Hidrocarburos Aromáticos Policíclicos en el aire ambiente de Manizales

dc.contributor.advisorAristizábal Zuluaga, Beatriz Helenaspa
dc.contributor.authorZapata Mora, Camilospa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Manizalesspa
dc.contributor.researchgroupGrupo de Trabajo Académico en Ingeniería Hidráulica y Ambientalspa
dc.date.accessioned2020-07-10T17:30:12Zspa
dc.date.available2020-07-10T17:30:12Zspa
dc.date.issued2020spa
dc.description.abstractEl presente trabajo muestra la distribución de la concentración de los 16 Hidrocarburos Aromáticos Policíclicos (HAPs) priorizados por la Agencia de Protección Ambiental de los Estados Unidos US-EPA, considerando la fracción gaseosa y particulada. El área de estudio fue Manizales, una ciudad andina (2150 m.s.n.m) de población media (400 mil habitantes), donde se evaluaron tres ambientes urbanos de interés por sus fuentes de emisión. La metodología de muestreo y análisis se basó en el método EPA - TO-13A. La información disponible para este tipo de compuestos es escasa en países en vías de desarrollo, especialmente para la fracción gaseosa. Se encontró en este estudio que el rango de las concentraciones totales de Σ16 HAPs (particular + gas) estaba entre 15.5 ng m-3 y 46.0 ng m-3, con un promedio de 29.1 ng m-3 para la estación de centro urbano (ECU), de 7.6 ng m-3 a 45.5 ng m-3, con un promedio de 23.9 ng m-3 para la estación comercial residencial (ECR) y de 17.6 ng m-3 a 213.4 ng m-3, con un promedio de 64.7 ng m-3 para la estación centro industrial (ECI). Los HAPs monitoreados en fracción particulada y gaseosa presentaron en todas las muestras mayor concentración (aproximadamente 3 veces) en la fracción gaseosa. Por otra parte, se identificó que el 90 % de las muestras reportaron un Factor de Equivalencia Tóxica con base en Benzo[a]pireno (FET-BaP) mayor al límite máximo permisible (1 ng m-3). En todas las muestras se observó que el potencial tóxico está influenciado principalmente por la fracción particulada (entre el 80 % y 98 %). Las relaciones de isómeros de HAPs son usadas para determinar la influencia de fuentes de emisiones, considerando solo las concentraciones reportadas en la fracción particulada. Sin embargo, se encontró relevante la determinación de estas relaciones basadas en las dos fracciones (particulada y gaseosa), ya que compuestos comúnmente usados en estas relaciones como Antraceno, Fluoranteno y Pireno se encuentran presentes en mayor proporción en la fracción gaseosa, subestimando las relaciones si sólo se trabaja con concentraciones en fracción particulada.spa
dc.description.abstractThe present work shows the concentration distribution of the 16 more toxics Polycyclic Aromatic Hydrocarbons (PAHs) according to the US Environmental Protection Agency US-EPA, considering both particulate and gaseous fraction. The study area was Manizales, a Colombian Andean city (2150 m.a.s.l) of medium population (400 thousand inhabitants). Three urban environments were evaluated, considering the main emission sources. Sampling and analysis methodology were based on the EPA-TO-13A method. The information available for this type of compounds is scarce in developing countries, especially for the gas fraction. It was found that the range of total concentrations of Σ16 HAPs (particular + gas) was between 15.5 ng m-3 and 46.0 ng m-3, with an average of 29.1 ng m-3 for the urban center station (UCS ), from 7.6 ng m-3 to 45.5 ng m-3, with an average of 23.9 ng m-3 for the residential commercial station (RCS) and from 17.6 ng m-3 to 213.4 ng m-3, with an average of 64.7 ng m-3 for industrial center station (ICS). The PAHs monitored in particulate and gas fraction presented in all the samples the highest concentration in the gas fraction (approximately 3 times). On the other hand, it was identified that 90% of the samples reported a Toxic Equivalence Factor based on Benzo[a]pireno (TEF-BaP) greater than the maximum permissible limit (1 ng m-3). In all samples were observed that the contribution to the total toxic equivalent is main affected by the particulate fraction (between 80% and 98%). Ratios of PAH isomers are used to determine the influence of emission sources but only considering the particulate fraction. However the determination of these ratios based in both phases (gas and particulate fraction), were found relevant, since compounds commonly used in these relationships such as Anthracene, Fluoranteno and Pyrene are mostly found in the gaseous fraction. In this sense, an underestimation can be happening when only particulate fraction concentrations are used.eng
