Caracterización del metamorfismo de alta presión para eclogitas y esquistos azules, emplazados dentro del Complejo Arquía, en el sector Pijao – Génova (Quindío), flanco oeste, Cordillera Central, Colombia

dc.contributor.advisorZuluaga Castrillón, Carlos Augusto
dc.contributor.advisorRíos Reyes, Carlos Alberto
dc.contributor.authorCastellanos Alarcón, Oscar Mauricio
dc.contributor.researchgroupTecnicas Aplicadas A Tectonica y Analisis de Cuencasspa
dc.coverage.regionQuindío, Colombia
dc.coverage.regionPijao, Génova, Quindío
dc.date.accessioned2022-03-28T20:30:48Z
dc.date.available2022-03-28T20:30:48Z
dc.date.issued2020
dc.descriptionilustraciones, fotografías, graficas, mapasspa
dc.description.abstractLas rocas de alta presión del Complejo Arquía, Cordillera Central de Colombia, consisten principalmente de eclogitas retrogradadas y esquistos y neises azules, así como rocas básicas, pelíticas, carbonatadas y ultramáficas metamorfizadas, de protolitos que varían entre basálticos toleíticos tipo N-MORB, a basaltos alcalinos de intra-placa y a basaltos de islas oceánicas, así como un aporte de sedimentos de fuentes oceánicas y continentales. Estas litologías revelan una subducción de régimen térmico tibio, correspondiente a un gradiente aproximado de 10°C/Km, y posteriores procesos de acreción y sutura sobre el margen oeste de la placa suramericana. En el presente estudio se discuten sus implicaciones tectónicas con el fin de plantear un modelo geológico acerca del origen, metamorfismo y exhumación de estas rocas. La trayectoria de P-T se caracteriza por una etapa prógrada que alcanzó la facies eclogita con rangos entre 18-23 kbar y 620-670 °C, mientras que la etapa retrógrada alcanzó las facies epidota-anfibolita y esquistos verdes con rangos entre 9-14 kbar y 540-590 °C. Una granofelsa de cianita, fengita y granate produjo una edad Sm-Nd en granate de 124.2±1.2 Ma con MSWD=1.5 correspondiente a Aptiano-Barremiano, en el Cretácico temprano. Las rocas de alta presión del Complejo Arquía se consideran como el producto de un melange tectónico exhumado por medio de un canal de subducción fósil, como resultado de un proceso convergente de tipo subducción pacífica acrecionaria, suturado en su actual posición tectónica dentro de los Andes Colombianos. (Texto tomado de la fuente)spa
dc.description.abstractHigh-pressure rocks of the Arquía Complex, Central Cordillera of Colombia, consist mainly of retrograde eclogites and schists and blue gneisses, as well as metamorphosed basic, pelitic, carbonate and ultramafic rocks, of protoliths that vary between toleitic basalts type N-MORB, to intra-plate alkaline basalts and oceanic island basalts, as well as a contribution of sediments from oceanic and continental sources. These lithologies reveal a subduction of a warm thermal regime, corresponding to an approximate gradient of 10 °C/km, and subsequent accretion and suturing processes on the west margin of the South American plate. In this study its tectonic implications are discussed in order to propose a geological model about the origin, metamorphism and exhumation of these rocks. The trajectory of PT is characterized by a prograde stage that reached the eclogite facies with ranges between 18-23 kbar and 620-670 °C, while the retrograde stage reached the epidote-amphibolite and greenschists facies with ranges between 9-14 kbar and 540-590 °C. A granofelsa of kyanite, phengite and garnet produced a Sm-Nd age in garnet of 124.2 ± 1.2 Ma with MSWD = 1.5 corresponding to Aptian-Barremian, in the early Cretaceous. High-pressure rocks of the Arquía Complex are considered to be the product of a tectonic melange exhumed through a fossil subduction channel, as a result of a converging process of a pacific accretionary subduction type, sutured in its current tectonic position within the Colombian Andes.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Geocienciasspa
dc.description.researchareaPetrologíaspa
dc.format.extent303 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81410
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Geocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Geocienciasspa
dc.relation.referencesAgard, P., Yamato, P., Jolivet, L. y Burov, E. (2009). Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms. Earth-Science Reviews, 92(4), 53–79. Doi:10.1016/j.earscirev.2008.11.002spa
dc.relation.referencesArcay, D., Tric, E. y Doin, P. (2005). Numerical simulations of subduction zones: effect of slab dehydration on the mantle wedge dynamics. Physics of the Earth and Planetary Interiors, 149(1), 133-153. Doi: 10.1016y/j.pepi.2004.08.020.spa
dc.relation.referencesAspden, A. y Litherland, M. (1992). The geology and Mesozoic collisional history of the Cordillera Real, Ecuador. Tectonophysics, 205, 187-204.spa
dc.relation.referencesBailey, W. (1980). Structure of layer silicates. En: Brindley, G. W. and Brown, G. (eds) Crystal Structures of clay minerals and their X-ray identification. London: Mineralogical Society.spa
dc.relation.referencesBaldwin, A., Powell, R., Williams, L. y Goncalves, P. (2007). Formation of eclogite, and reaction during exhumation to mid-crustal levels, Snowbird tectonic zone, western Canadian Shield. J. Metamorphic Geol, 25(5), 953–974. Doi:10.1111/j.1525-1314.2007.00737.xspa
dc.relation.referencesBanno, S. (1970). Classification of eclogites in terms of physical conditions of their origin. Physics of the Earth and Planetary Interiors, 3(45), 405-421. DOI: 10.1016/0031-9201(70)90083-Xspa
dc.relation.referencesBlanco, F., Garcia, A., Rojas, Y., Rodriguez, A., Lázaro, C. y Iturralde, M. (2010). Metamorphic evolution of subducted hot oceanic crust (La Corea Mélange, Cuba). American Journal of Science, 310(4), 889–915. Doi:10.2475/11.2010.01spa
dc.relation.referencesBlanco, F., Proenza, A., García, A., Tauler, E. y Gali, S. (2011). Serpentinites and serpentinites within a fossil subdution channel: La Corea melange, eastern Cuba. January 2011. Geologica Acta, 9(34), 389-405.spa
dc.relation.referencesBosch, D., Gabriele, P., Lapierre, H., Malfere, L. y Jaillard, E. (2002). Geodynamic significance of the Raspas Metamorphic Complex (SW Ecuador): geochemical and isotopic constraints. Tactonophysics, 345(56), 83-1020.spa
dc.relation.referencesBustamante, A., Juliani, C., Essene, J., Hall, M. y Hyppolito, T. (2012). Geochemical constraints on blueschist- and amphibolite-facies rocks of the Central Cordillera of Colombia: the Andean Barragán region. International Geology Review, 54(9), 1013–1030. http://dx.doi.org/10.1080/00206814.2011.594226spa
dc.relation.referencesBustamante, A., Juliani, C., Hall, C. y Essene, E. (2011). 40Ar/39Ar ages from blueschists of the Jambaló region, Central Cordillera of Colombia: implications on the styles of accretion in the Northern Andes. Geologica Acta, 9(4), 351-362.spa
dc.relation.referencesCarswell, A. (1990). Eclogite Facies Rocks. London: Blackie.spa
dc.relation.referencesCediel, F., Shaw, P. y Cáceres, C. (2003). Tectonic Assembly of the Northern Andean Block. Mexico and the Caribbean region: plate tectonics, basin formation and hydrocarbon habitats. En C. Bartolini, R. T. Buffler and J. F. Blickwede, American Association of Petroleum Geologists, 2(79), 815-848.spa
dc.relation.referencesChoi, H., Mukasa, B., Andronikov, V. y Marcano, C. (2007). Extreme Sr-Nd-Pb-Hf isotopic compositions exhibited by the Tinaquillo peridotite massif, northern Venezuela. Implications for geodynamic setting. Contributions to Mineralogy and Petrology, 4(153), 443-463. Doi: 10.1007/s00410-006-0159-3.spa
dc.relation.referencesChopin, C. (2003). Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 7(212), 1–14.spa
dc.relation.referencesChristensen, N., Rosenfeld, L. y DePaolo, J. (1989). Rates of tectonometamorphic processes from rubidium and strontium isotopes in garnet. Science, 1(244), 1465-1469.spa
dc.relation.referencesCloos M., and Shreve R. L. (1988). Subduction-Channel Model of Prism Accretion, Melange formation, sediment subduction and subduction erosion at convergent plate margins: I. Background and Description. Pure and Applied Geophysics, v. 128, 455-500.spa
dc.relation.referencesCloos, M. y Shreve, R. (1988). Subduction-Channel Model of Prism Accretion, Melange formation, sediment subduction and subduction erosion at convergent plate margins: II. Implications and Discussion. Pure and Applied Geophysics, 12(5), 128, 501-545.spa
dc.relation.referencesCochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora A. et al. (2014). Distinguishing between in-situ and accretionary growth of continents along active margins. Lithos, 2(22), 382–394. http://dx.doi.org/10.1016/j.lithos.2014.05.031spa
dc.relation.referencesColeman, G., Lee, E., Beatty, B. y Brannock, W. (1965). Eclogites and Eclogites: Their Differences and Similarities. Geological Society of America Bulletin, 76(5), 1-11. Doi: 10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2spa
dc.relation.referencesDharmapriya, P., Malaviarichchi, S., Kriegsman, L., Sajeev, K., Galli, A., Osanai, Y., Subasinghe, N., Dissanayake, C. (2017). Distinct metamorphic evolution of alternating silica-saturated and silica-deficient microdomains within garnet in ultrahigh-temperature granulites: An example from Sri Lanka. Geoscience Frontiers, 8, 1115-1133.spa
dc.relation.referencesD’Antonio, M., Kristensen, B. (2004). Serpentinite and brucite of ultramafic clasts from the South Chamorro Seamount (Ocean Drilling program Leg 195, Site 1200): inferences for the serpentinization of the Mariana forearc mantle. Mineralogical Magazine, 7(68), 887-904.spa
dc.relation.referencesDeschamps, F., Godard, M., Guillot, S. y Hattori, K. (2013). Geochemistry of subduction zone serpentinites: A review. Lithos, 4(178), 96-127. Doi: 10.1016/j.lithos.2013.05.019.spa
dc.relation.referencesDoglioni, C., Tonarini, S. y Innocenti, F. (2009). Mantle wedge asymmetries and geochemical signatures along W- and E-NE-directed subduction zones. Lithos, 4(113), 179-189. Doi: 10.1016/j.lithos.2009.01.012.spa
dc.relation.referencesDragovic, B., Baxter, F. y Caddick, J. (2015). Pulsed dehydration and garnet growth during subduction revealed by zoned garnet geochronology and thermodynamic modeling, Sifnos, Greece. Planetary Science Letters, 413(15) 111–122. http://dx.doi.org/10.1016/j.epsl.2014.12.024spa
dc.relation.referencesDucea, N., Jibamitra, G., Erin, R., Patchett, J., Weiji, C., Clark, I. (2003) Sm-Nd dating of spatially controlled domains of garnet single crystals: a new method of high-temperature thermochronology. Earth and Planetary Science Letters, 4(213), 31-42.spa
dc.relation.referencesDuque, P. (1993). Petrology, metamorphic history and structure of El Oro Ophiolitic Complex, Ecuador. Second ISAG, International Symposium on Andean Geodynamics, Oxford (UK). Extended Abstracts, 8(5), 359-362.spa
dc.relation.referencesEndo, S., Wallis, R., Tsuboi, M., Aoya, M. y Uehara, I. (2012). Slow subduction and buoyant exhumation of the Sanbagawa eclogite. Lithos, 46(7), 183-201spa
dc.relation.referencesErnst, G. (2001). Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices—implications for arcs and continental growth. Physics of the Earth and Planetary Interiors, 1(27), 253–275.spa
dc.relation.referencesEscuder, J. y Pérez, A. (2006). Subduction-related P–T path for eclogites and garnet glaucophanites from the Samaná Peninsula basement complex, northern Hispaniola. Int J Earth Sci, 5(95), 995–1017. Doi 10.1007/s00531-006-0079-5spa
dc.relation.referencesEscuder, J., Friedman, R., Castillo, M., Jabites, J. y Pérez-, A. (2011). Origin and significance of the ophiolitic high-P mélanges in the northern Caribbean convergent margin: Insights from the geochemistry and large-scale structure of the Río San Juan metamorphic complex. Lithos, 5(127), 483–504. Doi:10.1016/j.lithos.2011.09.015.spa
dc.relation.referencesEscuder, J., Pérez, A., Booth, G. y Valverde, P. (2011). Tectonometamorphic evolution of the Samaná complex, northern Hispaniola: Implications for the burial and exhumation of high-pressure rocks in a collisional accretionary wedge. Lithos, 8(125), 190–210. Doi:10.1016/j.lithos.2011.02.006spa
dc.relation.referencesEssene, J., Fyfe, W. (1976). Omphacite in Californian metamorphic rocks. Contributions in Mineralogy and Petrology, 15, 1-23.spa
dc.relation.referencesFaryad, S. y Kachlík, V. (2013). New evidence of blueschist facies rocks and their geotectonic implication for Variscan suture(s) in the Bohemian Massif. Journal of Metamorphic Geology, 31, 63-82. http://www.bgs.ac.uk/scmr/scmr_home_main.htmlspa
dc.relation.referencesFederico, L., Capponi, G., Crispini, L. y Scambelluri, M. (2004). Exhumation of alpine high-pressure rocks: Insights from petrology of eclogite clasts in the Tertiary Piedmontese basin (Ligurian Alps, Italy). Lithos, 74(1-2), 21-40. Doi: 10.1016/j.lithos.2003.12.001spa
dc.relation.referencesFederico, L., Crispín, L., Scambelluri, M. y Capón, G. (2007). Ophiolite mélange zone records exhumation in a fossil subduction channel. Geology, 35(7) 499–502.spa
dc.relation.referencesFeininger, T. (1978). Geologic map of western El Oro Province. 1/50000. Quito, Ecuador: Escuela Politecnica Nacional.spa
dc.relation.referencesFeininger, T. (1980). Eclogite and related high-pressure regional metamorphic rocks from the Andes of Ecuador. Journal of Petrology, 21(1), 107-140.spa
dc.relation.referencesFesta, A., Pini, A., Dilek, Y. y Codegone, G. (2010). Mélanges and mélanges-formong processes: a historical overview and new concepts. International Geology review, 52(12), 1040-1105.spa
dc.relation.referencesFitzherbert, J., Clarke, G. y Powell R. (2005). Preferential retrogression of high-P metasediments and the preservation of blueschist to eclogite facies metabasite during exhumation, Diahot terrane, NE New Caledonia. Lithos, 83(12), 67-96.spa
dc.relation.referencesGarcia, A., Blanco, I., Ruiz, E., Moreno, M., Toro, L., Gomez, A., et al. (2011). Thermobarometry of amphibolites from the Arquía Complex (Central Colombia): Geodynamic implications. Memorias XIV Congreso Latinoamericano de Geología, 4(2), 11-129.spa
dc.relation.referencesGarcía, A., Proenza, J. y Iturralde, M. (2011). Subduction Zones of the Caribbean: the sedimentary, magmatic, metamorphic and ore-deposit records. UNESCO/iugs igcp Project 546 Subduction Zones of the Caribbean. Geologica Acta, 9(34), 217-224. Doi: 10.1344/105.000001745.spa
dc.relation.referencesGarcia, A., Torres, R., Millan, G., Monie, P. y Schneider, J. (2002). Oscillatory zoning in eclogitic garnet and amphibole, Northern Serpentinite Melange, Cuba: A record of tectonic instability during subduction?. J Metamorph Geol, 20(5), 581–598.spa
dc.relation.referencesGarcía, C., Ríos, C., Castellanos, O. y Mantilla, L. (2017). Petrology, geochemistry and geochronology of the Arquía complex´s metabasites at the Pijao-Génova sector, central cordillera, Colombian Andes. Boletín de Geología UIS, 39(1), 105–126.spa
dc.relation.referencesGatewood, M., Dragovic, B., Stowell, H., Baxter, F., Hirsch, D. y Bloomc, R. (2015). Evaluating chemical equilibrium in metamorphic rocks using major element and Sm–Nd isotopic age zoning in garnet, Townshend Dam, Vermont, USA. Chemical Geology, 4(15), 151–168. http://dx.doi.org/10.1016/j.chemgeo.2015.02.017spa
dc.relation.referencesGerya, T., Stöckhert, B. y Perchuk, A. (2002). Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 5(21), 6-19.spa
dc.relation.referencesGomez, T., Karsten, L. y Sanchez, V. (1997). Phase relationships and P-T conditions of coexisting eclogite-blueschists and their transformation to greenschist-facies rocks in the Nerkau Complex (Northern Urals). Tectonophysics, 5(276), 195-216.spa
dc.relation.referencesGonzález, H. (1997). Metagabros y Eclogitas asociadas en el area de Barragán, Departamento del Valle, Colombia. Geología Colombiana, 22(5), 151-170.spa
dc.relation.referencesGreen, C., White, W., Diener, A., Powell, R., Holland, J. y Palin, R. (2016). Activity–composition relations for the calculation of partial melting equilibria for metabasic rocks. J. Metamorph. Geol, 3(34), 845–869.spa
dc.relation.referencesGrosse, E. (1926). El Terciario Carbonífero de Antioquia en la parte occidental de la Cordillera Central de Colombia, entre el río Arma y Sacaojal. Berlín: Ernst Vohsen.spa
dc.relation.referencesGuillot, S., Hattori, K., Agard, P., Schwartz, S. y Vidal O. (2009). Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Springer, 4(4), 175–205spa
dc.relation.referencesHacker, R. y Gerya, T. (2013). Paradigms, new and old, for ultrahigh-pressure tectonism. Tectonophysics, 4(603), 79–88.spa
dc.relation.referencesHermann, J., Müntener, O. y Scambelluri, M. (2000). The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics, 4(327), 225–238.spa
dc.relation.referencesHey, H. (1954). A new review of the chlorites. Mineralogical Magazine, 3(30), 277-292. Holdaway, J. (1971). Stability of andalusite and aluminum silicate phase diagram. American Journal of Sciences, 5(271), 97-131.spa
dc.relation.referencesHolland, B. y Powell, R. (2003). Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 5(145), 492–501.spa
dc.relation.referencesHolland, B. y Powell, R., (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 1(29), 333–383.spa
dc.relation.referencesHyppolito, T., Angiboust, S., Juliani, C., Glodny, J., Garcia, A., Calderón, M. et al. (2016). Eclogite-, amphibolite- and blueschist-facies rocks from Diego de Almagro Island (Patagonia): Episodic accretion and thermal evolution of the Chilean subduction interface during the Cretaceous. Lithos 4(264), 422–440. http://dx.doi.org/10.1016/j.lithos.2016.09.001spa
dc.relation.referencesHyppolito, T., Cambeses, A., Angiboust, S., Raimondo, T., García, A. & Juliani, C. (2018). Rehydration of eclogites and garnet-replacement processes during exhumation in the amphibolite facies. Geological Society London Special Publications, 5(478), 1-63. Doi: 10.1144/SP478.3spa
dc.relation.referencesJohn, T., Scherer, E., Schenk, V., Herms, P., Halama, R. y Garbe, D. (2010) Subducted seamounts in an eclogite-facies opholite sequence: the Andean raspas Complex, SW Ecuador. Contributions to Mineralogy and Petrology, 4(159), 265-284.spa
dc.relation.referencesKatzir, Y., Avigad, D., Matthews, A., Garfunkel, Z. y Evans, W. (2000). Origin, HP/LT metamorphism and cooling of ophiolitic melanges in southern Evia (NW Cyclades). J. metamorphic Geol, 2(12), 699–718.spa
dc.relation.referencesKerr, C. y Tarney, J. (2005). Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus. Geology, 4(33), 269-272.spa
dc.relation.referencesKerr, C., Marriner, F., Tarney, J., Nivia, A., Saunders, D., Thirlwall, F. y Sinton, C. (1997). Cretaceous basaltic terranes in Western Colombia: elemental, chronological and Sr–Nd isotopic constraints on petrogenesis. Journal of Petrology, 1(38), 677–702.spa
dc.relation.referencesKorenaga, J. y Karato, S. (2008). A new analysis of experimental data on olivine rheology. Journal of geophysical research. Solid Earth. AGU Journal, 113(2), 1-23. Doi: 10.1029/2007JB005100.spa
dc.relation.referencesKrebs, M., Schertl, H., Maresch, W. y Draper, G. (2011). Mass flow in serpentinite-hosted subduction channels: P-T-t path patterns of metamorphic blocks in the Rio San Juan mélange (Dominican Republic). J Asian Earth Sci, 2(42), 569–595.spa
dc.relation.referencesKylander, A., Hacker, R., Johnson, M., Beard, L., Mahlen, N. y Lapen, J. (2007). Coupled Lu–Hf and Sm–Nd geochronology constrains prograde and exhumation histories of high- and ultrahigh-pressure eclogites from western Norway. Chemical Geology, 4(242), 137–154. Doi:10.1016/j.chemgeo.2007.03.006.spa
dc.relation.referencesKylander, R., Hacker, R. y Mattinson, G. (2012). Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth Planet Sci Lett, 5(4), 115–120spa
dc.relation.referencesLázaro, C., Blanco, F., Proenza, A., Rojas, Y., Neubauer, F., Núñez, K., et al. (2016) Petrogenesis and 40Ar/39Ar dating of proto-forearc crust in the Early Cretaceous Caribbean arc: The La Tinta mélange (eastern Cuba) and its easterly correlation in Hispaniola. International Geology Review, 58(8), 1020-1040. http://dx.doi.org/10.1080/00206814.2015.1118647spa
dc.relation.referencesLeake, E. (1978). Nomenclature of Amphiboles. American Mineralogist, 6(63), 1023-1052.spa
dc.relation.referencesLi, L., Gao, J. y Wang, S. (2016). A subduction channel model for exhumation of oceanic-type high-pressure to ultrahigh-pressure eclogite-facies metamorphic rocks in SW Tianshan, China. Science China Earth Sciences. Science China Press and Springer-Verlag Berlin Heidelberg. Geochimica et Cosmochimica Acta, 5(65), 1-16. Doi: 10.1007/s11430-016-5103-7spa
dc.relation.referencesLi, L., Klemd, R., Gao, J. y John, T. (2016). Poly-cyclic metamorphic evolution of eclogite: Evidence for multistage burial-exhumation cycling in a subduction channel. Journal of Petrology, 57(5), 119–146.spa
dc.relation.referencesLi, P., Rahn, M. y Bucher, K. (2004). Serpentinites of the Zermatt-Saas ophiolite complex and their evolution. Journal of Metamorphic Geology, 1(22), 159-177. Doi: 10-1111/j.1525-1314.2004.00503.x.spa
dc.relation.referencesLi, S., Jagoutz, E., Chen, Y. y Li, Q. (2000). Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta, 64(6), 1077-1093.spa
dc.relation.referencesLi, Z., Yang, J., Xu, Z., Li, T., Xu, X., Ren, Y. y Robinson, P. (2009). T. Geochemistry and Sm–Nd and Rb–Sr isotopic composition of eclogite in the Lhasa terrane, Tibet, and its geological significance. Lithos, 5(109), 240–247. Doi:10.1016/j.lithos.2009.01.004.spa
dc.relation.referencesLiou, G., Ernst, G., Zhang, Y., Tsujimori T. y Jahn, M. (2009). Ultrahigh pressure minerals and metamorphic terranes—The view from China. J Asian Earth Sci, 2(35), 199–231.spa
dc.relation.referencesLiu, L., Wang, C., Cao, T., Chen, L., Yang, Q. y Zhu, H. (2012). Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos, 6(1), 10-26.spa
dc.relation.referencesLiu, L., Zhang, D., Chen, L., Yang, X., Luo, H. y Wang, C. (2014). Implications based on LA‐ICP‐MS zircon U–Pb ages of eclogite and its country rock from Jianggalesayi Area, Altyn Tagh, China. Earth Science Frontiers, 14(4), 98-107.spa
dc.relation.referencesLuais, B., Duchêne, S. y De Sigoyerb, J. (2001). Sm–Nd disequilibrium in high-pressure, low-temperature Himalayan and Alpine rocks. Tectonophysics, 342(2), 1– 22.spa
dc.relation.referencesLudwig, R. (2008). A geochronological toolkit for Microsoft Excel. Berkley Geochronology Center Special Publication, 5(4), 1-77.spa
dc.relation.referencesMallmann, G., O’Neill, H.S.C., 2009. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology. 50, 1765–1794.spa
dc.relation.referencesMarchesi, C. Garrido, J., Godard, M., Belly, F. y Ferré, E. (2009). Migration and accumulation of ultra-depleted subduction-related melts in the Massif du Sud ophiolite (New Caledonia). Chemical Geology, 226(5), 171-186.spa
dc.relation.referencesMaresch, V. y Abraham, K. (1981). Petrography, mineralogy and metamorphic evolution of an eclogite from the Island of Margarita, Venezuela. Journal of Petrology, 22(9), 337-362.spa
dc.relation.referencesMaresch, V., Kluge, R., Baumann, A., Pindell, J., Krückhans, G., y Stanek, P. (2009). The occurrence and timing of high-pressure metamorphism on Margarita Island, Venezuela: A constraint on Caribbean-South America interaction. Geological Society London Special Publications, 328(1), 705-741. DOI: 10.1144/SP328.28spa
dc.relation.referencesMaresch, V., Urbani, F., Schertl, P. y Stanek, P. (2010). Subduction/accretion-related high-pressure rocks of Margarita Island, Venezuela. Subduction zoners of the Caribbean, 4(1), 1-28.spa
dc.relation.referencesMaruyama, S., Liou, G. y Terabayashi, M. (1996). Blueschists and eclogites of the world and their exhumation. International Geology Review, 38(4), 485–594.spa
dc.relation.referencesMattinson, G., Wooden, L., Liou, G. Bird, K. y Wu, L. (2006). Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, Western China. American Journal of Science, 306(59), 683-711.spa
dc.relation.referencesMaya, M. y González, H. (1995). Unidades Litodémicas en la Cordillera Central de Colombia. Boletín Geológico Ingeominas, 35(23), 43-57.spa
dc.relation.referencesMcCourt, W. y Feininger, T. (1984). High pressure metamorphic rocks in the Central Cordillera of Colombia. British Geological Survey Reprint Series, 85(1), 28-35.spa
dc.relation.referencesMcCourt, W. (1984). The Geology of the Central Cordillera. The Department of Valle del Cauca, Quindío and (N. W.) Tolima. Cali: INGEOMINAS-Misión Británica B.G.S.spa
dc.relation.referencesMcCourt, W. (1985). Geología de la Plancha 262 – Génova. Esc. 1:100.000. Bogotá: INGEOMINAS.spa
dc.relation.referencesMcCourt, W., Mosquera, D., Nivia, A. y Nuñez, A. (1984). Mapa geológico preliminar de la Plancha 243 - Armenia. Esc. 1:100.000. Armenia: INGEOMINAS.spa
dc.relation.referencesMcCourt, W., Mosquera, D., Nivia, A. y Núñez, A. (1985). Geología de la Plancha 243 – Armenia. Esc. 1:100.000. Bogotá: INGEOMINAS.spa
dc.relation.referencesMcDonough, F. y Sun, S. (1995). The composition of the Earth. Chemical Geology, 120(5), 223-253.spa
dc.relation.referencesMiddlemost, A. (1994). Naming materials in the magma/igneous rock system. Earth Science Reviews, 37(3), 215-224. Doi: 10.1016/0012-8252(04)90029-9.spa
dc.relation.referencesMiyagi, Y. y Takasu, A. (2005). Prograde eclogites from the Tonaru epidote amphibolite mass in the Sambagawa Metamorphic Belt, central Shikoku, southwest Japan. The Island Arc, 5(14), 215–235.spa
dc.relation.referencesMiyashiro, A., (1994). Metamorphic Petrology. London: UCL Press Limited.spa
dc.relation.referencesMorimoto, N. (1988). Nomenclature of pyroxenes. Mineralogical Magazine, 52(4), 535-550.spa
dc.relation.referencesMosquera, D. (1978). Geología del Cuadrángulo K-8 Manizales. Bogota: INGEOMINAS.spa
dc.relation.referencesMurcia, A. y González, H. (1980). Una contribución al conocimiento de los esquistos de Glaucofano en Colombia. Popayán: INGEOMINAS.spa
dc.relation.referencesMurcia, A., y Cepeda, H. (1991). Mapa geológico de la Plancha 429 – Pasto; Escala 1:100.000. Bogota: INGEOMINAS.spa
dc.relation.referencesMurcia, A., y Cepeda, H. (1991a). Mapa geológico de la Plancha 410 – La Unión; Escala 1:100.000. Bogota: INGEOMINAS.spa
dc.relation.referencesNakano, N., Osanai, Y., Sajeev, K., Hayasaka, Y., Miyamoto, T., Minh, N., et al. (2010). Triassic eclogite from northern Vietnam: inferences and geological significance. J. metamorphic Geol, 28(7), 59–76.spa
dc.relation.referencesNivia, A., Marriver, G. y Kerr, A. (1996). El Complejo Quebradagrande una posible cuenca marginal intracratónica del Cretáceo inferior en la Cordillera Central de los Andes Colombianos. Bogotá: Congreso Colombiano.spa
dc.relation.referencesNorth American Commission on Stratigraphic Nomenclature. (2005). North American Stratigraphic Code. American Association of Petroleum Geologists Bulletin, 89(11), 1547 – 1591.spa
dc.relation.referencesNúñez, A. y Murillo, A. (1978). Esquistos de Glaucofana en el Municipio de Pijao, Quindío (Colombia). Ibagué: INGEOMINAS.spa
dc.relation.referencesNúñez, A. (1979). Metamorfismo regional en la parte media de la Cordillera Central de Colombia. Ibagué: INGEOMINAS.spa
dc.relation.referencesOrrego, A., Cepeda, H. y Rodríguez, G. (1980). Esquistos glaucofánicos en el área de Jambaló, Cauca (Colombia). Nota Preliminar. Geología Norandina, 1(5), 5-10.spa
dc.relation.referencesOrrego, A., Restrepo, J., Tousaint, J. y Linares, E. (1980). Datación de un esquisto sericítico de Jambaló - Cauca. Geol. Univ. Nal, 25(1), 1-56.spa
dc.relation.referencesOta, T., Terabayashi, M. y Katayama, I. (2004). Thermobaric structure and metamorphic evolution of the Iratsu eclogite body in the Sanbagawa belt, central Shikoku, Japan. Lithos, 73(12), 95-126.spa
dc.relation.referencesPalmeri, R., Chmielowski, R., Sandroni, S., Talarico, F. y Ricci. A. (2009). Petrology of the eclogites from western Tasmania: Insights into the Cambro-Ordovician evolution of the paleo-Pacific margin of Gondwana. Lithos, 109(4), 223-239.spa
dc.relation.referencesPardo, A. y Moreno, M. (2001). Estratigrafía del occidente colombiano y su relación con la evolución de la Provincia Ignea Cretácea del Caribe Colombiano. Manizales: Congreso Colombiano.spa
dc.relation.referencesParkinson, J. y Pearce, A. (1998). Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9), 1577-1618.spa
dc.relation.referencesParkinson, J., Pearce, A., Thirlwall, F., Johnson, M. y Ingram, G. (1992). Trace element geochemistry of peridotites from the Izu–Bonin–Mariana forearc, Leg 125. Proceedings of Ocean Drilling Program. Scientific Results, 4(125), 487–506.spa
dc.relation.referencesPearce, A. y Peate, W. (1995). Tectonic implications of the composition of volcanic arc magmas. Annual review of Earth and Planetary Sciences, 23(44), 251-285.spa
dc.relation.referencesPearce, A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. Continental basalts and mantle xenoliths, 3(45), 230-249.spa
dc.relation.referencesPindell, J. y Dewey, J. (1982). Permo-Triassic reconstruction of Western Pangea and the evolution of the gulf of Mexico/Caribbean region. Tectonics, 1(12), 179–211.spa
dc.relation.referencesPindell, J. (1985). Alleghenian reconstruction and subsequent evolution of the gulf of Mexico, Bahamas, and Proto Caribbean. Tectonics, 4(1), 1–39.spa
dc.relation.referencesPindell, L. y Kennan, L., (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In: James, K., Lorente, M.A., Pindell, J. (eds.). The geology and evolution of the region between North and South America. Geological Society of London, 328(1), 1-55.spa
dc.relation.referencesPlank, T. (2005). Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5), 9321-944. Doi: 10.1093/petrology/egi005.spa
dc.relation.referencesPowell, R. y Holland, J. (1988). An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J. Metamorph. Geol, 6(45), 173–204.spa
dc.relation.referencesRaymond, A. (1984). Melanges: Their Nature, Origin, and Significance. USA: GSA.spa
dc.relation.referencesRestrepo, J. y Toussaint, F. (1974). Algunas consideraciones sobre la evolución estructural de los Andes Colombianos. [Tesis de grado, Universidad Nacional de Colombia]. Medellín, Colombia.spa
dc.relation.referencesRestrepo, J. y Toussaint, J. (1975). Edades radiométricas de algunas rocas de Antioquia - Colombia. [Tesis de grado, Universidad Nacional de Colombia]. Medellín, Colombia.spa
dc.relation.referencesRestrepo, J., Ordoñez, O. y Moreno, M. (2009). A comment on “The Quebradagrande Complex: A Lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombias Andes by Nivia et al.” Journal of South America Earth Sciences, 56(28), 204-205.spa
dc.relation.referencesRíos, C., Castellanos, O. y García, C. (2017). Petrogenetic significance of the eclogites from the Arquía Complex on southwestern Pijao, Central Cordillera (Colombia Andes). DYNA, 84(200), 291-301. http://dx.doi.org/10.15446/dyna.v84n200.48166spa
dc.relation.referencesRíos, C., Castellanos, O., Ríos, V. y Gómez, C. (2008). Una contribución al estudio de la evolución tectono-metamórfica de las rocas de alta-P, Cordillera Central, Andes Colombianos. Geología Colombiana, 4(33), 3-22.spa
dc.relation.referencesRubatto, D. y Hermann, J. (2001). Exhumation as fast as subduction? Geology, 4(29), 3–6.spa
dc.relation.referencesRuiz, C., Blanco, F., Toro, M., Moreno, M., Vinasco, J., García, A., et al. (2012). Geoquímica y petrología de las metabasitas del Complejo Arquía (Municipio de Santafé de Antioquia y Río Arquía, Colombia): Implicaciones geodinámicas. Boletín Ciencias de la Tierra, 32(5), 65-80.spa
dc.relation.referencesSalters, J. y Stracke, A. (2004). Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5). Doi: 10.1029/2003GC000597.spa
dc.relation.referencesSavov, P., Guggino, S., Ryan, G., Fryer, P. y Mottl, J. (2005). Geochemistry of serpentinite muds and metamorphic rocks from the Mariana forearc, ODP Sites 1200 and 778–779, South Chamorro and Conical Seamounts. In: Shinohara, M., Salisbury, M.H., Richter, C. Proceedings of the Ocean Drilling Program, 4(195), 1–49.spa
dc.relation.referencesSavov, P., Ryan, G., D'Antonio, M., Kelley, K. y Mattie, P. (2005). Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochemistry, Geophysics, Geosystems 6(4), 1-90. http://dx.doi.org/10.1029/2004GC000777.spa
dc.relation.referencesSchilling, G., Zajec, M., Evans, R., Johnston, T., White, W., Devine, D., et al. (1983). Petrologic and geochemical variations along the Mid-Atlantic Ridge from. Am. J. Sci, 27(73), 283, 510–586.spa
dc.relation.referencesShreve, L. y Cloos, M. (1986). Dynamics of sediment subduction, mélange formation, and prism accretion. J Geophys Res, 5(91), 10229spa
dc.relation.referencesSisson, B., Ertran, E. y Avé, H. (1997). High-pressure (~2000 MPa) Kyanite- and Glaucophane-bearing pelitic schist and eclogite from Cordillera de la Costa Belt, Venezuela. Journal of Petrology, 38(1), 65-83.spa
dc.relation.referencesSong, S., Zhang, L., Niu Y., Su L., Song, B. y Liu, D. (2006). Evolution from Oceanic Subduction to Continental Collision: a Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. Journal of Petrology, 47(3), 435-455. Doi:10.1093/petrology/egi080spa
dc.relation.referencesSpear, S. (1993). Metamorphic phase equilibria and Pressure-Temperature- Time paths. Washington: Mineralogical Society of America.spa
dc.relation.referencesSpear, F., Daniel, C. (1998). 3-dimensional imaging of garnet porphyroblast sizes and chemical zoning. Nucleation and growth history in the garnet zone. Geological Materials Research, 1, 1-43.spa
dc.relation.referencesSpear, F., Daniel, C., (2001). Diffusion control of garnet growth, Harpswell Neck, Maine, USA. Journal of Metamorphic Geology. 19, 179-195.spa
dc.relation.referencesSkora, S., Baumgartner, L. (2007). Garnet growth mechanism and equilibrium domains in alpine eclogites. 5th Swiss Geoscience Meeting, Geneve.spa
dc.relation.referencesDaniel, C., Spear, F. (1998). 3-Dimensional patterns of garnet nucleation and growth. Geology, 26, 503-506.spa
dc.relation.referencesSpikings, R., Cochrane R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W. et al. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research 27(5), 95–139. http://dx.doi.org/10.1016/j.gr.2014.06.004spa
dc.relation.referencesStowell, H. (2017). Sm-Nd procedures17.docx; HHS. Sm-Nd sample and isotope Lab techniques. USA: University of Alabama.spa
dc.relation.referencesStowell, H., Taylor, L., Tinkham, K., Goldberg, S. y Ouderkirk, A. (2001). Contact metamorphic P-T-t Paths from Sm-Nd Garnet Ages, Phase Equilibria Modeling, and Thermobarometry: Garnet Ledge, Southeastern Alaska. Journal of Metamorphic Geology, 19(5), 645-660.spa
dc.relation.referencesStowell, H., Tulloch, A., Zuluaga, A. y Koenig, A., (2010). Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland. Chemical Geology, 2(73), 91-110.spa
dc.relation.referencesStreckeisen, A. (1974). Classification and nomenclature of plutonic rocks. Recommendations of the IUGS Subcommission on the systematics of igneous rocks. Geologische Rundschau. Internationale Zeitschrift fur Geologie. Stuttgart, 63(5), 773-785.spa
dc.relation.referencesTakasu, A. y Kohsoka, Y. (1987). Eclogites from the Iratsu epidote amphibolite mass in the Sambagawa metamorphic belt, Besshi district, Japan. Journal of the Geological Society of Japan, 1(93), 517-520.spa
dc.relation.referencesTakasu, A. y Makino, K. (1980). Stratigraphy and geologic structure of the Sambagawa metamorphic belt in the Besshi district, Shikoku, Japan-Reexamination of the recumbent structures. Earth Science, 5(34), 16-26.spa
dc.relation.referencesTakasu, A. y Orozbaev, R. (2009). Variety of chemical compositions of amphiboles from eclogites in the Aktyuz area, northern Kyrgyz Tien-Shan. Japan: Shimane University.spa
dc.relation.referencesTakasu, A. (1979). Basic intrusive rocks and metamorphism of the Sambagawa belt in the Besshi district, Shikoku. Magma, 56, 8-14.spa
dc.relation.referencesTakasu, A. (1984). Prograde and retrograde eclogites in the Sambagawa metamorphic belt, Besshi district, japan. Journal of Petrology, 25(4), 619-643.spa
dc.relation.referencesTakasu, A. (1986). Resorption-overgrowth of garnet from the Sambagawa politic schists in the contact aureole of the Sebadani metagabbro mass, Shikoku, Japan. Journal of the Geological Society of Japan, 92(4), 781-792.spa
dc.relation.referencesTakasu, A. (1989). P-T histories of peridotite and amphibolite tectonic blocks in the Sambagawa metamorphic belt, Japan. Evolution of the Metamorphic Belts (eds Daly, J. S., Cliff, R. A. and Yardley, B. W. D.), Geological Society Special Publication, 43(4), 533-538.spa
dc.relation.referencesTakasu, A., Dallmeyer, R. (1990). 40Ar/39Ar mineral age constraints for the tectonothermal evolution of the Sambagawa metamorphic belt, central Shikoku, Japan: a Cretaceous accretionary prism. Tectonophysics, 1(85), 11-139.spa
dc.relation.referencesTerabayashi, M., Okamoto, K., Yamamoto, H., Kaneko, Y., Ota, T., Maruyama, S. (2005). Accretionary Complex Origin of the Mafic-Ultramafic Bodies of the Sanbagawa Belt, Central Shikoku, Japan. International Geology Review, 47(4), 1058–1073.spa
dc.relation.referencesToussaint, F. y Restrepo, J. (1978). Edad cretácea de una anfibolita granatífera de Pijao – Quindío. [Tesis de maestría Universidad Nacional de Colombia]. Medellín, Colombia.spa
dc.relation.referencesToussaint, F. (1996). Evolución geológica de Colombia durante el Cretácico. Medellín: Universidad Nacional de Colombia.spa
dc.relation.referencesTsai, H., Iizuka, Y. y Ernst, G. (2013). Diverse mineral compositions, textures, and metamorphic P–T conditions of the glaucophane-bearing rocks in the Tamayen mélange, Yuli belt, eastern Taiwan. Journal of Asian Earth Sciences 63(2), 218–233. http://dx.doi.org/10.1016/j.jseaes.2012.09.019spa
dc.relation.referencesUrbani, F., Camposano, A., Audemard, F. y Avé Lallemant, H. (2005). Cordillera de la Costa. Venezuela: Geological Field Trip.spa
dc.relation.referencesVance, D. y O’Nions, K. (1990). Isotopic chronometry of zoned garnets: growth kinetics and metamorphic histories. Earth and Planetary Science Letters, 97(8), 227-240.spa
dc.relation.referencesVance, D. y O’Nions, K. (1992). Prograde and retrograde thermal histories from the central Swiss Alps. Earth and Planetary Science Letters, 1(14), 113-129.spa
dc.relation.referencesVillagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W. y Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125(5), 875–896.spa
dc.relation.referencesVinasco, J., Cordani, G., Gonzalez, H., Weber, M. y Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo­Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(1), 355­371.spa
dc.relation.referencesVitale, A., Groppo, C. y Hetenyi, G. (2011). Coexistence of lawsonite –bearing eclogite and blueschist: phase equilibria modelling of Alpine Corsica metabasalts and petrological evolution of subducting slabs. Journal of Metamorphic Petrology, 29(5), 583-600.spa
dc.relation.referencesWhite, W., Powell, R. y Johnson, E. (2014). The effect of Mn on mineral stability in metapelites revisited: new a–x relations for manganese-bearing minerals. J. Metamorph. Geol., 32(4), 809–828.spa
dc.relation.referencesWinkler, G. (1978). Petrogénesis de Rocas Metamórficas. Madrid: H. Blume.spa
dc.relation.referencesWu, Q., Feng, M. y Song, G. (1993). Metamorphism and deformation of bluescist belt and their tectonic implications, North Qilian Mountains, China. Journal of Metamorphic Geology, 11(8), 523-536.spa
dc.relation.referencesXia, B., Zhang, L. y Xia, Y. (2014). Petrology and phase equilibrium of newly found eclogites from Kekesu Valley in eastern part of southwest Tianshan HP-UHP metamorphic belt, China and its tectonic significance. Science China Earth Sciences, 57(1), 117-131.spa
dc.relation.referencesXie, Z., Zhenga, F., Jahn, M., Ballevre, M., Chen, J., Gautier, P., et al. (2004). Sm–Nd and Rb–Sr dating of pyroxene–garnetite from North Dabie in east-central China: problem of isotope disequilibrium due to retrograde metamorphism. Chemical Geology, 206(24), 137– 158. Doi:10.1016/j.chemgeo.2004.01.013spa
dc.relation.referencesYamato, P., Agard, P., Burov, E., Le Pourhiet, L., Jolivet, L. y Tiberi, C. (2007). Burial and exhumation in a subduction wedge: Mutual constraints from thermomechanical modeling and natural P-T-t data (Schistes Lustrés, western Alps). Journal of Geophysics Research, 112: B07410spa
dc.relation.referencesYang, J. (1991). Eclogites, Garnet Pyroxenites and related ultrabasic in Shandong and North Jiangsu of East China (in Chinese with brief summary in English). Geological Publishing House, 99(4), 1-180.spa
dc.relation.referencesYang, S., Liu, L., Wu, L., Xu, Q., Shi, D. y Chen, Y. (2005). Two ultrahigh-pressure metamorphic events recognized in the Central Orogenic Belt of China: evidence from the U–Pb dating of coesite bearing zircons. International Geology Review, 47(4), 327-343.spa
dc.relation.referencesYardley, D., MacKenzie, S. y Guilford, C. (1990). Atlas of metamorphic rocks and their textures. Addison Wesley Longman Limited, 5(120), 25-65.spa
dc.relation.referencesZhang, X., Mattinson, G., Yu, Y., Li, P. y Meng, C. (2010). U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: spatially and temporally extensive UHP metamorphism during continental subduction. Journal of Metamorphic Geology, 28(5), 955-978.spa
dc.relation.referencesZhang, X., Meng, C. y Wan, S. (2007). A cold early Paleozoic subduction zone in the north Qilian Mountains, NW China: Petrological and U–Pb geochronological constraints. Journal of Metamorphic Geology, 25(5), 285-304.spa
dc.relation.referencesZhang, X., Zhang, M., Xu, Q., Yang, S. y Cui, W. (2001). Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China. Lithos, 56(5), 187-206.spa
dc.relation.referencesZheng, F., Chen, X. y Zhao F. 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475(5), 327–358.spa
dc.relation.referencesZheng, F., Chen, X., Xu, Z. y Zhang, B. (2016). The transport of water in subduction zones. Science China, Earth Sciences, 59(4), 651-682.spa
dc.relation.referencesZheng, F., Fu, B., Gong, B. y Li, L. (2003). Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie–Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Science Reviews, 62(44), 105-161.spa
dc.relation.referencesZheng, F., Zhang, L., McClelland, C. y Cuthbert, S. (2012). Processes in continental collision zones: Preface. Lithos, 256(1), 1–9.spa
dc.relation.referencesZheng, F., Zhao, F. y Chen, X. (2013). Continental subduction channel processes: Plate interface interaction during continental collision. Chin Sci Bull, 58(5), 4371–4377.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.ddc550 - Ciencias de la tierra::552 - Petrologíaspa
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Surspa
dc.subject.otherSubducciónspa
dc.subject.proposalMetamorfismospa
dc.subject.proposalRocas de alta presiónspa
dc.subject.proposalCanal de subducciónspa
dc.subject.proposalComplejo Arquíaspa
dc.subject.proposalEclogitas retrogradadasspa
dc.subject.proposalEsquistos azulesspa
dc.subject.proposalMetamorphismeng
dc.subject.proposalHigh-pressure rockseng
dc.subject.proposalSubduction channeleng
dc.subject.proposalArquia Complexeng
dc.subject.proposalRetrogressed eclogiteseng
dc.subject.proposalBlueschistseng
dc.subject.unescoRoca metamórficaspa
dc.subject.unescoMetamorphic rockseng
dc.titleCaracterización del metamorfismo de alta presión para eclogitas y esquistos azules, emplazados dentro del Complejo Arquía, en el sector Pijao – Génova (Quindío), flanco oeste, Cordillera Central, Colombiaspa
dc.title.translatedCharacterization of high pressure metamorphism for eclogites and blueschists, emplaced within the Arquía Complex, in the Pijao – Génova sector (Quindío), west flank, Central Cordillera, Colombiaeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
91267297.2020.pdf
Tamaño:
6.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Geociencias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: