Hidrocarburos Aromáticos Policíclicos en el aire ambiente de Manizales
| dc.contributor.advisor | Aristizábal Zuluaga, Beatriz Helena | spa |
| dc.contributor.author | Zapata Mora, Camilo | spa |
| dc.contributor.corporatename | Universidad Nacional de Colombia - Sede Manizales | spa |
| dc.contributor.researchgroup | Grupo de Trabajo Académico en Ingeniería Hidráulica y Ambiental | spa |
| dc.date.accessioned | 2020-07-10T17:30:12Z | spa |
| dc.date.available | 2020-07-10T17:30:12Z | spa |
| dc.date.issued | 2020 | spa |
| dc.description.abstract | El presente trabajo muestra la distribución de la concentración de los 16 Hidrocarburos Aromáticos Policíclicos (HAPs) priorizados por la Agencia de Protección Ambiental de los Estados Unidos US-EPA, considerando la fracción gaseosa y particulada. El área de estudio fue Manizales, una ciudad andina (2150 m.s.n.m) de población media (400 mil habitantes), donde se evaluaron tres ambientes urbanos de interés por sus fuentes de emisión. La metodología de muestreo y análisis se basó en el método EPA - TO-13A. La información disponible para este tipo de compuestos es escasa en países en vías de desarrollo, especialmente para la fracción gaseosa. Se encontró en este estudio que el rango de las concentraciones totales de Σ16 HAPs (particular + gas) estaba entre 15.5 ng m-3 y 46.0 ng m-3, con un promedio de 29.1 ng m-3 para la estación de centro urbano (ECU), de 7.6 ng m-3 a 45.5 ng m-3, con un promedio de 23.9 ng m-3 para la estación comercial residencial (ECR) y de 17.6 ng m-3 a 213.4 ng m-3, con un promedio de 64.7 ng m-3 para la estación centro industrial (ECI). Los HAPs monitoreados en fracción particulada y gaseosa presentaron en todas las muestras mayor concentración (aproximadamente 3 veces) en la fracción gaseosa. Por otra parte, se identificó que el 90 % de las muestras reportaron un Factor de Equivalencia Tóxica con base en Benzo[a]pireno (FET-BaP) mayor al límite máximo permisible (1 ng m-3). En todas las muestras se observó que el potencial tóxico está influenciado principalmente por la fracción particulada (entre el 80 % y 98 %). Las relaciones de isómeros de HAPs son usadas para determinar la influencia de fuentes de emisiones, considerando solo las concentraciones reportadas en la fracción particulada. Sin embargo, se encontró relevante la determinación de estas relaciones basadas en las dos fracciones (particulada y gaseosa), ya que compuestos comúnmente usados en estas relaciones como Antraceno, Fluoranteno y Pireno se encuentran presentes en mayor proporción en la fracción gaseosa, subestimando las relaciones si sólo se trabaja con concentraciones en fracción particulada. | spa |
| dc.description.abstract | The present work shows the concentration distribution of the 16 more toxics Polycyclic Aromatic Hydrocarbons (PAHs) according to the US Environmental Protection Agency US-EPA, considering both particulate and gaseous fraction. The study area was Manizales, a Colombian Andean city (2150 m.a.s.l) of medium population (400 thousand inhabitants). Three urban environments were evaluated, considering the main emission sources. Sampling and analysis methodology were based on the EPA-TO-13A method. The information available for this type of compounds is scarce in developing countries, especially for the gas fraction. It was found that the range of total concentrations of Σ16 HAPs (particular + gas) was between 15.5 ng m-3 and 46.0 ng m-3, with an average of 29.1 ng m-3 for the urban center station (UCS ), from 7.6 ng m-3 to 45.5 ng m-3, with an average of 23.9 ng m-3 for the residential commercial station (RCS) and from 17.6 ng m-3 to 213.4 ng m-3, with an average of 64.7 ng m-3 for industrial center station (ICS). The PAHs monitored in particulate and gas fraction presented in all the samples the highest concentration in the gas fraction (approximately 3 times). On the other hand, it was identified that 90% of the samples reported a Toxic Equivalence Factor based on Benzo[a]pireno (TEF-BaP) greater than the maximum permissible limit (1 ng m-3). In all samples were observed that the contribution to the total toxic equivalent is main affected by the particulate fraction (between 80% and 98%). Ratios of PAH isomers are used to determine the influence of emission sources but only considering the particulate fraction. However the determination of these ratios based in both phases (gas and particulate fraction), were found relevant, since compounds commonly used in these relationships such as Anthracene, Fluoranteno and Pyrene are mostly found in the gaseous fraction. In this sense, an underestimation can be happening when only particulate fraction concentrations are used. | eng |
| dc.description.additional | Trabajo final presentado como requisito para optar por el título de: Magister en Ingeniería – Ingeniería Ambiental. -- Línea de Profundización: Calidad del aire. | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 106 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.citation | Zapata, C. (2020). Hidrocarburos aromáticos policíclicos en el aire ambiente de Manizales. Universidad Nacional de Colombia. | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77762 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
| dc.publisher.department | Departamento de Ingeniería Química | spa |
| dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Ambiental | spa |
| dc.relation.references | Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011 | spa |
| dc.relation.references | Akyüz, M., & Çabuk, H. (2010). Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Science of the Total Environment, 408(22), 5550–5558. https://doi.org/10.1016/j.scitotenv.2010.07.063 | spa |
| dc.relation.references | Andersson, J. T., & Achten, C. (2015). Time to Say Goodbye to the 16 EPA PAHs? Toward an Up-to-Date Use of PACs for Environmental Purposes. Polycyclic Aromatic Compounds, 35(2–4), 330–354. https://doi.org/10.1080/10406638.2014.991042 | spa |
| dc.relation.references | Arango, J. H. (2009). Calidad de los combustibles en Colombia. Quality of Fuels in Colombia., (29), 100–108. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=fua&AN=44459622&lang=es&site=ehost-live | spa |
| dc.relation.references | Bolden, A. L., Rochester, J. R., Schultz, K., & Kwiatkowski, C. F. (2017). Polycyclic aromatic hydrocarbons and female reproductive health: A scoping review. Reproductive Toxicology, 73, 61–74. https://doi.org/10.1016/j.reprotox.2017.07.012 | spa |
| dc.relation.references | Cheruyiot, N. K., Lee, W. J., Mwangi, J. K., Wang, L. C., Lin, N. H., Lin, Y. C., … Chang-Chien, G. P. (2015). An overview: Polycyclic aromatic hydrocarbon emissions from the stationary and mobile sources and in the ambient air. Aerosol and Air Quality Research, 15(7), 2730–2762. https://doi.org/10.4209/aaqr.2015.11.0627 | spa |
| dc.relation.references | Dat, N. D., & Chang, M. B. (2017). Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Science of the Total Environment, 609, 682–693. https://doi.org/10.1016/j.scitotenv.2017.07.204 | spa |
| dc.relation.references | De La Torre-Roche, R. J., Lee, W. Y., & Campos-Díaz, S. I. (2009). Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of a potential problem in the United States/Mexico border region. Journal of Hazardous Materials, 163(2–3), 946–958. https://doi.org/10.1016/j.jhazmat.2008.07.089 | spa |
| dc.relation.references | Delgado-Saborit, J. M., Alam, M. S., Godri Pollitt, K. J., Stark, C., & Harrison, R. M. (2013). Analysis of atmospheric concentrations of quinones and polycyclic aromatic hydrocarbons in vapour and particulate phases. Atmospheric Environment, 77, 974–982. https://doi.org/10.1016/j.atmosenv.2013.05.080 | spa |
| dc.relation.references | Devos, O., Combet, E., Tassel, P., & Paturel, L. (2006). Exhaust emissions of pahs of passenger cars. Polycyclic Aromatic Compounds, 26(1), 69–78. https://doi.org/10.1080/10406630500519346 | spa |
| dc.relation.references | Domingo, J. L., & Nadal, M. (2015). Human dietary exposure to polycyclic aromatic hydrocarbons: A review of the scientific literature. Food and Chemical Toxicology, 86, 144–153. https://doi.org/10.1016/j.fct.2015.10.002 | spa |
| dc.relation.references | Dyke, P. H., Foan, C., & Fiedler, H. (2003). PCB and PAH releases from power stations and waste incineration processes in the UK. Chemosphere, 50(4), 469–480. https://doi.org/10.1016/S0045-6535(02)00627-6 | spa |
| dc.relation.references | Elghawi, U. M., Mayouf, A., Tsolakis, A., & Wyszynski, M. L. (2010). Vapour-phase and particulate-bound PAHs profile generated by a (SI/HCCI) engine from a winter grade commercial gasoline fuel. Fuel, 89(8), 2019–2025. https://doi.org/10.1016/j.fuel.2010.01.002 | spa |
| dc.relation.references | Ellickson, K. M., McMahon, C. M., Herbrandson, C., Krause, M. J., Schmitt, C. M., Lippert, C. J., & Pratt, G. C. (2017). Analysis of polycyclic aromatic hydrocarbons (PAHs) in air using passive sampling calibrated with active measurements. Environmental Pollution, 231, 487–496. https://doi.org/10.1016/j.envpol.2017.08.049 | spa |
| dc.relation.references | European Commission. (2005). Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Retrieved from https://ec.europa.eu/taxation_customs/website-archive_en | spa |
| dc.relation.references | Finizio, A., Mackay, D., Bidleman, T., & Harner, T. (1997). Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmospheric Environment, 31(15), 2289–2296. https://doi.org/10.1016/S1352-2310(97)00013-7 | spa |
| dc.relation.references | Freeman, D., & Cattell, F. (1990). Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. Environmental Science & Technology, 24(10), 1581–1585. https://doi.org/10.1021/es00080a019 | spa |
| dc.relation.references | Gaga, E. O., & Ar, A. (2018). Gas-particle partitioning and health risk estimation of polycyclic aromatic hydrocarbons ( PAHs ) at urban , suburban and tunnel atmospheres : Use of measured EC and OC in model calculations, (April). https://doi.org/10.1016/j.apr.2018.05.004 | spa |
| dc.relation.references | Garrido, A., Jiménez-Guerrero, P., & Ratola, N. (2014). Levels, trends and health concerns of atmospheric PAHs in Europe. Atmospheric Environment, 99, 474–484. https://doi.org/10.1016/j.atmosenv.2014.10.011 | spa |
| dc.relation.references | González, C. M., Gómez, C. D., Rojas, N. Y., Acevedo, H., & Aristizábal, B. H. (2017). Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city. Atmospheric Environment, 152, 279–289. https://doi.org/10.1016/j.atmosenv.2016.12.048 | spa |
| dc.relation.references | González, C. M., Ynoue, R. Y., Vara-Vela, A., Rojas, N. Y., & Aristizábal, B. H. (2018). High-resolution air quality modeling in a medium-sized city in the tropical Andes: Assessment of local and global emissions in understanding ozone and PM10 dynamics. Atmospheric Pollution Research, 9(5), 934–948. https://doi.org/10.1016/j.apr.2018.03.003 | spa |
| dc.relation.references | González Duque, C. M., & Cortés Araujo, Johana; Aristizábal Zuluaga, B. H. (2015). Influencia de la meteorología y las fuentes de emisión en los niveles ambientales de PM10 en una ciudad tropical Andina. Rev. Fac. Ing. Univ. Antioquia, 74, 200–212. | spa |
| dc.relation.references | Goss, K. U., & Schwarzenbach, R. P. (1998). Gas/solid and gas/liquid partitioning of organic compounds: Critical evaluation of the interpretation of equilibrium constants. Environmental Science and Technology, 32(14), 2025–2032. https://doi.org/10.1021/es9710518 | spa |
| dc.relation.references | Guo, H., Lee, S. C., Ho, K. F., Wang, X. M., & Zou, S. C. (2003). Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment, 37(38), 5307–5317. https://doi.org/10.1016/j.atmosenv.2003.09.011 | spa |
| dc.relation.references | Harrison, R. M., Smith, D. I. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environmental Science and Technology, 30(3), 825–832. https://doi.org/10.1021/es950252d | spa |
| dc.relation.references | Huang, W., Smith, T. J., Ngo, L., Wang, T., Chen, H., Wu, F., … Ding, H. (2007). Characterizing and biological monitoring of polycyclic aromatic hydrocarbons in exposures to diesel exhaust. Environmental Science and Technology, 41(8), 2711–2716. https://doi.org/10.1021/es062863j | spa |
| dc.relation.references | Hyötyläinen, T., & Oikari, A. (2004). Bioaccumulation of PAHs from creosote-contaminated sediment in a laboratory-exposed freshwater oligochaete, Lumbriculus variegatus. Chemosphere, 57(2), 159–164. https://doi.org/10.1016/j.chemosphere.2004.05.001 | spa |
| dc.relation.references | IARC. (2017). Monographs on the Evaluation of Carcinogenic Risks to Humans. Retrieved from monographs.iarc.fr/ENG/Classification/latest_classif.php | spa |
| dc.relation.references | Jang, E., Alam, M. S., & Harrison, R. M. (2013). Source apportionment of polycyclic aromatic hydrocarbons in urban air using positive matrix factorization and spatial distribution analysis. Atmospheric Environment, 79, 217–285. https://doi.org/10.1016/j.atmosenv.2013.06.056 | spa |
| dc.relation.references | Larsen, R. K., & Baker, J. E. (2003). Source Apportionment of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere: A Comparison of Three Methods. Environmental Science & Technology, 37(9), 1873–1881. https://doi.org/10.1021/es0206184 | spa |
| dc.relation.references | Lee, W. J., Liu, Y. C., Mwangi, F. K., Chen, W. H., Lin, S. L., Fukushima, Y., … Wang, L. C. (2011). Assessment of energy performance and air pollutant emissions in a diesel engine generator fueled with water-containing ethanol-biodiesel-diesel blend of fuels. Energy, 36(9), 5591–5599. https://doi.org/10.1016/j.energy.2011.07.012 | spa |
| dc.relation.references | Manoli, E., Kouras, A., Karagkiozidou, O., Argyropoulos, G., Voutsa, D., & Samara, C. (2016). Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: source apportionment of ambient PAH levels and PAH-induced lung cancer risk. Environmental Science and Pollution Research, 23(4), 3556–3568. https://doi.org/10.1007/s11356-015-5573-5 | spa |
| dc.relation.references | Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300. https://doi.org/10.1016/0273-2300(92)90009-X | spa |
| dc.relation.references | Odabasi, M., Cetin, E., & Sofuoglu, A. (2006). Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas-particle partitioning in an urban atmosphere. Atmospheric Environment, 40(34), 6615–6625. https://doi.org/10.1016/j.atmosenv.2006.05.051 | spa |
| dc.relation.references | Pankow, J. F. (1994). An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmospheric Environment, 28(2), 185–188. https://doi.org/10.1016/1352-2310(94)90093-0 | spa |
| dc.relation.references | Pratt, G. C., Herbrandson, C., Krause, M. J., Schmitt, C., Lippert, C. J., McMahon, C. R., & Ellickson, K. M. (2018). Measurements of gas and particle polycyclic aromatic hydrocarbons (PAHs) in air at urban, rural and near-roadway sites. Atmospheric Environment, 179(November 2017), 268–278. https://doi.org/10.1016/j.atmosenv.2018.02.035 | spa |
| dc.relation.references | Quijano Parra, A., & Meléndez Gélvez, I. (2014). Identificación De Hidrocarburos Aromáticos Policíclicos (Haps) En El Aire De Cúcuta-Colombia: Efecto Gen Tóxico. Revista EIA, 11(21), 79–87. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=fua&AN=101658239&lang=es&site=ehost-live%0A10.14508/reia.2014.11.21 | spa |
| dc.relation.references | Radonic, J., Sekulic, M. T., Miloradov, M. V., Čupr, P., & Klánová, J. (2009). Gas-particle partitioning of persistent organic pollutants in the Western Balkan countries affected by war conflicts. Environmental Science and Pollution Research, 16(1), 65–72. https://doi.org/10.1007/s11356-008-0067-3 | spa |
| dc.relation.references | Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921. https://doi.org/10.1016/j.atmosenv.2007.12.010 | spa |
| dc.relation.references | Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environmental Chemistry Letters, 5(4), 169–195. https://doi.org/10.1007/s10311-007-0095-0 | spa |
| dc.relation.references | USEPA. (1999). Method TO-13A: Determination of Polycyclic Aromatic Hydrocarbons ( PAHs ) in Ambient Air Using Gas Chromatography / Mass Spectrom. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), (January), 78. | spa |
| dc.relation.references | Velasco, M. (2015). Evaluación de la concentración y caracterización preliminar del pm 10 en la ciudad de manizales | spa |
| dc.relation.references | Vélez, Jorge Julian; Orozco, Mauricio; Duque, Nestor Dario; Aristizábal, B. H. (2015). Entendimiento de fenómenos ambientales mediante el análisis de datos. Manizales: Universidad Nacional de Colombia | spa |
| dc.relation.references | Zhang, Y., & Tao, S. (2009). Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmospheric Environment, 43(4), 812–819. https://doi.org/10.1016/j.atmosenv.2008.10.050 | spa |
| dc.relation.references | Zhou, C., Zhu, X., Wang, Z., Ma, X., Chen, J., Ni, Y., … Li, X. (2013). Gas-Particle Partitioning of PAHs In The Urban Air of Dalian, China: Measurements and Assessments. Polycyclic Aromatic Compounds, 33(1), 31–51. https://doi.org/10.1080/10406638.2012.683467 | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
| dc.subject.proposal | Persistent Organic Compounds | eng |
| dc.subject.proposal | Compuestos Orgánicos Persistentes | spa |
| dc.subject.proposal | Coeficiente de partición | spa |
| dc.subject.proposal | Gas | eng |
| dc.subject.proposal | Relaciones diagnósticas | spa |
| dc.subject.proposal | Particle | eng |
| dc.subject.proposal | Partition coefficient | eng |
| dc.subject.proposal | Gas | spa |
| dc.subject.proposal | Partícula | spa |
| dc.subject.proposal | Diagnostic ratios | eng |
| dc.subject.proposal | Calidad del aire - Manizales (Colombia) | spa |
| dc.subject.proposal | Air quality - Manizales (Colombia) | eng |
| dc.subject.proposal | Contaminación del aire - Manizales (Colombia) | spa |
| dc.subject.proposal | Air pollution - Manizales (Colombia) | eng |
| dc.title | Hidrocarburos Aromáticos Policíclicos en el aire ambiente de Manizales | spa |
| dc.title.alternative | Polycyclic Aromatic Hydrocarbons in the Manizales environmental air | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053815011.2020.pdf
- Tamaño:
- 5.02 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Ambiental
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.9 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