dc.description.additionalTrabajo final presentado como requisito para optar por el título de: Magister en Ingeniería – Ingeniería Ambiental. -- Línea de Profundización: Calidad del aire.spa
dc.description.degreelevelMaestríaspa
dc.format.extent106spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationZapata, C. (2020). Hidrocarburos aromáticos policíclicos en el aire ambiente de Manizales. Universidad Nacional de Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77762
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Químicaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesAbdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011spa
dc.relation.referencesAkyüz, M., & Çabuk, H. (2010). Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Science of the Total Environment, 408(22), 5550–5558. https://doi.org/10.1016/j.scitotenv.2010.07.063spa
dc.relation.referencesAndersson, J. T., & Achten, C. (2015). Time to Say Goodbye to the 16 EPA PAHs? Toward an Up-to-Date Use of PACs for Environmental Purposes. Polycyclic Aromatic Compounds, 35(2–4), 330–354. https://doi.org/10.1080/10406638.2014.991042spa
dc.relation.referencesArango, J. H. (2009). Calidad de los combustibles en Colombia. Quality of Fuels in Colombia., (29), 100–108. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=fua&AN=44459622&lang=es&site=ehost-livespa
dc.relation.referencesBolden, A. L., Rochester, J. R., Schultz, K., & Kwiatkowski, C. F. (2017). Polycyclic aromatic hydrocarbons and female reproductive health: A scoping review. Reproductive Toxicology, 73, 61–74. https://doi.org/10.1016/j.reprotox.2017.07.012spa
dc.relation.referencesCheruyiot, N. K., Lee, W. J., Mwangi, J. K., Wang, L. C., Lin, N. H., Lin, Y. C., … Chang-Chien, G. P. (2015). An overview: Polycyclic aromatic hydrocarbon emissions from the stationary and mobile sources and in the ambient air. Aerosol and Air Quality Research, 15(7), 2730–2762. https://doi.org/10.4209/aaqr.2015.11.0627spa
dc.relation.referencesDat, N. D., & Chang, M. B. (2017). Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Science of the Total Environment, 609, 682–693. https://doi.org/10.1016/j.scitotenv.2017.07.204spa
dc.relation.referencesDe La Torre-Roche, R. J., Lee, W. Y., & Campos-Díaz, S. I. (2009). Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of a potential problem in the United States/Mexico border region. Journal of Hazardous Materials, 163(2–3), 946–958. https://doi.org/10.1016/j.jhazmat.2008.07.089spa
dc.relation.referencesDelgado-Saborit, J. M., Alam, M. S., Godri Pollitt, K. J., Stark, C., & Harrison, R. M. (2013). Analysis of atmospheric concentrations of quinones and polycyclic aromatic hydrocarbons in vapour and particulate phases. Atmospheric Environment, 77, 974–982. https://doi.org/10.1016/j.atmosenv.2013.05.080spa
dc.relation.referencesDevos, O., Combet, E., Tassel, P., & Paturel, L. (2006). Exhaust emissions of pahs of passenger cars. Polycyclic Aromatic Compounds, 26(1), 69–78. https://doi.org/10.1080/10406630500519346spa
dc.relation.referencesDomingo, J. L., & Nadal, M. (2015). Human dietary exposure to polycyclic aromatic hydrocarbons: A review of the scientific literature. Food and Chemical Toxicology, 86, 144–153. https://doi.org/10.1016/j.fct.2015.10.002spa
dc.relation.referencesDyke, P. H., Foan, C., & Fiedler, H. (2003). PCB and PAH releases from power stations and waste incineration processes in the UK. Chemosphere, 50(4), 469–480. https://doi.org/10.1016/S0045-6535(02)00627-6spa
dc.relation.referencesElghawi, U. M., Mayouf, A., Tsolakis, A., & Wyszynski, M. L. (2010). Vapour-phase and particulate-bound PAHs profile generated by a (SI/HCCI) engine from a winter grade commercial gasoline fuel. Fuel, 89(8), 2019–2025. https://doi.org/10.1016/j.fuel.2010.01.002spa
dc.relation.referencesEllickson, K. M., McMahon, C. M., Herbrandson, C., Krause, M. J., Schmitt, C. M., Lippert, C. J., & Pratt, G. C. (2017). Analysis of polycyclic aromatic hydrocarbons (PAHs) in air using passive sampling calibrated with active measurements. Environmental Pollution, 231, 487–496. https://doi.org/10.1016/j.envpol.2017.08.049spa
dc.relation.referencesEuropean Commission. (2005). Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Retrieved from https://ec.europa.eu/taxation_customs/website-archive_enspa
dc.relation.referencesFinizio, A., Mackay, D., Bidleman, T., & Harner, T. (1997). Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmospheric Environment, 31(15), 2289–2296. https://doi.org/10.1016/S1352-2310(97)00013-7spa
dc.relation.referencesFreeman, D., & Cattell, F. (1990). Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. Environmental Science & Technology, 24(10), 1581–1585. https://doi.org/10.1021/es00080a019spa
dc.relation.referencesGaga, E. O., & Ar, A. (2018). Gas-particle partitioning and health risk estimation of polycyclic aromatic hydrocarbons ( PAHs ) at urban , suburban and tunnel atmospheres : Use of measured EC and OC in model calculations, (April). https://doi.org/10.1016/j.apr.2018.05.004spa
dc.relation.referencesGarrido, A., Jiménez-Guerrero, P., & Ratola, N. (2014). Levels, trends and health concerns of atmospheric PAHs in Europe. Atmospheric Environment, 99, 474–484. https://doi.org/10.1016/j.atmosenv.2014.10.011spa
dc.relation.referencesGonzález, C. M., Gómez, C. D., Rojas, N. Y., Acevedo, H., & Aristizábal, B. H. (2017). Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city. Atmospheric Environment, 152, 279–289. https://doi.org/10.1016/j.atmosenv.2016.12.048spa
dc.relation.referencesGonzález, C. M., Ynoue, R. Y., Vara-Vela, A., Rojas, N. Y., & Aristizábal, B. H. (2018). High-resolution air quality modeling in a medium-sized city in the tropical Andes: Assessment of local and global emissions in understanding ozone and PM10 dynamics. Atmospheric Pollution Research, 9(5), 934–948. https://doi.org/10.1016/j.apr.2018.03.003spa
dc.relation.referencesGonzález Duque, C. M., & Cortés Araujo, Johana; Aristizábal Zuluaga, B. H. (2015). Influencia de la meteorología y las fuentes de emisión en los niveles ambientales de PM10 en una ciudad tropical Andina. Rev. Fac. Ing. Univ. Antioquia, 74, 200–212.spa
dc.relation.referencesGoss, K. U., & Schwarzenbach, R. P. (1998). Gas/solid and gas/liquid partitioning of organic compounds: Critical evaluation of the interpretation of equilibrium constants. Environmental Science and Technology, 32(14), 2025–2032. https://doi.org/10.1021/es9710518spa
dc.relation.referencesGuo, H., Lee, S. C., Ho, K. F., Wang, X. M., & Zou, S. C. (2003). Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment, 37(38), 5307–5317. https://doi.org/10.1016/j.atmosenv.2003.09.011spa
dc.relation.referencesHarrison, R. M., Smith, D. I. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environmental Science and Technology, 30(3), 825–832. https://doi.org/10.1021/es950252dspa
dc.relation.referencesHuang, W., Smith, T. J., Ngo, L., Wang, T., Chen, H., Wu, F., … Ding, H. (2007). Characterizing and biological monitoring of polycyclic aromatic hydrocarbons in exposures to diesel exhaust. Environmental Science and Technology, 41(8), 2711–2716. https://doi.org/10.1021/es062863jspa
dc.relation.referencesHyötyläinen, T., & Oikari, A. (2004). Bioaccumulation of PAHs from creosote-contaminated sediment in a laboratory-exposed freshwater oligochaete, Lumbriculus variegatus. Chemosphere, 57(2), 159–164. https://doi.org/10.1016/j.chemosphere.2004.05.001spa
dc.relation.referencesIARC. (2017). Monographs on the Evaluation of Carcinogenic Risks to Humans. Retrieved from monographs.iarc.fr/ENG/Classification/latest_classif.phpspa
dc.relation.referencesJang, E., Alam, M. S., & Harrison, R. M. (2013). Source apportionment of polycyclic aromatic hydrocarbons in urban air using positive matrix factorization and spatial distribution analysis. Atmospheric Environment, 79, 217–285. https://doi.org/10.1016/j.atmosenv.2013.06.056spa
dc.relation.referencesLarsen, R. K., & Baker, J. E. (2003). Source Apportionment of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere: A Comparison of Three Methods. Environmental Science & Technology, 37(9), 1873–1881. https://doi.org/10.1021/es0206184spa
dc.relation.referencesLee, W. J., Liu, Y. C., Mwangi, F. K., Chen, W. H., Lin, S. L., Fukushima, Y., … Wang, L. C. (2011). Assessment of energy performance and air pollutant emissions in a diesel engine generator fueled with water-containing ethanol-biodiesel-diesel blend of fuels. Energy, 36(9), 5591–5599. https://doi.org/10.1016/j.energy.2011.07.012spa
dc.relation.referencesManoli, E., Kouras, A., Karagkiozidou, O., Argyropoulos, G., Voutsa, D., & Samara, C. (2016). Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: source apportionment of ambient PAH levels and PAH-induced lung cancer risk. Environmental Science and Pollution Research, 23(4), 3556–3568. https://doi.org/10.1007/s11356-015-5573-5spa
dc.relation.referencesNisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300. https://doi.org/10.1016/0273-2300(92)90009-Xspa
dc.relation.referencesOdabasi, M., Cetin, E., & Sofuoglu, A. (2006). Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas-particle partitioning in an urban atmosphere. Atmospheric Environment, 40(34), 6615–6625. https://doi.org/10.1016/j.atmosenv.2006.05.051spa
dc.relation.referencesPankow, J. F. (1994). An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmospheric Environment, 28(2), 185–188. https://doi.org/10.1016/1352-2310(94)90093-0spa
dc.relation.referencesPratt, G. C., Herbrandson, C., Krause, M. J., Schmitt, C., Lippert, C. J., McMahon, C. R., & Ellickson, K. M. (2018). Measurements of gas and particle polycyclic aromatic hydrocarbons (PAHs) in air at urban, rural and near-roadway sites. Atmospheric Environment, 179(November 2017), 268–278. https://doi.org/10.1016/j.atmosenv.2018.02.035spa
dc.relation.referencesQuijano Parra, A., & Meléndez Gélvez, I. (2014). Identificación De Hidrocarburos Aromáticos Policíclicos (Haps) En El Aire De Cúcuta-Colombia: Efecto Gen Tóxico. Revista EIA, 11(21), 79–87. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=fua&AN=101658239&lang=es&site=ehost-live%0A10.14508/reia.2014.11.21spa
dc.relation.referencesRadonic, J., Sekulic, M. T., Miloradov, M. V., Čupr, P., & Klánová, J. (2009). Gas-particle partitioning of persistent organic pollutants in the Western Balkan countries affected by war conflicts. Environmental Science and Pollution Research, 16(1), 65–72. https://doi.org/10.1007/s11356-008-0067-3spa
dc.relation.referencesRavindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921. https://doi.org/10.1016/j.atmosenv.2007.12.010spa
dc.relation.referencesSrogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environmental Chemistry Letters, 5(4), 169–195. https://doi.org/10.1007/s10311-007-0095-0spa
dc.relation.referencesUSEPA. (1999). Method TO-13A: Determination of Polycyclic Aromatic Hydrocarbons ( PAHs ) in Ambient Air Using Gas Chromatography / Mass Spectrom. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), (January), 78.spa
dc.relation.referencesVelasco, M. (2015). Evaluación de la concentración y caracterización preliminar del pm 10 en la ciudad de manizalesspa
dc.relation.referencesVélez, Jorge Julian; Orozco, Mauricio; Duque, Nestor Dario; Aristizábal, B. H. (2015). Entendimiento de fenómenos ambientales mediante el análisis de datos. Manizales: Universidad Nacional de Colombiaspa
dc.relation.referencesZhang, Y., & Tao, S. (2009). Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmospheric Environment, 43(4), 812–819. https://doi.org/10.1016/j.atmosenv.2008.10.050spa
dc.relation.referencesZhou, C., Zhu, X., Wang, Z., Ma, X., Chen, J., Ni, Y., … Li, X. (2013). Gas-Particle Partitioning of PAHs In The Urban Air of Dalian, China: Measurements and Assessments. Polycyclic Aromatic Compounds, 33(1), 31–51. https://doi.org/10.1080/10406638.2012.683467spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.proposalPersistent Organic Compoundseng
dc.subject.proposalCompuestos Orgánicos Persistentesspa
dc.subject.proposalCoeficiente de particiónspa
dc.subject.proposalGaseng
dc.subject.proposalRelaciones diagnósticasspa
dc.subject.proposalParticleeng
dc.subject.proposalPartition coefficienteng
dc.subject.proposalGasspa
dc.subject.proposalPartículaspa
dc.subject.proposalDiagnostic ratioseng
dc.subject.proposalCalidad del aire - Manizales (Colombia)spa
dc.subject.proposalAir quality - Manizales (Colombia)eng
dc.subject.proposalContaminación del aire - Manizales (Colombia)spa
dc.subject.proposalAir pollution - Manizales (Colombia)eng
dc.titleHidrocarburos Aromáticos Policíclicos en el aire ambiente de Manizalesspa
dc.title.alternativePolycyclic Aromatic Hydrocarbons in the Manizales environmental airspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053815011.2020.pdf
Tamaño:
5.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: