Freight-Transit tour synthesis

dc.contributor.advisorGonzález-Calderón, Carlos Alberto
dc.contributor.advisorPosada Henao, John Jairo
dc.contributor.advisorLópez-Ospina, Héctor Andrés
dc.contributor.authorMoreno Palacio, Diana Patricia
dc.contributor.cvlacMORENO PALACIO, DIANA PATRICIAspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=eXCDGeIAAAAJ&hl=enspa
dc.contributor.googlescholarMoreno Palacio, Diana Patricia [eXCDGeIAAAAJ&hl=en]spa
dc.contributor.orcidhttps://orcid.org/my-orcid?orcid=0000-0002-9697-7646spa
dc.contributor.orcidMoreno Palacio, Diana Patricia [0000-0002-9697-7646]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Diana-Patricia-Moreno-Palaciospa
dc.contributor.researchgateMoreno Palacio, Diana Patricia [Diana-Patricia-Moreno-Palacio]spa
dc.contributor.researchgroupVias y Transporte (Vitra)spa
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=57199156747spa
dc.contributor.scopusMoreno Palacio, Diana Patricia [57199156747]spa
dc.date.accessioned2023-12-13T19:52:30Z
dc.date.available2023-12-13T19:52:30Z
dc.date.issued2023-12
dc.descriptionilustraciones, diagramnasspa
dc.description.abstractThis research introduces a multi-class demand synthesis model for transit and freight, utilizing entropy maximization and fuzzy logic. The model incorporates traffic data and fuzzy parameters to accommodate uncertainty. The use of fuzzy logic enhances classical modeling by providing flexibility and addressing data uncertainty, a critical aspect in resource-constrained decision-making scenarios. Finite resources such as road capacity necessitate optimal decision-making. Flexible models are essential, as not all constraints can be fully met. Fuzzy logic excels in handling variability and uncertainty, improving results' reliability. It aids in estimating congestion patterns, emissions levels, and accidents, thereby providing valuable insights to decision-makers. Fuzzy logic's flexibility is crucial for real-world adaptability. It enhances transportation planning, benefiting urban mobility. Results' accuracy directly impacts decisions, and fuzzy logic incorporates real-world variability into models. The research focuses on triangular membership functions, a commonly used approach. Fuzzy logic's adaptability is compared with deterministic models, demonstrating superior performance. It helps in finding satisfactory solutions when full constraint satisfaction is unfeasible. Pareto frontiers indicate multi-objective optimization. Decision-makers can use this frontier to choose the right model based on accomplishment versus entropy trade-offs. Fuzzy logic accommodates partial solutions when strict constraints cannot be met. Trials with a developed model show that capacity and cost significantly influence outcomes. Sensitivity analyses reveal the model's robustness. The model's application is promising for shared lanes and infrastructure optimization, handling data variability and uncertainty. It aids in decision-making for urban transportation planning and infrastructure development. Government agencies must strategize mobility elements. Accurate data are crucial for decisions related to routes, traffic management, and infrastructure. Fuzzy logic can guide decisions about shared lanes and resource allocation, enhancing urban transportation planning and development.eng
dc.description.abstractEsta investigación presenta un modelo de síntesis de demanda multiclase para tránsito y carga, utilizando maximización de entropía y lógica difusa. El modelo incorpora datos de tráfico y parámetros difusos para adaptarse a la incertidumbre. El uso de la lógica difusa mejora el modelado clásico al proporcionar flexibilidad y abordar la incertidumbre de los datos, un aspecto crítico en escenarios de toma de decisiones con recursos limitados. Los recursos finitos, como la capacidad de las vías, requieren una toma de decisiones óptima. Los modelos flexibles son esenciales, ya que no todas las restricciones pueden cumplirse por completo. La lógica difusa se destaca en el manejo de la variabilidad y la incertidumbre, mejorando la confiabilidad de los resultados. Ayuda a estimar los patrones de congestión, los niveles de emisiones y los accidentes, proporcionando así información valiosa a los responsables de la toma de decisiones. La flexibilidad de la lógica difusa es crucial para la adaptabilidad al mundo real. Mejora la planificación del transporte, beneficiando la movilidad urbana. La precisión de los resultados impacta directamente en las decisiones, y la lógica difusa incorpora la variabilidad del mundo real en los modelos. La investigación se centra en las funciones de pertenencia triangulares, un enfoque de uso común. La adaptabilidad de la lógica difusa se compara con modelos deterministas, lo que demuestra un rendimiento superior. Ayuda a encontrar soluciones satisfactorias cuando la satisfacción total de la restricción es inviable. Las fronteras de Pareto indican optimización multiobjetivo. Los tomadores de decisiones pueden usar esta frontera para elegir el modelo correcto en función de las compensaciones entre logros y entropía. La lógica difusa acomoda soluciones parciales cuando no se pueden cumplir restricciones estrictas. Los ensayos con el modelo desarrollado muestran que la capacidad y el costo influyen significativamente en los resultados. Los análisis de sensibilidad revelan la solidez del modelo. La aplicación del modelo es una alternativa prometedora en el uso de infraestructura compartida (carriles y bahías) y la optimización de la misma, al incluir la variabilidad e incertidumbre de los datos, pudiendo ser de ayuda en la toma de decisiones para la planificación del transporte urbano y el desarrollo de infraestructura. Las agencias gubernamentales deben diseñar estrategias para los elementos de movilidad. Los datos precisos son cruciales para las decisiones relacionadas con las rutas, la gestión del tráfico y la infraestructura. La lógica difusa puede guiar las decisiones sobre carriles compartidos y asignación de recursos, mejorando la planificación y el desarrollo del transporte urbano. (Texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaTransporte de carga y logísticaspa
dc.format.extentxvi, 132 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85092
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ingeniería Civilspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdulaal, M., & LeBlanc, L. J. (1979). Continuous equilibrium network design models. Transportation Research Part B: Methodological, 13(1), 19–32. https://doi.org/10.1016/0191-2615(79)90004-3spa
dc.relation.referencesAbrahamsson, T. (1998). Estimation of Origin-Destination Matrices Using Traffic Counts - A Literature Survey. IIASA, Laxenburg, Austria: IR-98-021. Retrieved from http://pure.iiasa.ac.at/id/eprint/5627/spa
dc.relation.referencesAggarwal, M. (2021). Redefining fuzzy entropy with a general framework. Expert Systems with Applications, 164, 113671. https://doi.org/10.1016/j.eswa.2020.113671spa
dc.relation.referencesAgrawal, A. W., T. Goldman, and N. Hannaford. Shared-Use Bus Priority Lanes on City Streets: Case Studies in Design and Management. Journal of Public Transportation, Vol. 16, No. 4, 2013, pp. 25–41. https://doi.org/http://doi.org/10.5038/2375-0901.16.4.2.spa
dc.relation.referencesAl-Battaineh, O., & Kaysi, I. A. (2005). Commodity-based truck origin--destination matrix estimation using input--output data and genetic algorithms. Transportation Research Record, 1923(1), 37–45.spa
dc.relation.referencesBar-Gera, Hillel, Fredrik Hellman, and Michael Patriksson. 2013. “Computational Precision of Traffic Equilibria Sensitivities in Automatic Network Design and Road Pricing.” Procedia-Social and Behavioral Sciences 80:41–60.spa
dc.relation.referencesBastida, C., & Holguin-Veras, J. (2009). Freight Generation Models. Comparative analysis of regression models and multiple classification analysis. Transportation Research Record: Journal of the Transportation Research Board, 2097(1), 51–61. https://doi.org/10.3141/2097-07spa
dc.relation.referencesBellman, R., & Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17(4), B141–B164. Retrieved from https://www.jstor.org/stable/2629367spa
dc.relation.referencesBen-Dor, G., E. Ben-Elia, and I. Benenson. Assessing the Impacts of Dedicated Bus Lanes on Urban Traffic Congestion and Modal Split with an Agent-Based Model. Procedia Computer Science, Vol. 130, 2018, pp. 824–829. https://doi.org/10.1016/j.procs.2018.04.071.spa
dc.relation.referencesBit, A. K., Biswal, M. P., & Alam, S. S. (1992). Fuzzy programming approach to multicriteria decision making transportation problem. Fuzzy Sets and Systems, 50(2), 135–141. https://doi.org/10.1016/0165-0114(92)90212-Mspa
dc.relation.referencesBit, A. K., Biswal, M. P., & Alam, S. S. (1993a). An additive fuzzy programming model for multiobjective transportation problem. Fuzzy Sets and Systems, 57(3), 313–319. https://doi.org/10.1016/0165-0114(93)90026-Espa
dc.relation.referencesBit, A. K., Biswal, M. P., & Alam, S. S. (1993b). Fuzzy programming approach to multiobjective solid transportation problem. Fuzzy Sets and Systems, 57(2), 183–194. https://doi.org/10.1016/0165-0114(93)90158-Espa
dc.relation.referencesBlack, J. (2018). Urban transport planning: Theory and practice (Vol. 4). Routledge.spa
dc.relation.referencesBoard, T. R., Engineering, of S., & Medicine. (2016). Using Commodity Flow Survey Microdata and Other Establishment Data to Estimate the Generation of Freight, Freight Trips, and Service Trips: Guidebook. (J. Holguín-Veras, C. Lawson, C. Wang, M. Jaller, C. González-Calderón, S. Campbell, … D. Ramirez, Eds.). Washington, DC, USA: The National Academies Press. https://doi.org/10.17226/24602spa
dc.relation.referencesBureau of Public Roads. Traffic Assignment Manual. Washington, D.C., 1964.spa
dc.relation.referencesCampbell, S., Holguin-Veras, J., Ramirez-Rios, D. G., Gonzalez-Calderon, C. A., Kalahasthi, L., & Wojtowicz, J. (2018). Freight and service parking needs and the role of demand management. European Transport Research Review, 10(2), 1–13. https://doi.org/http://dx.doi.org/10.1186/s12544-018-0309-5spa
dc.relation.referencesChakirov, A. Sioux Falls. In The Multi-Agent Transport Simulation MATSim (A. Horni, K. Nagel, and K. W. Axhausen, eds.), Ubiquity Press, London, pp. 385–388.spa
dc.relation.referencesChakirov, Artem, and Pieter J. Fourie. 2014. Enriched Sioux Falls Scenario with Dynamic and Disaggregate Demand. Singapore.spa
dc.relation.referencesChanas, S., & Kuchta, D. (1996). A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets and Systems, 82(3), 299–305. https://doi.org/10.1016/0165-0114(95)00278-2spa
dc.relation.referencesCruz-Daraviña, P. A. ;, I. Sanchez-Diaz, and J. P. Bocarejo Suescún. Bus Rapid Transit (BRT) and Urban Freight-Competition for Space in Densely Populated Cities. Sustainability, Vol. 13, No. 6611, 2021. https://doi.org/10.3390/su13126611.spa
dc.relation.referencesDe Cea, Joaquin, and Enrique Fernández. 1993. “Transit Assignment for Congested Public Transport Systems: An Equilibrium Model.” Transportation Science 27(2):133–47.spa
dc.relation.referencesFan, W., & Machemehl, R. B. (2006). Optimal Transit Route Network Design Problem with Variable Transit Demand : Genetic Algorithm Approach. Journal of Transportation Engineering, 132(January), 40–51. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:1(40)spa
dc.relation.referencesFisk, C. S. 1989. “Trip Matrix Estimation from Link Traffic Counts: The Congested Network Case.” Transportation Research Part B 23(5):331–36. doi: 10.1016/0191-2615(89)90009-X.spa
dc.relation.referencesFriesz, Terry L., Hsun-Jung Cho, Nihal J. Mehta, Roger L. Tobin, and G. Anandalingam. 1992. “A Simulated Anneal-ing Approach to the Network Design Problem with Variational Inequality Constraints.” Transportation Science 26(1):18–26.spa
dc.relation.referencesGonzalez-Calderon, C. A. (2014). Multiclass Equilibrium Demand Synthesis. PhD dissertation. Doctor of Philosophy, Rensselaer Polytechnic Institute.spa
dc.relation.referencesGonzalez-Calderon, C. A., & Holguín-Veras, J. (2019). Entropy-based freight tour synthesis and the role of traffic count sampling. Transportation Research Part E: Logistics and Transportation Review, 121(November 2017), 63–83. https://doi.org/10.1016/j.tre.2017.10.010spa
dc.relation.referencesGonzalez-Calderon, C. A., Sanchez-Diaz, I., Sarmiento-Ordosgoitia, I., & Holguin-Veras, J. (2018). Characterization and analysis of metropolitan freight patterns in Medellin, Colombia. European Transport Research Review, 10(2), 23. https://doi.org/10.1186/s12544-018-0290-zspa
dc.relation.referencesGonzalez-Feliu, J., & Sánchez-Díaz, I. (2019). The influence of aggregation level and category construction on estimation quality for freight trip generation models. Transportation Research Part E: Logistics and Transportation Review, 121, 134–148. https://doi.org/10.1016/j.tre.2018.07.007spa
dc.relation.referencesGunes, S., A. Goodchild, C. Greene, and V. Nemani. Evaluating Traffic Impacts of Permitting Trucks in Transit-Only Lanes. Transportation Research Record, 2021, p. 03611981211031888.spa
dc.relation.referencesHannan, E. L. (1981a). Linear programming with multiple fuzzy goals. Fuzzy Sets and Systems, 6(3), 235–248. https://doi.org/10.1016/0165-0114(81)90002-6spa
dc.relation.referencesHannan, E. L. (1981b). On Fuzzy Goal Programming. Decision Sciences, 12(3), 522–531. https://doi.org/10.1111/j.1540-5915.1981.tb00102.xspa
dc.relation.referencesHewings, Geoffrey J. D., and Esteban Fernandez-Vazquez. 2019. “Entropy Maximization and Input–Output Analy-sis.” Interdisciplinary Science Reviews 44(3–4):272–85.spa
dc.relation.referencesHolguin-Veras, J. (2013). Freight demand modeling: state of the art and practice. In Onlinepubs Trb. Washington, D.C.: paper presented to Adapting freight models and traditional freight data programs for performance measurement Workshop. Retrieved from http://onlinepubs.trb.org/onlinepubs/conferences/2013/Freight/Holguin-Veras.pdfspa
dc.relation.referencesHolguín-Veras, J., & Jaller, M. (2014). Comprehensive freight demand data collection framework for large urban areas. In Sustainable Urban Logistics: Concepts, Methods and Information Systems (pp. 91–112). Springer.spa
dc.relation.referencesHolguin-Veras, J., & Patil, G. R. (2005). Observed trip chain behavior of commercial vehicles. Transportation Research Record, 1906(1), 74–80.spa
dc.relation.referencesHolguin-Veras, J., & Thorson, E. (2003). Practical implications of modeling commercial vehicle empty trips. Transportation Research Record, (1833), 87–94. https://doi.org/10.3141/1833-12spa
dc.relation.referencesHolguin-Veras, J., Amaya-Leal, J., Wojtowicz, J., Jaller, M., Gonzalez-Calderon, C. A., Sanchez-Diaz, I., Wang, X., Haake, D. G., Rhodes, S. S. ;, Darville Hodge, S., Frazier, R. J., Nick, M. K., Dack, J., & Casinelli, L. (2015). Improving freight system performance in metropolitan areas: a planning guide. https://doi.org/10.17226/22159spa
dc.relation.referencesHolguin-Veras, J., and M. Cetin. Optimal Tolls for Multi-Class Traffic: Analytical Formulations and Policy Implications. Transportation Research Part A: Policy and Practice, Vol. 43, No. 4, 2009, pp. 445–467. https://doi.org/10.1016/j.tra.2008.11.012.spa
dc.relation.referencesHolguin-Veras, J., Encarnacion, T., Ramirez-Rios, D., He, X. (Sean), Kalahasthi, L., Perez-Guzman, S., Sanchez-Diaz, I., & Gonzalez-Calderon, C. A. (2020). A Multiclass Tour Flow Model and lts Role in Multiclass Freight Tour Synthesis. Transportation Science. https://doi.org/10.1287/trsc.2019.0936spa
dc.relation.referencesHolguín-Veras, J., Hodge, S., Wojtowicz, J., Singh, C., Wang, C., Jaller, M., … Cruz, B. (2018). The New York city off-hour delivery program: a business and community-friendly sustainability program. Interfaces, 48(1), 70–86. https://doi.org/10.1287/inte.2017.0929spa
dc.relation.referencesHolguin-Veras, J., Jaller, M., Destro, L., Ban, X., Lawson, C., & Levinson, H. (2011). Freight generation, freight trip generation, and perils of using constant trip rates. Transportation Research Record: Journal of the Transportation Research Board, 2224, 68–81. https://doi.org/10.3141/2224-09spa
dc.relation.referencesHolguin-Veras, J., Jaller, M., Sanchez-Diaz, I., Campbell, S., & Lawson, C. (2014). Freight Generation and Freight Trip Generation Models. In Modelling Freight Transport (pp. 43–63). Elsevier Inc. https://doi.org/10.1016/B978-0-12-410400-6.00003-3spa
dc.relation.referencesHu, Baoyu, Yanli Ma, Yulong Pei, and Wei Gao. 2020. “Statistical Analysis and Predictability of Inter-Urban High-way Traffic Flows: A Case Study in Heilongjiang Province, China.” Transportmetrica A: Transport Science 16(3):1062–78.spa
dc.relation.referencesJosefsson, Magnus, and Michael Patriksson. 2007. “Sensitivity Analysis of Separable Traffic Equilibrium Equilibria with Application to Bilevel Optimization in Network Design.” Transportation Research Part B: Methodological 41(1):4–31.spa
dc.relation.referencesKonstantinos, K., and K. Matthew. Transit Route Network Design Problem: Review. Journal of Transportation Engineering, Vol. 135, No. 8, 2009, pp. 491–505. https://doi.org/10.1061/(ASCE)0733-947X(2009)135:8(491).spa
dc.relation.referencesKrisztin, T. (2018). Semi-parametric spatial autoregressive models in freight generation modeling. Transportation Research Part E: Logistics and Transportation Review, 114, 121–143. https://doi.org/10.1016/j.tre.2018.03.003spa
dc.relation.referencesKurauchi, F., Bell, M. G. H., & Schmöcker, J.-D. (2003). Capacity Constrained Transit Assignment with Common Lines. Journal of Mathematical Modelling and Algorithms, 2(4), 309–327. https://doi.org/10.1023/B:JMMA.0000020426.22501.c1spa
dc.relation.referencesLam, W. H. K., Wu, Z. X., & Chan, K. S. (2003). Estimation of Transit Origin-Destination Matrices from Passenger Counts Using a Frequency-Based Approach. Journal of Mathematical Modelling and Algorithms, 2(4), 329–348. https://doi.org/10.1023/B:JMMA.0000020423.93104.14spa
dc.relation.referencesLam, W. H. K., Z. Y. Gao, K. S. Chan, and H. Yang. 1999. “A Stochastic User Equilibrium Assignment Model for Congested Transit Networks.” Transportation Research Part B: Methodological 33(5):351–68. doi: 10.1016/S0191-2615(98)00040-X.spa
dc.relation.referencesLam, William H. K., Jing Zhou, and Zhao Han Sheng. 2002. “A Capacity Restraint Transit Assignment with Elastic Line Frequency.” Transportation Research Part B: Methodological 36(10):919–38. doi: 10.1016/S0191-2615(01)00042-X.spa
dc.relation.referencesLeBlanc, L. J., E. K. Morlok, and W. P. Pierskalla. An Efficient Approach to Solving the Road Network Equilibrium Traffic Assignment Problem. Transportation Research, Vol. 9, No. 5, 1975, pp. 309–318. https://doi.org/10.1016/0041-1647(75)90030-1.spa
dc.relation.referencesLee, S., and J. Lim. Effectiveness And Macroeconomic Impact Analysis Of Policy Instruments For Sustainable Transport In Korea: A CGE Modelling Approach. WIT Transactions on the Built Environment, Vol. 60, 2002, pp. 1–12.spa
dc.relation.referencesLi, T., Sun, H., Wu, J., Gao, Z., Ge, Y., & Ding, R. (2019). Optimal urban expressway system in a transportation and land use interaction equilibrium framework. Transportmetrica A: Transport Science, 15(2), 1247–1277. https://doi.org/10.1080/23249935.2019.1576798spa
dc.relation.referencesLim, Y., & Kim, H. (2016). A combined model of trip distribution and route choice problem. Transportmetrica A: Transport Science, 12(8), 721–735. https://doi.org/10.1080/23249935.2016.1166171spa
dc.relation.referencesLópez-Ospina, H. (2013). Modelo de maximización de la entropía y costos generalizados intervalares para la distribución de viajes urbanos. Ingenieria y Universidad, 17(2), 390–407. Retrieved from https://www.redalyc.org/articulo.oa?id=47728826008spa
dc.relation.referencesLópez-Ospina, H., Cortés, C. E., Pérez, J., Peña, R., Figueroa-García, J. C., & Urrutia-Mosquera, J. (2021). A maximum entropy optimization model for origin-destination trip matrix estimation with fuzzy entropic parameters. Transportmetrica A: Transport Science, 1–38. https://doi.org/10.1080/23249935.2021.1913257spa
dc.relation.referencesLuathep, P., A. Sumalee, W. H. K. Lam, Z.-C. Li, and H. K. Lo. Global Optimization Method for Mixed Transportation Network Design Problem: A Mixed-Integer Linear Programming Approach. Transportation Research Part B: Methodological, Vol. 45, No. 5, 2011, pp. 808–827.spa
dc.relation.referencesLuhandjula, M. K. (2015). Fuzzy optimization: Milestones and perspectives. Fuzzy Sets and Systems, 274, 4–11. https://doi.org/10.1016/j.fss.2014.01.004spa
dc.relation.referencesMajidi, S., Hosseini-Motlagh, S. M., Yaghoubi, S., & Jokar, A. (2017). Fuzzy green vehicle routing problem with simultaneous pickup-delivery and time windows. RAIRO - Operations Research, 51(4), 1151–1176. https://doi.org/10.1051/ro/2017007spa
dc.relation.referencesMarcotte, Patrice, and Gerald Marquis. 1992. “Efficient Implementation of Heuristics for the Continuous Network Design Problem.” Annal of Operations Research 34:163–76.spa
dc.relation.referencesMcleod, F., and T. Cherrett. Modelling the Impacts of Shared Freight-Public Transport Lanes in Urban Centers. 9.spa
dc.relation.referencesMeng, Q., H. Yang, and M. G. H. Bell. An Equivalent Continuously Differentiable Model and a Locally Convergent Algorithm for the Continuous Network Design Problem. Transportation Research Part B: Methodological, Vol. 35, No. 1, 2001, pp. 83–105.spa
dc.relation.referencesMoreno-Palacio, D. P., Gonzalez-Calderon, C. A., López-Ospina, H., Gil-Marin, J. K., & Posada-Henao, J. J. (2023). Freight tour synthesis based on entropy maximization with fuzzy logic constraints. Transportation. https://doi.org/10.1007/s11116-023-10407-yspa
dc.relation.referencesMoreno-Palacio, D. P., Gonzalez-Calderon, C. A., Posada-Henao, J. J., Lopez-Ospina, H., & Gil-Marin, J. K. (2022). Entropy-Based Transit Tour Synthesis Using Fuzzy Logic. In Sustainability (Vol. 14, Issue 21). https://doi.org/10.3390/su142114564spa
dc.relation.referencesMoreno-Palacio, Diana Patricia, Carlos Alberto Gonzalez-Calderon, Héctor López-Ospina, Jhan Gil-Marin, and John Jairo Posada-Henao. 2022. “POMS-2022-Conference Program Book.” P. 147 in Freight Tour Synthesis based on Entropy - Fuzzy Logic, edited by T. Dhakar, R. Tewari, and S. Singhania. PRODUCTION AND OPERATIONS MANAGEMENT SOCIETY.spa
dc.relation.referencesMorlok, E. K., Schofer, J. L., Pierskalla, W. P., Marsten, R. E., Agarwal, S. K., Stoner, J. W., … Spacek, D. T. (1973). Development and Application of a Highway Network Design Model (Vol. 1,2).spa
dc.relation.referencesNagy, A., Ercsey, Z., Tick, J., & Kovács, Z. (2019). Bus transport process network synthesis. Acta Polytechnica Hungarica, 16(7), 25–43. https://doi.org/10.12700/APH.16.7.2019.7.2spa
dc.relation.referencesNational Association of City Transportation Officials. Transit Street Design Guide. Washington, 2016.spa
dc.relation.referencesNguyen, Sang, and Stefano Pallottino. 1988. “Equilibrium Traffic Assignment for Large Scale Transit Networks.” European Journal of Operational Research 37(2):176–86.spa
dc.relation.referencesNielsen, Otto Anker. 2000. “A Stochastic Transit Assignment Model Considering Differences in Passengers Utility Functions.” Transportation Research Part B: Methodological 34(5):377–402. doi: 10.1016/S0191-2615(99)00029-6.spa
dc.relation.referencesNoriega, Y., & Florian, M. (2007). Multi-Class Demand Matrix Adjustment. Canada: CIRRELT.spa
dc.relation.referencesNuzzolo, Agostino, and Umberto Crisalli. 2001. “Estimation of Transit Origin/Destination Matrices from Traffic Counts Using a Scheduled-Based Approach.” in European Transport Forum 2001. Cambridge, UK: Association for European Transport.spa
dc.relation.referencesOrtuzar, J. de D., & Willumsen, L. G. (2011). Modelling Transport (Fourth Edi). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119993308spa
dc.relation.referencesSakawa, M. (1983). Interactive Fuzzy Decision Making for Multiobjective Linear Programming Problems and its Application. IFAC Proceedings Volumes, 16(13), 295–300. https://doi.org/10.1016/S1474-6670(17)62049-4spa
dc.relation.referencesSakawa, M., & Yano, H. (1987). An Interactive Fuzzy Satisficing Method for Multiobjective Linear Programming Problems with Fuzzy Parameters. IFAC Proceedings Volumes, 20(9), 437–442. https://doi.org/10.1016/S1474-6670(17)55745-6spa
dc.relation.referencesSanchez-Diaz, I., Holguin-Veras, J., & Ban, X. (Jeff). (2015). A time-dependent freight tour synthesis model. Transportation Research Part B: Methodological, 78, 144–168. https://doi.org/10.1016/j.trb.2015.04.007spa
dc.relation.referencesSanchez-Diaz, I., Holguin-Veras, J., & Wang, X. (2016). An Exploratory Analysis of Spatial Effects on Freight Trip Attraction. Transportation, 43(1), 177–196. https://doi.org/10.1007/s11116-014-9570-1spa
dc.relation.referencesSoehodo, S., & Koshi, M. (1999). Design of public transit network in urban area with elastic demand. Journal of Advanced Transportation, 33(3), 335–369. https://doi.org/10.1002/atr.5670330306spa
dc.relation.referencesSpiess, Heinz, and Michael Florian. 1989. “Optimal Strategies: A New Assignment Model for Transit Networks.” Transportation Research Part B: Methodological 23(2):83–102.spa
dc.relation.referencesSun, Chao, Yulin Chang, Yuji Shi, Lin Cheng, and Jie Ma. 2019. “Subnetwork Origin-Destination Matrix Estimation Under Travel Demand Constraints.” Networks and Spatial Economics 19(4):1123–42. doi: 10.1007/s11067-019-09449-6.spa
dc.relation.referencesSuwansirikul, Chaisak, Terry L. Friesz, and Roger L. Tobin. 1987. “Equilibrium Decomposed Optimization: A Heu-ristic for the Continuous Equilibrium Network Design Problem.” Transportation Science 21(4):254–63.spa
dc.relation.referencesTamin, and LG Willumsem. 1992. “Freight Demand Model Estimation From Traffic Counts.” Simplified Transport Demand Modelling (Perspectives 2) 75–86.spa
dc.relation.referencesTang, Jinjun, Shen Zhang, Xinqiang Chen, Fang Liu, and Yajie Zou. 2018. “Taxi Trips Distribution Modeling Based on Entropy-Maximizing Theory: A Case Study in Harbin City—China.” Physica A: Statistical Mechanics and Its Applications 493:430–43.spa
dc.relation.referencesTavasszy, L. A., & Stada, J. E. (1994). THE IMPACT OF DECREASING BORDER BARRIERS IN EUROPE ON FREIGHT TRANSPORT BY ROAD. In Transportation Research Forum, 36th Annual Conference, 2 volumesTransportation Research Forum.spa
dc.relation.referencesTrubia, S., A. Severino, S. Curto, F. Arena, and G. Pau. On BRT Spread around the World: Analysis of Some Particular Cities. Infrastructures, 2020. https://doi.org/10.3390/infrastructures5100088.spa
dc.relation.referencesVelichko, Andrey. 2016. “Interregional Transportation Modeling for the Far East of Russia Macro-Region.” Pp. 394–403 in DOOR (Supplement).spa
dc.relation.referencesViegas, J., and B. Lu. Turn of the Century, Survival of the Compact City, Revival of Public Transport. Bottlenecks in Transportation and the Port Industry.(H. Meersman, Ed). Antwerp, Belgium, 1996, pp. 55–63.spa
dc.relation.referencesWang, Q., & Holguin-Veras, J. (2009). Tour-Based Entropy Maximization Formulations of Urban Commercial Vehicle Movements. In 2009 Annual Meeting of the Transportation Research Board (pp. 1–22). New York: 2009 Annual Meeting of the Transportation Research Board. Retrieved from https://abstracts.aetransport.org/spa
dc.relation.referencesWardrop, J. G. (1952). Some Theoretical Aspects of Road Traffic Research. ROAD ENGINEERING DIVISION MEETING.spa
dc.relation.referencesWei, Xueyan, Weijie Yu, Wei Wang, De Zhao, and Xuedong Hua. n.d. “Optimization and Comparative Analysis of Traffic Restriction Policy by Jointly Considering Carpool Exemptions.” doi: 10.3390/su12187734.spa
dc.relation.referencesWigan, M., Browne, M., Allen, J., & Anderson, S. (2002). Understanding the growth in service trips and developing transport modelling approaches to commercial, service and light goods movements. Association for European Transport, 15. Retrieved from http://abstracts.aetransport.org/paper/index/id/1370/confid/8spa
dc.relation.referencesWillumsen, L. G. (1978a). Estimation of an OD Matrix from Traffic Counts - A Review. Leeds, UK: Institute of Transport Studies, University of Leeds. Retrieved from http://eprints.whiterose.ac.uk/2415/spa
dc.relation.referencesWillumsen, L. G. (1978b). OD matrices from network data: a comparison of alternative methods for their estimation. In Proc. of PTRC Summer Annual Meeting 1978 Seminar in Transport Models.spa
dc.relation.referencesWillumsen, L. G. 1982. Estimation of Trip Matrices from Volume Counts. Validation of a Model under Congested Condi-tions.spa
dc.relation.referencesWillumsen, L. G. 1984. “Estimating Time-Dependent Trip Matrices from Traffic Counts.” Pp. 397–412 in Proceedings of the Ninth International Symposium on Transportation and Traffic Theory, edited by J. Volmuller and R. Hamers-lag. Utrecht, Netherlands: VNU Science Press.spa
dc.relation.referencesWilson, A. G. (1969). The use of entropy maximising models, in the theory of trip distribution, mode split and route split. Journal of Transport Economics and Policy, 3(1), 108–126. Retrieved from https://www.jstor.org/stable/20052128spa
dc.relation.referencesWilson, A. G. (1970). Inter‐regional Commodity Flows: Entropy Maximizing Approaches. Geographical Analysis, 2(3), 255–282. https://doi.org/10.1111/j.1538-4632.1970.tb00859.xspa
dc.relation.referencesWilson, A. G. A Statistical Theory of Spatial Distribution Models. Transportation Research, Vol. 1, No. 3, 1967, pp. 253–269. https://doi.org/10.1016/0041-1647(67)90035-4.spa
dc.relation.referencesWirasinghe, S. C., Kattan, L., Rahman, M. M., Hubbell, J., Thilakaratne, R., & Anowar, & S. (2013). Bus rapid transit-a review. International Journal of Urban Sciences, 17(1), 1–31. https://doi.org/10.1080/12265934.2013.777514spa
dc.relation.referencesWong, S. C., and C. O. Tong. 1998. “Estimation of Time-Dependent Origin-Destination Matrices for Transit Net-works.” Transportation Research Part B: Methodological 32(1):35–48. doi: 10.1016/S0191-2615(97)00011-8.spa
dc.relation.referencesWong, S. C., C. O. Tong, K. I. Wong, W. H. K. Lam, H. K. Lo, H. Yang, and H. P. Lo. 2005. “Estimation of Multiclass Origin-Destination Matrices from Traffic Counts.” Journal of Urban Planning and Development 131(1):19–29. doi: 10.1061/(ASCE)0733-9488(2005)131:1(19).spa
dc.relation.referencesWu, Jia Hao, Michael Florian, and Patrice Marcotte. 1994. “Transit Equilibrium Assignment: A Model and Solution Algorithms.” Transportation Science 28(3):193–203.spa
dc.relation.referencesYou, S. I., & Ritchie, S. G. (2019). Tour-Based Truck Demand Modeling with Entropy Maximization Using GPS Data. Journal of Advanced Transportation, 2019. https://doi.org/10.1155/2019/5021026spa
dc.relation.referencesZadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-Xspa
dc.relation.referencesZadeh, L. A. (1968). Fuzzy algorithms. Information and Control, 12(2), 94–102. https://doi.org/10.1016/S0019-9958(68)90211-8spa
dc.relation.referencesZadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 100(6), 9–34. https://doi.org/10.1016/S0165-0114(99)80004-9spa
dc.relation.referencesZhang, Y., & Ye, Z. (2008). Short-term traffic flow forecasting using fuzzy logic system methods. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 12(3), 102–112. https://doi.org/10.1080/15472450802262281spa
dc.relation.referencesZimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45–55. https://doi.org/10.1016/0165-0114(78)90031-3spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembTransporte de carga
dc.subject.lembFreight services
dc.subject.lembTransporte de pasajeros
dc.subject.lembTransportation-passengers traffic
dc.subject.proposalEntropyeng
dc.subject.proposalFreight Transportationeng
dc.subject.proposalFreight Tour Synthesiseng
dc.subject.proposalTransit Tour Synthesiseng
dc.subject.proposalFuzzy Logiceng
dc.subject.proposalSioux Falls Networkeng
dc.subject.proposalFreight and Transit Tour Synthesiseng
dc.subject.proposalEntropíaspa
dc.subject.proposalTransporte de cargaspa
dc.subject.proposalSíntesis de toures de cargaspa
dc.subject.proposalSíntesis de toures de busesspa
dc.subject.proposalSíntesis de toures de carga y busesspa
dc.subject.proposalLógica difusaspa
dc.subject.proposalRed de Sioux Fallsspa
dc.titleFreight-Transit tour synthesiseng
dc.title.translatedSíntesis de toures de carga y de buses de transporte públicospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
43203448.2023.pdf
Tamaño:
2.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Civil

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: