lograrlo, se evaluó la capacidad del rotavirus para propagarse en el tumor y la importancia de la expresión de las proteínas correceptoras de membrana citoplasmática αVβ3, PDI, Hsc70, Hsp90, Hsp70, Hsp60 y Hsp40 durante la infección de las células tumorales. Se encontró que estas proteínas se expresan de forma diferencial en las células tumorales en comparación con el tejido no tumoral adyacente y que las células neoplásicas se infectaron significativamente en comparación con el tejido no tumoral adyacente, lo que inicio un efecto oncolítico. A las 12 h.p.i, se observó que la apoptosis era uno de los tipos de muerte que se evidenciaba al evaluar la expresión de caspasa 3, caspasa 9, PARP, citocromo C, BAX, BID, p53 y Bcl-2, así como al observar cambios morfológicos, como la marginación de la cromatina, condensación y fragmentación nuclear. Finalmente, en las horas posteriores a la infección (60 h.p.i), se observó una oncólisis que comprometió todo el espesor del tumor. En consecuencia, los resultados de este trabajo sugieren que el RV Wt1-5 puede ser una terapia coadyuvante a las terapias convencionales y/o terapias dirigidas en el manejo del cáncer gástrico. Además, la infección ex vivo del modelo de tejido tumoral también mostró características de respuesta inmune que pueden explorarse en estudios futuros. (Texto tomado de la fuente)spa
dc.description.abstractDespite advances in biomedical science research, gastric cancer remains one of the leading causes of morbidity and mortality worldwide due to the limited efficacy of conventional therapies. The aim of this study was to examine the oncolytic potential of the rotaviral Wt1-5 isolate in gastric adenocarcinoma simples obtained from six patients undergoing radical gastrectomies at the Hospital Universitario de la Samaritana. To achieve this, the ability of the rotavirus to propagate in the tumor and the importance of the expression of the cytoplasmic membrane coreceptor proteins αVβ3, PDI, Hsc70, Hsp90, Hsp70, Hsp60, and Hsp40 during tumor cell infection were evaluated. It was found that these proteins were differentially expressed in tumor cells compared to adjacent non-tumor tissue, and neoplastic cells were significantly infected compared to adjacent non-tumor tissue, initiating an oncolytic effect. At 12 h.p.i, apoptosis was observed as one of the types of cell death, evidenced by the expression of caspase 3, caspase 9, PARP, cytochrome C, BAX, BID, p53, and Bcl-2, as well as morphological changes such as chromatin margination, condensation, and nuclear fragmentation. Finally, in the hours following infection (60 h.p.i), complete oncotic destruction of the tumor thickness was observed. Consequently, the results of this work suggest that RV Wt1-5 may be an adjuvant therapy to conventional and/or targeted therapies in the management of gastric cancer. In addition, ex vivo infection of the tumor tissue model also showed characteristics of immune response that can be explored in future studies.eng
dc.description.degreelevelDoctoradospa
dc.description.researchareaVirus Oncolíticosspa
dc.format.extent162 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83759
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.referencesSung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49.spa
dc.relation.referencesInternational Agency for Research on Cancer. CANCER TODAY [Internet]. World Health Organization. [cited 2020 Dec 16]. Available from: https://gco.iarc.fr/today/homespa
dc.relation.referencesPardo C, Vries EDE, Buitrago L, Gamboa O. Atlas de mortalidad por cáncer en Colombia. 4th ed. Cancerologia IN de, editor. Bogota: Instituto Nacional de Cancerologia; 2017. 124 p.spa
dc.relation.referencesCristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21(5):449–56.spa
dc.relation.referencesNaghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M, et al. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–71.spa
dc.relation.referencesDIgklia A, Wagner AD. Advanced gastric cancer: Current treatment landscape and future perspectives. World J Gastroenterol. 2016;22(8):2403–14.spa
dc.relation.referencesGuo Q, Jing FJ, Qu HJ, Xu W, Han B, Xing XM, et al. Ubenimex Reverses MDR in Gastric Cancer Cells by Activating Caspase-3-Mediated Apoptosis and Suppressing the Expression of Membrane Transport Proteins. Biomed Res Int. 2019;2019.spa
dc.relation.referencesSmyth EC, Moehler M. Late-line treatment in metastatic gastric cancer: today and tomorrow. Ther Adv Med Oncol. 2019;11:1–11.spa
dc.relation.referencesGalon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197–218.spa
dc.relation.referencesRussell SJ, Peng KW. Viruses as anticancer drugs. Trends Pharmacol Sci. 2007;28(7):326–33.spa
dc.relation.referencesLowy D. NCI Dictionary of Cancer Terms - National Cancer Institute [Internet]. National Cancer Institute - at the National Institiutes of Health. [cited 2015 Nov 4]. Available from: http://www.cancer.gov/dictionary?cdrid=46216spa
dc.relation.referencesChiocca EA, Rabkin SD. Oncolytic Viruses and Their Application to Cancer Immunotherapy. Cancer Immunol Res. 2014;2(4):295–300.spa
dc.relation.referencesZhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell death in cancer therapy: Present and emerging inducers. J Cell Mol Med. 2019;23(8):4854–65.spa
dc.relation.referencesGuo ZS, Liu Z, Kowalsky S, Feist M, Kalinski P, Lu B, et al. Oncolytic immunotherapy: Conceptual evolution, current strategies, and future perspectives. Front Immunol. 2017;8(555):1–15.spa
dc.relation.referencesBommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018;18(August):1–16.spa
dc.relation.referencesInternational Committee on Taxonomy of Viruses (ICTV) [Internet]. [cited 2020 Oct 24]. Available from: https://talk.ictvonline.org/taxonomy/spa
dc.relation.referencesMatthijnssens J, Otto PH, Ciarlet M, Desselberger U, van Ranst M, Johne R. VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation. Arch Virol. 2012;157(6):1177–82.spa
dc.relation.referencesMatthijnssens J, Ciarlet M, Rahman M, Attoui H, Estes MK, Gentsch JR, et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol. 2009;153(8):1621–9.spa
dc.relation.referencesContreras-Treviño HI, Reyna-Rosas E, León-Rodríguez R, Ruiz-Ordaz BH, Dinkova TD, Cevallos AM, et al. Species A rotavirus NSP3 acquires its translation inhibitory function prior to stable dimer formation. PLoS One. 2017;12(7):1–18.spa
dc.relation.referencesEsona MD, Gautam R. Rotavirus. Clin Lab Med. 2015;35(2):363–91.spa
dc.relation.referencesRojas M, Ayala-Breton C, Lopez S. BIOLOGÍA MOLECULAR DE ROTAVIRUS : UNA MIRADA A TRAVÉS DE LA INTERFERENCIA DE RNA. MENSAJE BIOQUÍMICO. 2008;XXXII:149–62.spa
dc.relation.referencesMatthijnssens J, Ciarlet M, McDonald SM, Attoui H, Bányai K, Brister JR, et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol. 2011;156(8):1397–413.spa
dc.relation.referencesMorelli M, Ogden KM, Patton JT. Silencing the alarms: Innate immune antagonism by rotavirus NSP1 and VP3. Virology. 2015;479-480C:75–84.spa
dc.relation.referencesYu X, Blanchard H. Carbohydrate recognition by rotaviruses. J Struct Funct Genomics. 2014;15(3):101–6.spa
dc.relation.referencesGiaginis C, Daskalopoulou SS, Vgenopoulou S, Sfiniadakis I, Kouraklis G, Theocharis SE. Heat Shock Protein-27, -60 and -90 expression in gastric cancer: association with clinicopathological variables and patient survival. BMC Gastroenterol. 2009;9(14):1–10.spa
dc.relation.referencesSharma PC, Verma R. Implication of HSP70 in the Pathogenesis of Gastric Cancer. In: HSP70 in Human Diseases and Disorders. Springer Nature; 2018. p. 113–30.spa
dc.relation.referencesMoreira AM, Pereira J, Melo S, Fernandes MS, Carneiro P, Seruca R, et al. The Extracellular Matrix: An Accomplice in Gastric Cancer Development and Progression. Cells. 2020;9(2):394.spa
dc.relation.referencesXu YH, Li ZL, Qiu SF. IFN-γ Induces Gastric Cancer Cell Proliferation and Metastasis Through Upregulation of Integrin β3-Mediated NF-κB Signaling. Transl Oncol. 2018;11(1):182–92.spa
dc.relation.referencesWu Z, Zhang L, Li N, Sha L, Zhang K. An immunohistochemical study of thioredoxin domain-containing 5 expression in gastric adenocarcinoma. Oncol Lett. 2015;9(3):1154–8.spa
dc.relation.referencesShimoda T, Wada R, Kure S, Ishino K, Kudo M, Ohashi R, et al. Expression of protein disulfide isomerase A3 and its clinicopathological association in gastric cancer. Oncol Rep. 2019;41(4):2265–72.spa
dc.relation.referencesGuerrero CA, Guerrero RA, Silva E, Acosta O, Barreto E. Experimental Adaptation of Rotaviruses to Tumor Cell Lines. PLoS One. 2016;11(2):1–25spa
dc.relation.referencesGuerrero C a, Bouyssounade D, Zárate S, Isa P, López T, Espinosa R, et al. Heat Shock Cognate Protein 70 Is Involved in Rotavirus Cell Entry Heat Shock Cognate Protein 70 Is Involved in Rotavirus Cell Entry. J Virol. 2002;76(8):4096–102.spa
dc.relation.referencesSantana AY, Guerrero CA, Acosta O. Implication of Hsc70, PDI and integrin αvβ3 involvement during entry of the murine rotavirus ECwt into small-intestinal villi of suckling mice. Arch Virol. 2013;158(6):1323–36.spa
dc.relation.referencesGuerrero RA, Guerrero CA, Guzmán F, Acosta O. Assessing the oncolytic potential of rotavirus on mouse myeloma cell line Sp2/0-Ag14. Biomedica. 2020;40(2).spa
dc.relation.referencesLaurén P. the Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. an Attempt At a Histo-Clinical Classification. Acta Pathol Microbiol Scand. 1965;64:31–49.spa
dc.relation.referencesPinho SS, Carvalho S, Marcos-Pinto R, Magalhães A, Oliveira C, Gu J, et al. Gastric cancer: Adding glycosylation to the equation. Trends Mol Med. 2013;19(11):664–76.spa
dc.relation.referencesKang SH, Kim JS, Moon HS, Lee ES, Kim SH, Sung JK, et al. Signet ring cell carcinoma of early gastric cancer, is endoscopic treatment really risky? Medicine (Baltimore). 2017;96(33):1–5.spa
dc.relation.referencesOhtsuka J, Oshima H, Ezawa I, Abe R, Oshima M, Ohki R. Functional loss of p53 cooperates with the in vivo microenvironment to promote malignant progression of gastric cancers. Sci Rep. 2018;8(1):1–15.spa
dc.relation.referencesPan X, Ji X, Zhang R, Zhou Z, Zhong Y, Peng W, et al. Landscape of somatic mutations in gastric cancer assessed using next-generation sequencing analysis. Oncol Lett. 2018;16(4):4863–70.spa
dc.relation.referencesLi W, Luo S, Ma G, Wang L. <p>Impact of liver kinase B1 on p53 and survivin and its correlation with prognosis in gastric cancer</p>. Onco Targets Ther. 2019;Volume 12:1439–45.spa
dc.relation.referencesYildirim M, Kaya V, Demirpence O, Gunduz S, Bozcuk H. Prognostic significance of p53 in gastric cancer: A meta-analysis. Asian Pacific J Cancer Prev. 2015;16(1):327–32.spa
dc.relation.referencesLee JY, Gong EJ, Chung EJ, Park HW, Bae SE, Kim EH, et al. The characteristics and prognosis of diffuse-type early gastric cancer diagnosed during health check-ups. Gut Liver. 2017;11(6):807–12.spa
dc.relation.referencesJameson JL, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J. Harrison’s Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2). McGraw Hill Higher Education. 2018.spa
dc.relation.referencesMa J, Shen H, Kapesa L, Zeng S. Lauren classification and individualized chemotherapyin gastric cancer (Review). Oncol Lett. 2016;11(5):2959–64spa
dc.relation.referencesSingh SR. Gastric cancer stem cells: a novel therapeutic target. Cancer Lett. 2013 Sep 10;338(1):110–9.spa
dc.relation.referencesKarimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev. 2014;23(5):700–13.spa
dc.relation.referencesNakamura K, Sugano H, Takagi K. Carcinoma of the stomach in incipient phase: its histogenesis and histological appearances. Gan. 1968;59(3):251–8.spa
dc.relation.referencesPernot S, Voron T, Perkins G, Lagorce-Pages C, Berger A, Taieb J. Signet-ring cell carcinoma of the stomach: Impact on prognosis and specific therapeutic challenge. World J Gastroenterol. 2015;21(40):11428–38.spa
dc.relation.referencesLai JF, Xu WN, Noh SH, Lu WQ. Effect of world health organization (WHO) histological classification on predicting lymph node metastasis and recurrence in early gastric cancer. Med Sci Monit. 2016;22:3147–53.spa
dc.relation.referencesMahadevan V. Anatomy of the stomach. Surg (United Kingdom). 2017;35(11):608–11.spa
dc.relation.referencesNie S, Yuan Y. The Role of Gastric Mucosal Immunity in Gastric Diseases. J Immunol Res. 2020;2020:1–8.spa
dc.relation.referencesLiu JY, Peng CW, Yang XJ, Huang CQ, Li Y. The prognosis role of AJCC/UICC 8th edition staging system in gastric cancer, a retrospective analysis. Am J Transl Res. 2018;10(1):292–303.spa
dc.relation.referencesEscrig Sos J, Gómez Quiles L, Maiocchi K. The 8th edition of the AJCC-TNM classification: New contributions to the staging of esophagogastric junction cancer. Cir Esp. 2019;97(8):432–7.spa
dc.relation.referencesWang FH, Shen L, Li J, Zhou ZW, Liang H, Zhang XT, et al. The Chinese Society of Clinical Oncology (CSCO): Clinical guidelines for the diagnosis and treatment of gastric cancer. Cancer Commun. 2019;39(1):1–31.spa
dc.relation.referencesRodriquenz MG, Roviello G, D’Angelo A, Lavacchi D, Roviello F, Polom K. MSI and EBV Positive Gastric Cancer’s Subgroups and Their Link With Novel Immunotherapy. J Clin Invest. 2020;9(1427):1–12.spa
dc.relation.referencesHam IH, Lee D, Hur H. Role of cancer-associated fibroblast in gastric cancer progression and resistance to treatments. J Oncol. 2019;2019:1–11.spa
dc.relation.referencesAngell HK, Bruni D, Carl Barrett J, Herbst R, Galon J. The immunoscore: Colon cancer and beyond a C. Clin Cancer Res. 2020;26(2):332–9.spa
dc.relation.referencesChia NY, Tan P. Molecular classification of gastric cancer. Ann Oncol. 2016;27(5):763–9.spa
dc.relation.referencesWang X, Mao M, Zhu S, Xing S, Song Y, Zhang L, et al. A Novel Nomogram Integrated with Inflammation-Based Factors to Predict the Prognosis of Gastric Cancer Patients. Adv Ther. 2020spa
dc.relation.referencesLink A, Kupcinskas J. MicroRNAs as non-invasive diagnostic biomarkers for gastric cancer: Current insights and future perspectives. World J Gastroenterol. 2018;24(30):3313–29.spa
dc.relation.referencesMarrelli D, Pinto E, De Stefano A, Farnetani M, Garosi L, Roviello F. Clinical utility of CEA, CA 19-9, and CA 72-4 in the follow-up of patients with resectable gastric cancer. Am J Surg. 2001;181(1):16–9.spa
dc.relation.referencesYou W, Cai Z, Sheng N, Yan L, Wan H, Wang Y, et al. Construction and Validation of Convenient Clinicopathologic Signatures for Predicting the Prognosis of Stage I-III Gastric Cancer. Front Oncol. 2022;12(March):1–9.spa
dc.relation.referencesZhou C, Zhong X, Song Y, Shi J, Wu Z, Guo Z, et al. Prognostic Biomarkers for Gastric Cancer: An Umbrella Review of the Evidence. Front Oncol. 2019;9(November):1–16.spa
dc.relation.referencesHao NB, He YF, Li XQ, Wang K, Wang RL. The role of miRNA and lncRNA in gastric cancer. Oncotarget. 2017;8(46):81572–82.spa
dc.relation.referencesBass AJ, Thorsson V, Shmulevich I, Reynolds SM, Miller M, Bernard B, et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.spa
dc.relation.referencesOliveira C, Suriano G, Ferreira P, Canedo P, Kaurah P, Mateus R, et al. Genetic screening for familial gastric cancer. Hered Cancer Clin Pract. 2004;2(2):51–64.spa
dc.relation.referencesYao Y, Dai W. Genomic Instability and Cancer. J Carcinog Mutagen. 2014;5:1–17.spa
dc.relation.referencesBaj J, Brzozowska K, Forma A, Maani A, Sitarz E, Portincasa P. Immunological aspects of the tumor microenvironment and epithelial-mesenchymal transition in gastric carcinogenesis. Int J Mol Sci. 2020;21(7).spa
dc.relation.referencesHerbert A. ADAR and Immune Silencing in Cancer. Trends in Cancer. 2019;5(5):272–82.spa
dc.relation.referencesIgnatova E, Seriak D, Fedyanin M, Tryakin A, Pokataev I. Epstein – Barr virus-associated gastric cancer : disease that requires special approach. Gastric Cancer. 2020;(0123456789).spa
dc.relation.referencesTsugane S, Sasazuki S. Diet and the risk of gastric cancer: Review of epidemiological evidence. Gastric Cancer. 2007;10(2):75–83.spa
dc.relation.referencesRawla P, Barsouk A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Prz Gastroenterol. 2019;14(1):26–38.spa
dc.relation.referencesGoel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2012;91(3):1071–121.spa
dc.relation.referencesGiraldo NA, Sanchez-Salas R, Peske JD, Vano Y, Becht E, Petitprez F, et al. The clinical role of the TME in solid cancer. Br J Cancer. 2019;120(1):45–53.spa
dc.relation.referencesRezalotfi A, Ahmadian E, Aazami H, Solgi G, Ebrahimi M. Gastric cancer stem cells effect on Th17/Treg balance. A bench to beside perspective. Front Oncol. 2019;9(4):1–13.spa
dc.relation.referencesBlidner AG, Méndez-Huergo SP, Cagnoni AJ, Rabinovich GA. Re-wiring regulatory cell networks in immunity by galectin-glycan interactions. FEBS Lett. 2015;589(22):3407–18.spa
dc.relation.referencesChang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell. 2015;162(6):1229–41.spa
dc.relation.referencesVigneron N. Human Tumor Antigens and Cancer Immunotherapy. Biomed Res Int. 2015;2015:1–17.spa
dc.relation.referencesHanahan D, Coussens LM. Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell. 2012;21(3):309–22.spa
dc.relation.referencesMaitra A. Pancreatic cancer hidden in plain sight. Nature. 2020 May 1;581(7806):34–5.spa
dc.relation.referencesDudley AC. Tumor endothelial cells. Cold Spring Harb Perspect Med. 2012;2(3):1–18.spa
dc.relation.referencesLiu Y, Wu J, Huang W, Weng S, Wang B, Chen Y, et al. Development and validation of a hypoxia-immune-based microenvironment gene signature for risk stratification in gastric cancer. J Transl Med. 2020;18(1):1–17.spa
dc.relation.referencesMacedo F, Ladeira K, Longatto-Filho A, Martins SF. Gastric cancer and angiogenesis: Is VEGF a useful biomarker to assess progression and remission? J Gastric Cancer. 2017;17(1):1–10.spa
dc.relation.referencesDeng B, Zhu JM, Wang Y, Liu TT, Ding YB, Xiao WM, et al. Intratumor Hypoxia Promotes Immune Tolerance by Inducing Regulatory T Cells via TGF-β1 in Gastric Cancer. PLoS One. 2013;8(5):1–9.spa
dc.relation.referencesKheshtchin N, Arab S, Ajami M, Mirzaei R, Ashourpour M, Mousavi N, et al. Inhibition of HIF-1α enhances anti-tumor effects of dendritic cell-based vaccination in a mouse model of breast cancer. Cancer Immunol Immunother. 2016;65(10):1159–67.spa
dc.relation.referencesCerto M, Tsai C-H, Pucino V, Ho P-C, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol. 2020;1–11.spa
dc.relation.referencesWang Q, Zhu D. The prognostic value of systemic immune-inflammation index (SII) in patients after radical operation for carcinoma of stomach in gastric cancer. J Gastrointest Oncol. 2019;10(5):965–78spa
dc.relation.referencesSun X, Wang J, Liu J, Chen S, Liu X. Albumin concentrations plus neutrophil lymphocyte ratios for predicting overall survival after curative resection for gastric cancer. Onco Targets Ther. 2016 Jul 27;9:4661–9.spa
dc.relation.referencesYang L, Liu Q, Zhang X, Liu X, Zhou B, Chen J, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature. 2020;(July 2019):1–25.spa
dc.relation.referencesDunn GP, Bruce AT, Ikeda H, Lloyd OJ, Schreiber RD. Cancer Immunoediting: From Inmuno-Surveillance to Tumor Escape. Nat Immunol. 2002;3(11):85–99.spa
dc.relation.referencesMohri Y, Tanaka K, Ohi M, Yokoe T, Miki C, Kusunoki M. Prognostic significance of host- and tumor-related factors in patients with gastric cancer. World J Surg. 2010;34(2):285–90.spa
dc.relation.referencesLian L, Xia YY, Zhou C, Shen XM, Li XL, Han SG, et al. Application of platelet/lymphocyte and neutrophil/lymphocyte ratios in early diagnosis and prognostic prediction in patients with resectable gastric cancer. Cancer Biomarkers. 2015 Nov 24;15(6):899–907.spa
dc.relation.referencesKim EY, Lee JW, Yoo HM, Park CH, Song KY. The Platelet-to-Lymphocyte Ratio Versus Neutrophil-to-Lymphocyte Ratio: Which is Better as a Prognostic Factor in Gastric Cancer? Ann Surg Oncol. 2015 Dec 1;22(13):4363–70.spa
dc.relation.referencesKim JH, Han DS, Bang HY, Kim PS, Lee KY. Preoperative neutrophil-to-lymphocyte ratio is a prognostic factor for overall survival in patients with gastric cancer. Ann Surg Treat Res. 2015 Aug 1;89(2):81–6.spa
dc.relation.referencesRoychoudhuri R, Eil RL, Restifo NP. The interplay of effector and regulatory T cells in cancer. Curr Opin Immunol. 2015;33:101–11.spa
dc.relation.referencesWhiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27(45):5904–12.spa
dc.relation.referencesLi Q, Peng K, Chen E, Jiang H, Wang Y, Yu S, et al. IntegrinB5 upregulated by HER2 in gastric cancer: a promising biomarker for liver metastasis. Ann Transl Med. 2020;8(7):451–451.spa
dc.relation.referencesDesnoyers A, González C, Pérez-Segura P, Pandiella A, Amir E, Ocaña A. Integrin ανβ6 Protein Expression and Prognosis in Solid Tumors: A Meta-Analysis. Vol. 24, Molecular Diagnosis and Therapy. Adis; 2020. p. 143–51.spa
dc.relation.referencesCheng S, Li X, Yuan Y, Jia C, Chen L, Gao Q, et al. ITGB1 Enhances the Proliferation, Survival, and Motility in Gastric Cancer Cells. Microsc Microanal. 2021;27(5):1192–201.spa
dc.relation.referencesFreitas D, Campos D, Gomes J, Pinto F, Macedo JA, Matos R, et al. O-glycans truncation modulates gastric cancer cell signaling and transcription leading to a more aggressive phenotype. EBioMedicine. 2019;40:349–62.spa
dc.relation.referencesLIS H, SHARON N. Protein glycosylation: Structural and functional aspects. Eur J Biochem. 1993;218(1):1–27.spa
dc.relation.referencesWang S, Wu T, Lee C, Yu J. Dissecting the conformation of glycans and their interactions with proteins. J Biomed Sci. 2020;27(93):1–16.spa
dc.relation.referencesHarvey DJ. Proteomic analysis of glycosylation: Structural determination of N- and O-linked glycans by mass spectrometry. Expert Rev Proteomics. 2005 Feb;2(1):87–101.spa
dc.relation.referencesFernandes E, Sores J, Cotton S, Peixoto A, Ferreira D, Freitas R, et al. Esophageal, gastric and colorectal cancers: Looking beyond classical serological biomarkers towards glycoproteomics-assisted precision oncology. Theranostics. 2020;10(11):4903–28.spa
dc.relation.referencesReindl J, Shevtsov M, Dollinger G, Stangl S, Multhoff G. Membrane Hsp70-supported cell-to-cell connections via tunneling nanotubes revealed by live-cell STED nanoscopy. Cell Stress Chaperones. 2019;213–21.spa
dc.relation.referencesTrinchera M, Aronica A, Dall’Olio F. Selectin ligands Sialyl-Lewis a and Sialyl-Lewis x in gastrointestinal cancers. Biology (Basel). 2017;6(1):1–18.spa
dc.relation.referencesIsomoto H, Oka M, Yano Y, Kanazawa Y, Soda H, Terada R, et al. Expression of heat shock protein (Hsp) 70 and Hsp 40 in gastric cancer. Cancer Lett. 2003;198(2):219–28.spa
dc.relation.referencesBerezowska S, Novotny A, Bauer K, Feuchtinger A, Slotta-Huspenina J, Becker K, et al. Association between HSP90 and Her2 in gastric and gastroesophageal carcinomas. PLoS One. 2013;8(7):e69098.spa
dc.relation.referencesKang GH, Lee EJ, Jang KT, Kim K-M, Park CK, Lee C-S, et al. Expression of HSP90 in gastrointestinal stromal tumours and mesenchymal tumours. Histopathology. 2010 May;56(6):694–701.spa
dc.relation.referencesCiocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10(2):86–103.spa
dc.relation.referencesWang J, Cui S, Zhang X, Wu Y, Tang H. High Expression of Heat Shock Protein 90 Is Associated with Tumor Aggressiveness and Poor Prognosis in Patients with Advanced Gastric Cancer. PLoS One. 2013;8(4).spa
dc.relation.referencesChung YM, Park S, Park JK, Kim Y, Kang Y, Yoo YD. Establishment and characterization of 5-fluorouracil-resistant gastric cancer cells. Cancer Lett. 2000;159(1):95–101.spa
dc.relation.referencesPfister K, Radons J, Busch R, Tidball JG, Pfeifer M, Freitag L, et al. Patient survival by Hsp70 membrane phenotype: Association with different routes of metastasis. Cancer. 2007;110(4):926–35.spa
dc.relation.referencesWang FL, Cui SX, Sun LP, Qu XJ, Xie YY, Zhou L, et al. High expression of α 2, 3-linked sialic acid residues is associated with the metastatic potential of human gastric cancer. Cancer Epidemiol. 2009;32(5–6):437–43.spa
dc.relation.referencesSun X, Li D, Duan Z. Structural Basis of Glycan Recognition of Rotavirus. Front Mol Biosci. 2021;8(July):1–12.spa
dc.relation.referencesBertuzzi S, Quintana JI, Ardá A, Gimeno A, Jiménez-Barbero J. Targeting Galectins With Glycomimetics. Front Chem. 2020;8(593):1–17.spa
dc.relation.referencesLiu Y, Meng H, Xu S, Qi X. Galectins for Diagnosis and Prognostic Assessment of Human Diseases: An Overview of Meta-Analyses. Med Sci Monit. 2020;26:e923901.spa
dc.relation.referencesWolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. 2020;20(3):173–85.spa
dc.relation.referencesBacigalupo ML, Carabias P, Troncoso MF. Contribution of galectin-1, a glycan-binding protein, to gastrointestinal tumor progression. World J Gastroenterol. 2017;23(29):5266–81.spa
dc.relation.referencesLong B, Yu Z, Zhou H, Ma Z, Ren Y, Zhan H, et al. Clinical characteristics and prognostic significance of galectins for patients with gastric cancer: A meta-analysis. Int J Surg. 2018;56(82):242–9.spa
dc.relation.referencesZhai E, Liang W, Lin Y, Huang L, He X, Cai S, et al. HSP70/HSP90-Organizing Protein Contributes to Gastric Cancer Progression in an Autocrine Fashion and Predicts Poor Survival in Gastric Cancer. Cell Physiol Biochem. 2018;47(2):879–92.spa
dc.relation.referencesDatta D, Banerjee S, Ghosh A, Mustafi SB, Raha S. Involvement of Heat Shock Protein 70 (Hsp70) in Gastrointestinal Cancers. In: HSP70 in Human Diseases and Disorders. Springer Nature; 2018. p. 71–91.spa
dc.relation.referencesIsomoto H, Oka M, Yano Y, Kanazawa Y, Soda H, Terada R, et al. Expression of heat shock protein (Hsp) 70 and Hsp 40 in gastric cancer. Cancer Lett. 2003 Aug 1;198(2):219–28.spa
dc.relation.referencesGe H, Yan Y, Lingfei G, Fei T, Di W. Prognostic role of hsPs in human gastrointestinal cancer: a systematic review and meta-analysis. Onco Targets Ther. 2018;11(28):351–9.spa
dc.relation.referencesHoter A, El-Sabban ME, Naim HY. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9).spa
dc.relation.referencesHW L, KM K. Clinical Significance of Heat Shock Protein 90α Expression as a Biomarker of Prognosis in Patients With Gastric Cancer. Niger J Clin Pract. 2019;22(12):1699–705.spa
dc.relation.referencesZhang L, Hou Y, Li N, Wu K, Zhai J. The influence of TXNDC5 gene on gastric cancer cell. J Cancer Res Clin Oncol. 2010;136(10):1497–505.spa
dc.relation.referencesWu J, Chen X, Wang X, Yu Y, Ren J, Xiao Y. ERp19 contributes to tumorigenicity in human gastric cancer by promoting cell growth , migration and invasion. 2015;6(14).spa
dc.relation.referencesLeys CM, Nomura S, LaFleur BJ, Ferrone S, Kaminishi M, Montgomery E, et al. Expression and prognostic significance of prothymosin-α and ERp57 in human gastric cancer. Surgery. 2007;141(1):41–50.spa
dc.relation.referencesLiu T, Liu D, Kong X, Dong M. Clinicopathological Significance of Heat Shock Protein (HSP) 27 Expression in Gastric Cancer: A Updated Meta-Analysis. Evidence-based Complement Altern Med. 2020;2020.spa
dc.relation.referencesSong D, Guo M, Wu K, Hao J, Nie Y, Fan D. Silencing of ER-resident oxidoreductase PDIA3 inhibits malignant biological behaviors of multidrug-resistant gastric cancer. Acta Biochim Biophys Sin (Shanghai). 2021;53(9):1216–26.spa
dc.relation.referencesZhang D, Fan D. New insights into the mechanisms of gastric cancer multidrug resistance and future perspectives. Futur Oncol. 2010;6(4):527–37.spa
dc.relation.referencesArienti C, Pignatta S, Tesei A. Epidermal Growth Factor Receptor Family and its Role in Gastric Cancer. Front Oncol. 2019;9(November):1–11.spa
dc.relation.referencesZhang D, Fan D. Multidrug resistance in gastric cancer: recent research advances and ongoing therapeutic challenges. Expert Rev Anticancer Ther. 2007 Oct;7(10):1369–78.spa
dc.relation.referencesGambardella V, Castillo J, Tarazona N, Gimeno-Valiente F, Martínez-Ciarpaglini C, Cabeza M, et al. The role of Tumor-Associated Macrophages in Gastric Cancer development and their potential as a therapeutic target. Cancer Treat Rev. 2020;86(March):102015.spa
dc.relation.referencesHe X-J, Tao H-Q, Hu Z-M, Ma Y-Y, Xu J, Wang H-J, et al. Expression of galectin-1 in carcinoma-associated fibroblasts promotes gastric cancer cell invasion through upregulation of integrin β1. Cancer Sci. 2014;105(11):1402–10.spa
dc.relation.referencesShao D, Wang X, Li Z, Xing X, Cheng X, Guo T, et al. High-level SAE2 promotes malignant phenotype and predicts outcome in gastric cancer. Am J Cancer Res. 2015;5(2):589–602.spa
dc.relation.referencesHerrmann K, Walch a, Balluff B, Tanzer M, Hofler H, Krause BJ, et al. Proteomic and metabolic prediction of response to therapy in gastrointestinal cancers. Nat Clin Pr Gastroenterol Hepatol. 2009;6(3):170–83.spa
dc.relation.referencesWilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014 Oct 1;15(11):1224–35.spa
dc.relation.referencesOhtsu A, Ajani JA, Bai YX, Bang YJ, Chung HC, Pan HM, et al. Everolimus for previously treated advanced gastric cancer: Results of the randomized, double-blind, phase III GRANITE-1 study. J Clin Oncol. 2013;31(31):3935–43.spa
dc.relation.referencesFuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014 Jan 3;383(9911):31–9.spa
dc.relation.referencesYang L, Wang Y, Wang H. Use of immunotherapy in the treatment of gastric cancer (Review). Oncol Lett. 2019;18(6):5681–90.spa
dc.relation.referencesGiampieri R, Maccaroni E, Mandolesi A, Del Prete M, Andrikou K, Faloppi L, et al. Mismatch repair deficiency may affect clinical outcome through immune response activation in metastatic gastric cancer patients receiving first-line chemotherapy. Gastric Cancer. 2017;20(1):156–63.spa
dc.relation.referencesKang YK, Rha SY, Tassone P, Barriuso J, Yu R, Szado T, et al. A phase IIa dose-finding and safety study of first-line pertuzumab in combination with trastuzumab, capecitabine and cisplatin in patients with HER2-positive advanced gastric cancer. Br J Cancer. 2014;111(4):660–6.spa
dc.relation.referencesNie S, Yang G, Lu H. Current molecular targeted agents for advanced gastric cancer. Onco Targets Ther. 2020;13:4075–88.spa
dc.relation.referencesMotoshima S, Yonemoto K, Kamei H, Morita M, Yamaguchi R. Prognostic implications of HER2 heterogeneity in gastric cancer. Oncotarget. 2018;9(10):9262–72.spa
dc.relation.referencesTabernero J, Hoff PM, Shen L, Ohtsu A, Shah MA, Cheng K, et al. Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol. 2018 Oct 1;19(10):1372–84.spa
dc.relation.referencesDS-8201a in Human Epidermal Growth Factor Receptor 2 (HER2)-Expressing Gastric Cancer [DESTINY-Gastric01] - Full Text View - ClinicalTrials.gov [Internet]. [cited 2020 Jun 17]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT03329690spa
dc.relation.referencesHan HS, Kim BJ, Jee H-J, Ryu M-H, Park SH, Rha SY, et al. Ramucirumab plus paclitaxel as second-line treatment in patients with advanced gastric or gastroesophageal junction adenocarcinoma: a nationwide real-world outcomes in Korea study (KCSG-ST19-16). Ther Adv Med Oncol. 2021;13:17588359211042812.spa
dc.relation.referencesLi X, Zhu X, Wang Y, Wang R, Wang L, Zhu ML, et al. Prognostic value and association of lauren classification with vegf and vegfr-2 expression in gastric cancer. Oncol Lett. 2019;18(5):4891–9.spa
dc.relation.referencesO’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16(3):151–67.spa
dc.relation.referencesPetitprez F, Meylan M, de Reyniès A, Sautès-Fridman C, Fridman WH. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies. Front Immunol. 2020;11(May):1–11.spa
dc.relation.referencesChen LT, Satoh T, Ryu MH, Chao Y, Kato K, Chung HC, et al. A phase 3 study of nivolumab in previously treated advanced gastric or gastroesophageal junction cancer (ATTRACTION-2): 2-year update data. Gastric Cancer. 2020;23(3):510–9.spa
dc.relation.referencesXiang Z, Chen W, Zhang J, Song S, Xia GK, Huang XY, et al. Identification of discrepancy between CTLA4 expression and CTLA4 activation in gastric cancer. Immunopharmacol Immunotoxicol. 2019;41(3):386–93.spa
dc.relation.referencesGu L, Chen M, Guo D, Zhu H, Zhang W, Pan J, et al. PD-L1 and gastric cancer prognosis: A systematic review and meta-analysis. PLoS One. 2017;12(8):1–14.spa
dc.relation.referencesPicardo SL, Doi J, Hansen AR. Structure and optimization of checkpoint inhibitors. Cancers (Basel). 2020;12(1):1–15.spa
dc.relation.referencesKulangara K, Hanks DA. Development of the combined positive score (CPS) for the evaluation of PD-L1 in solid tumors with the immunohistochemistry assay PD-L1 IHC 22C3 pharmDx. J Clin Oncol. 2017;25(15).spa
dc.relation.referencesBang YJ, Kang YK, Catenacci D V., Muro K, Fuchs CS, Geva R, et al. Pembrolizumab alone or in combination with chemotherapy as first-line therapy for patients with advanced gastric or gastroesophageal junction adenocarcinoma: results from the phase II nonrandomized KEYNOTE-059 study. Gastric Cancer. 2019;22(4):828–37.spa
dc.relation.referencesMendis S, Gill S. Cautious optimism-the current role of immunotherapy in gastrointestinal cancers. Curr Oncol. 2020;27(April):S59–68.spa
dc.relation.referencesIwasa S, Kudo T, Takahari D, Hara H, Kato K, Satoh T. Practical guidance for the evaluation of disease progression and the decision to change treatment in patients with advanced gastric cancer receiving chemotherapy. Int J Clin Oncol. 2020;(Table 1).spa
dc.relation.referencesWaddell T, Verheij M, Allum W, Cunningham D, Cervantes A, Arnold D. Gastric cancer: ESMO-ESSO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Eur J Surg Oncol. 2014;40(5):584–91.spa
dc.relation.referencesCao GD, He XB, Sun Q, Chen S, Wan K, Xu X, et al. The Oncolytic Virus in Cancer Diagnosis and Treatment. Front Oncol. 2020;10(September):1–12.spa
dc.relation.referencesJayawardena N, Poirier JT, Burga LN, Bostina M. Virus–Receptor Interactions and Virus Neutralization: Insights for Oncolytic Virus Development. Oncolytic Virotherapy. 2020;Volume 9:1–15.spa
dc.relation.referencesAchard C, Surendran A, Wedge ME, Ungerechts G, Bell J, Ilkow CS. Lighting a Fire in the Tumor Microenvironment Using Oncolytic Immunotherapy. EBioMedicine. 2018;31:17–24.spa
dc.relation.referencesNoonan AM, Farren MR, Geyer SM, Huang Y, Tahiri S, Ahn D, et al. Randomized Phase 2 Trial of the Oncolytic Virus Pelareorep (Reolysin) in Upfront Treatment of Metastatic Pancreatic Adenocarcinoma. Mol Ther. 2016;24(6):1150–8.spa
dc.relation.referencesWorkenhe ST, Mossman KL. Oncolytic Virotherapy and Immunogenic Cancer Cell Death: Sharpening the Sword for Improved Cancer Treatment Strategies. Mol Ther. 2013;22(2):251–6.spa
dc.relation.referencesAlvarez-Breckenridge C a, Choi BD, Suryadevara CM, Chiocca EA. Potentiating oncolytic viral therapy through an understanding of the initial immune responses to oncolytic viral infection. Curr Opin Virol. 2015;13:25–32.spa
dc.relation.referencesGuo ZS, Liu Z, Bartlett DL. Oncolytic Immunotherapy: Dying the Right Way is a Key to Eliciting Potent Antitumor Immunity. Front Oncol. 2014;4(April):1–11.spa
dc.relation.referencesKaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9).spa
dc.relation.referencesHeiniö C, Havunen R, Santos J, Lint K de, Cervera-Carrascon V, Kanerva A, et al. TNFa and IL2 Encoding Oncolytic Adenovirus Activates Pathogen and Danger-Associated Immunological Signaling. Cells. 2020;9(4):1–13.spa
dc.relation.referencesPol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, et al. Trial Watch:: Oncolytic viruses for cancer therapy. Oncoimmunology. 2014;3(April):e28694.spa
dc.relation.referencesCattaneo R, Russell SJ. How to develop viruses into anticancer weapons. PLoS Pathog. 2017;13(3):8–13.spa
dc.relation.referencesGarijo R, Hernández-Alonso P, Rivas C, Diallo JS, Sanjuán R. Experimental evolution of an oncolytic vesicular stomatitis virus with increased selectivity for p53-deficient cells. PLoS One. 2014;9(7):1–8.spa
dc.relation.referencesKaufman HL, Bommareddy PK. Two roads for oncolytic immunotherapy development. J Immunother Cancer. 2019;7(1):1–5.spa
dc.relation.referencesAlberts P, Tilgase A, Rasa A, Bandere K, Venskus D. The advent of oncolytic virotherapy in oncology: The Rigvir® story. Eur J Pharmacol. 2018;837(August):117–26.spa
dc.relation.referencesLiang M. Oncorine, the World First Oncolytic Virus Medicine and its Update in China. Curr Cancer Drug Targets. 2018;18(2):171–6.spa
dc.relation.referencesSugawara K, Iwai M, Yajima S, Tanaka M, Yanagihara K, Seto Y, et al. Efficacy of a Third-Generation Oncolytic Herpes Virus G47Δ in Advanced Stage Models of Human Gastric Cancer. Mol Ther oncolytics. 2020 Jun;17:205–15.spa
dc.relation.referencesMedicine USNL of. https://clinicaltrials.gov [Internet]. 2022 [cited 2022 Jun 5]. Available from: https://clinicaltrials.govspa
dc.relation.referencesGao P, Ding G, Wang L. The efficacy and safety of oncolytic viruses in the treatment of intermediate to advanced solid tumors: A systematic review and meta-analysis. Transa Cancer Res. 2021;10(10):4290–302.spa
dc.relation.referencesCoffin RS. From virotherapy to oncolytic immunotherapy: where are we now? Curr Opin Virol. 2015;13:93–100.spa
dc.relation.referencesDiccionario de cáncer del NCI - Instituto Nacional del Cáncer [Internet]. [cited 2020 Oct 17]. Available from: https://www.cancer.gov/espanol/publicaciones/diccionario/def/efecto-abscopalspa
dc.relation.referencesBishop RF, Davidson GP, Holmes IH, Ruck BJ. Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet (London, England). 1973 Dec 8;2(7841):1281–3.spa
dc.relation.referencesDesselberger U. Rotaviruses. Virus Res. 2014;190:75–96.spa
dc.relation.referencesHoshino Y, Sereno MM, Midthun K, Flores J, Kapikian AZ, Chanock RM. Independent segregation of two antigenic specificities (VP3 and VP7) involved in neutralization of rotavirus infectivity. Proc Natl Acad Sci U S A. 1985;82(24):8701–4.spa
dc.relation.referencesThomas RJ, Bartee E. The use of oncolytic virotherapy in the neoadjuvant setting. J Immunother Cancer. 2022;10:1–9.spa
dc.relation.referencesHoxie I, Dennehy JJ. Intragenic recombination influences rotavirus diversity and evolution. Virus Evol. 2020;6(1):1–16.spa
dc.relation.referencesCrawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, et al. Rotavirus infection. Nat Rev Dis Prim. 2017;3(17083):1–16.spa
dc.relation.referencesFlewett T, Bryden A, Davies H. VIRUS PARTICLES IN EPITHELIAL CELLS OF DUODENAL MUCOSA FROM CHILDREN WITH ACUTE NON-BACTERIAL GASTROENTERITIS. Lancet. 1973;302(7844):1497.spa
dc.relation.referencesAmimo JO, Raev SA, Chepngeno J, Mainga AO, Guo Y, Saif L, et al. Rotavirus Interactions With Host Intestinal Epithelial Cells. Front Immunol. 2021;12(December):1–17.spa
dc.relation.referencesPesavento JB, Crawford SE, Estes MK, Prasad BVV. Rotavirus proteins: structure and assembly. Curr Top Microbiol Immunol. 2006;309:189–219.spa
dc.relation.referencesKumar D, Yu X, Crawford SE, Moreno R, Jakana J, Sankaran B, et al. 2.7 Å cryo-EM structure of rotavirus core protein VP3, a unique capping machine with a helicase activity. Sci Adv. 2020;6(16):1–10.spa
dc.relation.referencesFeng N, Hu L, Ding S, Sanyal M, Zhao B, Sankaran B, et al. Human VP8* mAbs neutralize rotavirus selectively in human intestinal epithelial cells. J Clin Invest. 2019 Aug 13;129(9).spa
dc.relation.referencesArias CF, Silva-Ayala D, López S. Rotavirus Entry: a Deep Journey into the Cell with Several Exits. J Virol. 2015;89(November):890–3.spa
dc.relation.referencesTrask SD, Ogden KM, Patton JT. Interactions among capsid proteins orchestrate rotavirus particle functions. Curr Opin Virol. 2012;2(4):373–9.spa
dc.relation.referencesAoki ST, Settembre E, Trask SD, Greenberg HB, Stephen C, Dormitzer PR. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science (80- ). 2009;324(5933):1444–7.spa
dc.relation.referencesKing AMQ, Adams MJ, Lefkowitz EJ. Virus Taxonomy: Classification and Nomenclature of Viruses : Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier; 2011. 1327 p.spa
dc.relation.referencesGautam R, Esona MD, Mijatovic-Rustempasic S, Ian Tam K, Gentsch JR, Bowen MD. Real-time RT-PCR assays to differentiate wild-type group A rotavirus strains from Rotarix(®) and RotaTeq(®) vaccine strains in stool samples. Hum Vaccin Immunother. 2013;10(3):767–77.spa
dc.relation.referencesGualtero DF, Guzmán F, Acosta O, Guerrero C a. Amino acid domains 280-297 of VP6 and 531-554 of VP4 are implicated in heat shock cognate protein hsc70-mediated rotavirus infection. Arch Virol. 2007;152:2183–96.spa
dc.relation.referencesSuzuki H. Rotavirus replication: Gaps of knowledge on virus entry and morphogenesis. Tohoku J Exp Med. 2019;248(4):285–96.spa
dc.relation.referencesMaruri-Avidal L, López S, Arias CF. Endoplasmic reticulum chaperones are involved in the morphogenesis of rotavirus infectious particles. J Virol. 2008;82(11):5368–80.spa
dc.relation.referencesCoulson BS, Londrigan SL, Lee DJ. Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry into cells. Proc Natl Acad Sci U S A. 1997;94(10):5389–94.spa
dc.relation.referencesGuerrero C, Méndez E, Zárate S, Isa P, López S, Arias CF. Integrin alpha(v)beta(3) mediates rotavirus cell entry. Proc Natl Acad Sci U S A. 2000;97(26):14644–9.spa
dc.relation.referencesZárate S, Espinosa R, Romero P, Guerrero CA, Arias CF, López S. Integrin alpha2beta1 mediates the cell attachment of the rotavirus neuraminidase-resistant variant nar3. Virology. 2000;278(1):50–4.spa
dc.relation.referencesGraham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER, et al. Integrin-using rotaviruses bind alpha2beta1 integrin alpha2 I domain via VP4 DGE sequence and recognize alphaXbeta2 and alphaVbeta3 by using VP7 during cell entry. J Virol. 2003;77(18):9969–78.spa
dc.relation.referencesZárate S, Romero P, Espinosa R, Arias CF, López S. VP7 Mediates the Interaction of Rotaviruses with Integrin αvβ3 through a Novel Integrin-Binding Site. J Virol. 2004;78(20):10839–47.spa
dc.relation.referencesGuerrero CA, Santana AY, Acosta O. Mouse intestinal villi as a model system for studies of rotavirus infection. J Virol Methods. 2010;168(1–2):22–30.spa
dc.relation.referencesArias CF, Isa P, Guerrero C a, Méndez E, Zárate S, López T, et al. Molecular biology of rotavirus cell entry. Arch Med Res. 2002;33(4):356–61spa
dc.relation.referencesPérez-Ortín R, Vila-Vicent S, Carmona-Vicente N, Santiso-Bellón C, Rodríguez-Díaz J, Buesa J. Histo-blood group antigens in children with symptomatic rotavirus infection. Viruses. 2019;11(4).spa
dc.relation.referencesAcosta O, Calderon M, Moreno L, Guerrero C a. UN MODELO DEL MECANISMO DE ENTRADA DE LOS ROTAVIRUS A LA CÉLULA HOSPEDERA. Rev Fac Med Univ Nac Colomb. 2009;57(2):124–48.spa
dc.relation.referencesDesselberger U, Richards J, Tchertanov L, Lepault J, Lever A, Burrone O, et al. Further characterisation of rotavirus cores: Ss(+)RNAs can be packaged in vitro but packaging lacks sequence specificity. Virus Res. 2013;178(2):252–63.spa
dc.relation.referencesChen D, Ramig RF. Rescue of infectivity by sequential in vitro transcapsidation of rotavirus core particles with inner capsid and outer capsid proteins. Virology. 1993 Jun;194(2):743–51.spa
dc.relation.referencesYoder JD, Trask SD, Vo PT, Binka M, Feng N, Harrison SC, et al. VP5* Rearranges when Rotavirus Uncoats. J Virol. 2009;83(21):11372–7.spa
dc.relation.referencesFleming FE, Bohm R, Dang VT, Holloway G, Haselhorst T, Madge PD, et al. Relative Roles of GM1 Ganglioside, N-Acylneuraminic Acids, and 2 1 Integrin in Mediating Rotavirus Infection. J Virol. 2014;88(8):4558–71.spa
dc.relation.referencesCiarlet M, Ludert JE, Iturriza-Gómara M, Liprandi F, Gray JJ, Desselberger U, et al. Initial interaction of rotavirus strains with N-acetylneuraminic (sialic) acid residues on the cell surface correlates with VP4 genotype, not species of origin. J Virol. 2002;76(8):4087–95.spa
dc.relation.referencesGuo LA, Zhang M, Hou Y zhen, Hu H, Fang L, Tan M, et al. Epidemiology and HBGA-susceptibility investigation of a G9P[8] rotavirus outbreak in a school in Lechang, China. Arch Virol. 2020;165(6):1311–20.spa
dc.relation.referencesCoulson BS. Expanding diversity of glycan receptor usage by rotaviruses. Curr Opin Virol. 2015 Dec;15:90–6.spa
dc.relation.referencesDelorme C, Brüssow H, Teneberg S. Glycosphingolipid Binding Specificities of Rotavirus: Identification of a Sialic Acid-Binding Epitope ´. J Microbiol. 2001;75(5):2276–87.spa
dc.relation.referencesKun HR, Strains MO. Ganglioside GMi a on the Cell Surface Is Involved in the Infection by. 1999;688:683–8.spa
dc.relation.referencesPérez-Vargas J, Romero P, López S, Arias CF. The peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity. J Virol. 2006;80(7):3322–31.spa
dc.relation.referencesZárate S, Cuadras M a, Espinosa R, Romero P, Juárez KO, Camacho-Nuez M, et al. Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J Virol. 2003;77(13):7254–60.spa
dc.relation.referencesFleming FE, Graham KL, Takada Y, Coulson BS. Determinants of the specificity of rotavirus interactions with the alpha2beta1 integrin. J Biol Chem. 2011 Feb 25;286(8):6165–74.spa
dc.relation.referencesSantana AY, Guerrero C a., Acosta O. Implication of Hsc70, PDI and integrin avb3 involvement during entry of the murine rotavirus ECwt into small-intestinal villi of suckling mice. Arch Virol. 2013;158(6):1323–36.spa
dc.relation.referencesTorres-Flores JM, Silva-Ayala D, Espinoza M a., López S, Arias CF. The tight junction protein JAM-A functions as coreceptor for rotavirus entry into MA104 cells. Virology. 2015;475:172–8.spa
dc.relation.referencesPatton JT, Hua J, Mansell EA. Location of intrachain disulfide bonds in the VP5* and VP8* trypsin cleavage fragments of the rhesus rotavirus spike protein VP4. J Virol. 1993;67(8):4848–55.spa
dc.relation.referencesCalderón MN, Guerrero C a, Acosta O, Lopez S, Arias CF. Inhibiting Rotavirus Infection by Membrane- Impermeant Thiol / Disulfide Exchange Blockers and Antibodies against Protein Disulfide. Intervirology. 2012;55(3):451–64.spa
dc.relation.referencesCalderón MN, Guerrero C a, Domínguez Y, Garzón E, Barreto SM, Acosta O. Interaction of rotavirus with protein disulfide isomerase in vitro and cell system [Interacción de rotavirus con la proteína disulfuro-isomerasa in vitro y en sistemas celulares]. Biomedica. 2011;31(1):70–81.spa
dc.relation.referencesSettembre EC, Chen JZ, Dormitzer PR, Grigorieff N, Harrison SC. Atomic model of an infectious rotavirus particle. EMBO J. 2011;30(2):408–16.spa
dc.relation.referencesDormitzer PR, Sun ZYJ, Wagner G, Harrison SC. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J. 2002;21(5):885–97.spa
dc.relation.referencesTrask SD, McDonald SM, Patton JT. Structural Insights into the Coupling of Virion Assembly and Rotavirus Replication. Nat Rev Microbiol. 2013;10(3):165–77.spa
dc.relation.referencesSilva-Ayala D, López T, Gutiérrez M, Perrimon N, López S, Arias CF. Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry. Proc Natl Acad Sci U S A. 2013;110(25):10270–5.spa
dc.relation.referencesSantoro MG, Amici C, Rossi A. Role of Heat Shock Proteins in Viral Infection. In: Pockley A., Calderwood S. SM, editor. Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease Heat Shock Proteins. 4th ed. Springer; 2009. p. 51–84.spa
dc.relation.referencesOgden KM, Snyder MJ, Dennis AF, Patton JT. Predicted Structure and Domain Organization of Rotavirus Capping Enzyme and Innate Immune Antagonist VP3. J Virol. 2014;88(16):9072–85.spa
dc.relation.referencesPiron M, Vende P, Cohen J, Poncet D. Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J. 1998;17(19):5811–21.spa
dc.relation.referencesVende P, Piron M, Castagné N, Poncet D. Efficient Translation of Rotavirus mRNA Requires Simultaneous Interaction of NSP3 with the Eukaryotic Translation Initiation Factor eIF4G and the mRNA 3′ End. J Virol. 2000;74(15):7064–71.spa
dc.relation.referencesArnold MM. The Rotavirus Interferon Antagonist NSP1: Many Targets, Many Questions. J Virol. 2016;90(11):5212–5.spa
dc.relation.referencesGratia M, Sarot E, Vende P, Charpilienne A, Baron CH, Duarte M, et al. Rotavirus NSP3 Is a Translational Surrogate of the Poly(A) Binding Protein-Poly(A) Complex. J Virol. 2015 Sep 1;89(17):8773–82.spa
dc.relation.referencesGlück S, Buttafuoco A, Meier AF, Arnoldi F, Vogt B, Schraner EM, et al. Rotavirus replication is correlated with S/G2 interphase arrest of the host cell cycle. PLoS One. 2017;12(6):1–24.spa
dc.relation.referencesBall JM, Mitchell DM, Gibbons TF, Parr RD. Review Rotavirus NSP4: A Multifunctional Viral Enterotoxin. VIRAL Immunol. 2005;18(1):27–40.spa
dc.relation.referencesEichwald C, Arnoldi F, Laimbacher AS, Schraner EM, Fraefel C, Wild P, et al. Rotavirus viroplasm fusion and perinuclear localization are dynamic processes requiring stabilized microtubules. PLoS One. 2012;7(10):e47947.spa
dc.relation.referencesSuárez YG, Martínez JL, Hernández DT, Hernández HO, Pérez-Delgado A, Méndez M, et al. Nanoscale organization of rotavirus replication machineries. Elife. 2019;8:1–53.spa
dc.relation.referencesCrawford SE, Desselberger U. Lipid droplets form complexes with viroplasms and are crucial for rotavirus replication. Curr Opin Virol. 2016;19:11–5.spa
dc.relation.referencesLópez T, Camacho M, Zayas M, Nájera R, Sánchez R, Arias CF, et al. Silencing the Morphogenesis of Rotavirus. J Virol. 2005;79(1):184–92.spa
dc.relation.referencesCarreño-Torres JJ, Gutiérrez M, Arias CF, López S, Isa P. Characterization of viroplasm formation during the early stages of rotavirus infection. Virol J. 2010;7(1):350.spa
dc.relation.referencesViskovska M, Anish R, Hu L, Chow D-C, Hurwitz AM, Brown NG, et al. Probing the sites of interactions of rotaviral proteins involved in replication. J Virol. 2014;88(21):12866–81.spa
dc.relation.referencesBennett J, Dolin R, Blaser M. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 8th ed. Elsevier Inc; 2015. 1857–1858 p.spa
dc.relation.referencesQin L, Ren L, Zhou Z, Lei X, Chen L, Xue Q, et al. Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I. Virol J. 2011;8:526.spa
dc.relation.referencesDavis CA, Morelli KA, Patton MT. Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases. MBio. 2017;8(4):1213–30.spa
dc.relation.referencesSastri NP, Viskovska M, Hyser JM, Tanner MR, Horton LB, Sankaran B, et al. Structural Plasticity of the Coiled-Coil Domain of Rotavirus NSP4. J Virol. 2014;88(23):13602–12.spa
dc.relation.referencesCrawford SE, Criglar JM, Liu Z, Broughman JR, Estes MK. COPII Vesicle Transport Is Required for Rotavirus NSP4 Interaction with the Autophagy Protein LC3 II and Trafficking to Viroplasms. J Virol. 2019;94(1):1–14.spa
dc.relation.referencesRazavinikoo H, Soleimanjahi H, Haqshenas G, Bamdad T, Goodarzi Z. Activation of calcium / calmodulin-dependent kinase following bovine rotavirus enterotoxin NSP4 expression. Iran J Basic Med Sci. 2015;18(4):2–6.spa
dc.relation.referencesSeo N-S, Zeng CQ-Y, Hyser JM, Utama B, Crawford SE, Kim KJ, et al. Integrins alpha1beta1 and alpha2beta1 are receptors for the rotavirus enterotoxin. Proc Natl Acad Sci U S A. 2008;105(26):8811–8.spa
dc.relation.referencesHu L, Crawford SE, Hyser JM, Estes MK, Prasad BVVV. Rotavirus non-structural proteins : Structure and Function. Curr Opin Virol. 2012;2(4):380–8.spa
dc.relation.referencesRivera M, Guerrero CA, Acosta O. Thiol/disulfide exchange occurs in rotavirus structural proteins during contact with intestinal villus cell surface. Acta Virol. 2020;64(1):44–58.spa
dc.relation.referencesRico J, Perez C, Hernandez J, Guerrero C, Acosta O. Cell surface heat shock protein-mediated entry of tumor cell-adapted rotavirus into U-937 cells. Folia Microbiol (Praha). 2021;(0123456789).spa
dc.relation.referencesRico J, Perez C, Guerrero R, Hernandez J, Guerrero C, Acosta O. Implication of heat shock proteins in rotavirus entry into Reh cells. Acta Virol. 2020;64(4):433–50.spa
dc.relation.referencesPerez C, Rico J, Guerrero C, Acosta O. Role of heat-shock proteins in infection of human adenocarcinoma cell line MCF-7 by tumor-adapted rotavirus isolates. Colomb medica (Cali, Colomb. 2021;52(1):e2024196.spa
dc.relation.referencesGuerrero R, Guerrero C, Acosta O. Induction of cell death in the human acute lymphoblastic leukemia cell line reh by infection with rotavirus isolate Wt1-5. Vol. 8, Biomedicines. 2020. 1–33 p.spa
dc.relation.referencesLiou GY, Storz P. Reactive oxygen species in cancer. Vol. 44, Free Radical Research. 2010.spa
dc.relation.referencesYang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, et al. The role of cellular reactive oxygen species in cancer chemotherapy. Vol. 37, Journal of Experimental and Clinical Cancer Research. 2018.spa
dc.relation.referencesGuerrero CA, Bouyssounade D, Zárate S, Iša P, López T, Espinosa R, et al. Heat Shock Cognate Protein 70 Is Involved in Rotavirus Cell Entry. J Virol. 2002;76(8):4096–102.spa
dc.relation.referencesArias CF, López S. Rotavirus cell entry: not so simple after all. Curr Opin Virol. 2021;48:42–8.spa
dc.relation.referencesAbdelhakim AH, Salgado EN, Fu X, Pasham M, Nicastro D, Kirchhausen T, et al. Structural Correlates of Rotavirus Cell Entry. PLoS Pathog. 2014;10(9):e1004355.spa
dc.relation.referencesJiang Y, Zhang Q, Hu Y, Li T, Yu J, Zhao L, et al. ImmunoScore Signature: A Prognostic and Predictive Tool in Gastric Cancer. Ann Surg. 2018;267(3):504–13.spa
dc.relation.referencesSong Z, Wu Y, Yang J, Yang D, Fang X. Progress in the treatment of advanced gastric cancer. Tumor Biol. 2017;39(7).spa
dc.relation.referencesSanjuán R, Grdzelishvili VZ. Evolution of oncolytic viruses. Curr Opin Virol. 2015;13:1–5.spa
dc.relation.referencesHu B, El Hajj N, Sittler S, Lammert N, Barnes R, Meloni-Ehrig A. Gastric cancer: Classification, histology and application of molecular pathology. J Gastrointest Oncol. 2012;3(3):251–61.spa
dc.relation.referencesArnold M, Patton JT, McDonald SM. Culturing, storage, and quantification of rotaviruses. Current Protocols in Microbiology. 2009. p. 1–29.spa
dc.relation.referencesDiallo JS, Roy D, Abdelbary H, de Silva N, Bell JC. Ex vivo infection of live tissue with oncolytic viruses. J Vis Exp. 2011;(52):2–6.spa
dc.relation.referencesIntroini A, Vanpouille C, Fitzgerald W, Broliden K, Margolis L. Ex vivo infection of human lymphoid tissue and female genital mucosa with human immunodeficiency virus 1 and histoculture. J Vis Exp. 2018;2018(140).spa
dc.relation.referencesVarghese F, Bukhari AB, Malhotra R, De A. IHC profiler: An open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One. 2014;9(5):1–11.spa
dc.relation.referencesSeyed Jafari SM, Hunger RE. IHC optical density score: A new practical method for quantitative immunohistochemistry image analysis. Appl Immunohistochem Mol Morphol. 2017;25(1):e12–3.spa
dc.relation.referencesLin PH, Selinfreund R, Wakshull E, Wharton W. Rapid and Efficient Purification of Plasma Membrane from Cultured Cells: Characterization of Epidermal Growth Factor Binding. Biochemistry. 1987;26(3):731–6.spa
dc.relation.referencesSeymour LW, Fisher KD. Oncolytic viruses: finally delivering. Br J Cancer. 2016;114:357–61.spa
dc.relation.referencesLópez S, Arias CF. Multistep entry of rotavirus into cells: A Versaillesque dance. Trends Microbiol. 2004;12(6):271–8.spa
dc.relation.referencesGraham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER, et al. Integrin-using rotaviruses bind alpha2beta1 integrin alpha2 I domain via VP4 DGE sequence and recognize alphaXbeta2 and alphaVbeta3 by using VP7 during cell entry. J Virol. 2003;77(18):9969–78.spa
dc.relation.referencesVousden KH, Lu X. Live or let die: The cell’s response to p53. Nat Rev Cancer. 2002;2(8):594–604.spa
dc.relation.referencesAubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25(1):104–13.spa
dc.relation.referencesGryko M, Pryczynicz A, Zareba K, Kȩdra B, Kemona A, Guzińska-Ustymowicz K. The expression of Bcl-2 and BID in gastric cancer cells. J Immunol Res. 2014;2014:1–5.spa
dc.relation.referencesHolloway G, Coulson BS. Innate cellular responses to rotavirus infection. J Gen Virol. 2013;94(PART 6):1151–60.spa
dc.relation.referencesHundahl SA, Phillips JL, Menck HR. The National Cancer Data Base report on poor survival of U.S. gastric carcinoma patients treated with gastrectomy. Cancer. 2000;88(4):921–32.spa
dc.relation.referencesIzumi D, Nunobe S. How to Decide Approaches and Procedures for Early and Advanced Gastric Cancer ? Can J Gastroenterol Hepatol. 2022;2022:1–5.spa
dc.relation.referencesFouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7(5):1016–36.spa
dc.relation.referencesBreitbach CJ, Paterson JM, Lemay CG, Falls TJ, McGuire A, Parato KA, et al. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther. 2007;15(9):1686–93.spa
dc.relation.referencesKloker L, Yurttas C, Lauer U. Three-dimensional tumor cell cultures employed in virotherapy research. Oncolytic Virotherapy. 2018;Volume 7:79–93.spa
dc.relation.referencesBreitbach CJ, De Silva NS, Falls TJ, Aladl U, Evgin L, Paterson J, et al. Targeting tumor vasculature with an oncolytic virus. Mol Ther. 2011;19(5):886–94.spa
dc.relation.referencesKooti W, Esmaeili Gouvarchin Ghaleh H, Farzanehpour M, Dorostkar R, Jalali Kondori B, Bolandian M. Oncolytic Viruses and Cancer, Do You Know the Main Mechanism? Front Oncol. 2021;11(December):1–11.spa
dc.relation.referencesKhan HA, Mutus B. Protein disulfide isomerase a multifunctional protein with multiple physiological roles. Front Chem. 2014;2(AUG):1–9.spa
dc.relation.referencesGiaginis C, Daskalopoulou SS, Vgenopoulou S, Sfiniadakis I, Kouraklis G, Theocharis SE. Heat Shock Protein-27, -60 and -90 expression in gastric cancer: Association with clinicopathological variables and patient survival. BMC Gastroenterol. 2009;9:1–10.spa
dc.relation.referencesGeyer PE, Maak M, Nitsche U, Perl M, Novotny A, Slotta-Huspenina J, et al. Gastric adenocarcinomas express the glycosphingolipid Gb3/CD77: Targeting of gastric cancer cells with Shiga toxin B-subunit. Mol Cancer Ther. 2016;15(5):1008–17.spa
dc.relation.referencesElmallah MIY, Cordonnier M, Vautrot V, Chanteloup G, Garrido C, Gobbo J. Membrane-anchored heat-shock protein 70 (Hsp70) in cancer. Cancer Lett. 2020;469(August 2019):134–41.spa
dc.relation.referencesGoodarzi Z, Soleimanjahi H, Arefian E, Saberfar E. The effect of bovine rotavirus and its nonstructural protein 4 on ER stress-mediated apoptosis in HeLa and HT-29 cells. Tumor Biol. 2015 Oct 1;37(3):3155–61.spa
dc.relation.referencesZhou Y, Frey TK, Yang JJ. Viral calciomics: Interplays between Ca2+ and virus. Cell Calcium. 2009;46(1):1–17.spa
dc.relation.referencesMartin-Latil S, Mousson L, Autret A, Colbère-Garapin F, Blondel B. Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J Virol. 2007 May;81(9):4457–64.spa
dc.relation.referencesMukherjee A, Patra U, Bhowmick R, Chawla-Sarkar M. Rotaviral nonstructural protein 4 triggers dynamin-related protein 1-dependent mitochondrial fragmentation during infection. Cell Microbiol. 2018 Jun;20(6):e12831spa
dc.relation.referencesChattopadhyay S, Mukherjee A, Patra U, Bhowmick R, Basak T, Sengupta S, et al. Tyrosine phosphorylation modulates mitochondrial chaperonin Hsp60 and delays rotavirus NSP4-mediated apoptotic signaling in host cells. Cell Microbiol. 2017 Mar;19(3).spa
dc.relation.referencesVojtěšek B, Bártek J, Midgley CA, Lane DP. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J Immunol Methods. 1992;151(1–2).spa
dc.relation.referencesFridman JS, Lowe SW. Control of apoptosis by p53. Oncogene. 2003;22(56 REV. ISS. 8):9030–40.spa
dc.relation.referencesBhowmick R, Halder UC, Chattopadhyay S, Nayak MK, Chawla-Sarkar M. Rotavirus-Encoded Nonstructural Protein 1 Modulates Cellular Apoptotic Machinery by Targeting Tumor Suppressor Protein p53. J Virol. 2013;87(12):6840–50.spa
dc.relation.referencesPerez JF, Chemello ME, Liprandi F, Ruiz M-C, Michelangeli F. Oncosis in MA104 Cells Is Induced by Rotavirus Infection through an Increase in Intracellular Ca2 + Concentration. Virology. 1998;252:17–27.spa
dc.relation.referencesSomersan S, Larsson M, Fonteneau JF, Basu S, Srivastava P, Bhardwaj N. Primary Tumor Tissue Lysates Are Enriched in Heat Shock Proteins and Induce the Maturation of Human Dendritic Cells. J Immunol. 2001;167(9):4844–52.spa
dc.relation.referencesSen A, Ding S GB. The Role of Innate Immunity in Regulating Rotavirus Replication, Pathogenesis, and Host Range Restriction and the Implications for Live Rotaviral Vaccine Development. Mucosal Vaccines. 2020;(January):683–97.spa
dc.relation.referencesDi Fiore IJM, Holloway G, Coulson BS. Innate immune responses to rotavirus infection in macrophages depend on MAVS but involve neither the NLRP3 inflammasome nor JNK and p38 signaling pathways. Virus Res. 2015;208.spa
dc.relation.referencesNarváez CF, Angel J, Franco MA. Interaction of Rotavirus with Human Myeloid Dendritic Cells. J Virol. 2005;79(23).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc610 - Medicina y salud::611 - Anatomía humana, citología, histologíaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsNeoplasias gástricasspa
dc.subject.decsStomach Neoplasmseng
dc.subject.decsGastrectomíaspa
dc.subject.decsGastrectomyeng
dc.subject.proposalRotavirusspa
dc.subject.proposalTerapia viral oncolíticaspa
dc.subject.proposalCáncer gástricospa
dc.subject.proposalApoptosisspa
dc.subject.proposalLisis tumoralspa
dc.subject.proposalRotaviruseng
dc.subject.proposalOncolytic viral therapyeng
dc.subject.proposalGastric cancereng
dc.subject.proposalApoptosiseng
dc.subject.proposalTumor lysiseng
dc.titleEstudio del potencial oncolítico del aislamiento rotaviral humano Wt1-5 en adenocarcinoma gástricospa
dc.title.translatedOncolytic potential of human rotaviral isolation Wt 1-5 in gastric adenocarcinomaeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstudio del potencial oncolítico del aislamiento rotaviral humano Wt1-5 en adenocarcinoma gástricospa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79564678.2022.pdf
Tamaño:
68.79 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: