Desarrollo de una herramienta de modelamiento para la evaluación de alternativas de aprovechamiento energético de biomasa en Colombia

dc.contributor.advisorPrias Caicedo, Omar
dc.contributor.authorDe la Rosa Ramos, Luis Rafael
dc.contributor.researchgroupGrupo de Investigación en el Sector Energético Colombiano GRISECspa
dc.date.accessioned2023-11-03T16:29:46Z
dc.date.available2023-11-03T16:29:46Z
dc.date.issued2023
dc.descriptionilustracionesspa
dc.description.abstractSe desarrolló una herramienta de modelación para la evaluación de rutas tecnológicas de aprovechamiento energético de biomasas colombianas, a través del planteamiento y solución de un problema de programación lineal y la realización de casos de estudio bajo diferentes condiciones para su análisis. Las biomasas estudiadas incluyen agrícolas como el tamo de arroz, rastrojo de maíz, vástago de plátano, entre otras, y residuos pecuarios como el estiércol bovino y avícola. Su caracterización fisicoquímica, así como los principales criterios a tener en cuenta para su uso energético, fueron obtenidos mediante revisión de literatura especializada. También, se llevó a cabo un estudio de vigilancia tecnológica para conocer las tendencias y principales características de los procesos que pueden utilizarse para las biomasas estudiadas, definiéndose la combustión, pirólisis, gasificación, digestión anaeróbica y fermentación, como los procesos en este modelo. Con esta información se consultaron parámetros técnicos reportados, para la conversión de las biomasas en los productos de interés, los cuales fueron definidos en calor, electricidad, aceite pirolítico (bioaceite) y bioetanol; y económicos como los costos de operación, de capital de inversión y precios de ventas de productos. Finalmente se realizó la programación del modelo matemático, que busca maximizar la utilidad por la venta de los productos generados, a través del mejor arreglo entre las biomasas y tecnologías, obteniéndose bajo el escenario de exceso de materias primas, un máximo de la función objetivo de USD$ 400 millones al año, así como un mejor desempeño de las tecnologías térmicas frente a las bioquímicas en los casos estudiados. (Texto tomado de la fuente)spa
dc.description.abstractA program was developed for technological routes evaluation in order to use Colombian biomass for energy uses, through the approach and solution of a linear programming problem. The types of biomass studied were rice straw, corn stover, banana stems, etc., and livestock residues such as bovine and manure poultry. Physicochemical characterization of theses residues, as well as the criteria to be used for energetic purposes, was obtained through a review of specialized literature. A technological watch was also carried out to find out the trends and main characteristics of the processes that can be used for the main objective: combustion, pyrolysis, gasification, anaerobic digestion and fermentation were the processes used in this model. With this information, technical parameters were consulted for the conversion of biomasses into the products, which were defined as heat, electricity, pyrolytic oil (bio-oil) and bioethanol; and for economic parameters, such as operating costs, capital investment, and product sales prices. Finally, the programming of the mathematical model was carried out, which seeks to maximize the profit from the sale of the products, through the best arrangement between biomasses and technologies. Under the scenario of excess raw materials, a maximum of the objective function of USD$400 million per year was obtained, as well as a better performance of thermal technologies compared to biochemical ones for the study cases.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaEnergías renovables y eficiencia energéticaspa
dc.format.extentxvi, 122 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84884
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.references[1] M. A. Destek and A. Aslan, “Renewable and non-renewable energy consumption and economic growth in emerging economies: Evidence from bootstrap panel causality,” Renew. Energy, vol. 111, pp. 757–763, 2017.spa
dc.relation.references[2] A. Demirbas, “Importance of biomass energy sources for Turkey,” Energy Policy, vol. 36, no. 2, pp. 834–842, 2008.spa
dc.relation.references[3] REN21, Renewables 2022 Global Status. 2022.spa
dc.relation.references[4] A. Kumar, N. Kumar, P. Baredar, and A. Shukla, “A review on biomass energy resources, potential, conversion and policy in India,” Renew. Sustain. Energy Rev., vol. 45, pp. 530–539, 2015.spa
dc.relation.references[5] J. Cai et al., “Review of physicochemical properties and analytical characterization of lignocellulosic biomass,” Renew. Sustain. Energy Rev., vol. 76, no. October 2016, pp. 309–322, 2017.spa
dc.relation.references[6] M. Hupa, O. Karlström, and E. Vainio, “Biomass combustion technology development - It is all about chemical details,” Proc. Combust. Inst., vol. 36, no. 1, pp. 113–134, 2017.spa
dc.relation.references[7] S. K. Sansaniwal, M. A. Rosen, and S. K. Tyagi, “Global challenges in the sustainable development of biomass gasification: An overview,” Renew. Sustain. Energy Rev., vol. 80, no. March, pp. 23–43, 2017.spa
dc.relation.references[8] M. Puig-Arnavat, J. C. Bruno, and A. Coronas, “Review and analysis of biomass gasification models,” Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 2841–2851, 2010.spa
dc.relation.references[9] A. Kumar, D. D. Jones, and M. A. Hanna, “Thermochemical biomass gasification: A review of the current status of the technology,” Energies, vol. 2, no. 3, pp. 556–581, 2009.spa
dc.relation.references[10] A. Sharma, V. Pareek, and D. Zhang, “Biomass pyrolysis - A review of modelling, process parameters and catalytic studies,” Renew. Sustain. Energy Rev., vol. 50, pp. 1081–1096, 2015.spa
dc.relation.references[11] F. X. Collard and J. Blin, “A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin,” Renew. Sustain. Energy Rev., vol. 38, pp. 594–608, 2014.spa
dc.relation.references[12] C. Sawatdeenarunat, K. C. Surendra, D. Takara, H. Oechsner, and S. K. Khanal, “Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities,” Bioresour. Technol., vol. 178, pp. 178–186, 2015.spa
dc.relation.references[13] R. Lal, “World crop residues production and implications of its use as a biofuel,” vol. 31, no. 2005, pp. 575–584, 2012.spa
dc.relation.references[14] M. C. Heller, G. A. Keoleian, M. K. Mann, and T. A. Volk, “Life cycle energy and environmental benefits of generating electricity from willow biomass,” vol. 29, pp. 1023–1042, 2004.spa
dc.relation.references[15] Departamento administrativo de Ciencia Tecnolgía e Innovación - COLCIENCIAS, PLAN ESTRATÉGICO DE CIENCIA, TECNOLOGÍA E INNOVACIÓN EN ENERGÍA Y MINERÍA 2013-2022. 2013, p. 168.spa
dc.relation.references[16] Colombia, “Ley 1715 de 2014 por medio de la cual se regula la integración de las energías renovables no convencionales al sistema energético nacional.” Bogotá D.C., p. 16, 2014.spa
dc.relation.references[17] R. C. Saxena, D. K. Adhikari, and H. B. Goyal, “Biomass-based energy fuel through biochemical routes: A review,” Renew. Sustain. Energy Rev., vol. 13, no. 1, pp. 167–178, 2009.spa
dc.relation.references[18] H. B. Goyal, D. Seal, and R. C. Saxena, “Bio-fuels from thermochemical conversion of renewable resources: A review,” Renew. Sustain. Energy Rev., vol. 12, no. 2, pp. 504–517, 2008.spa
dc.relation.references[19] R. Warnecke, “Gasification of biomass: Comparison of fixed bed and fluidized bed gasifier,” Biomass and Bioenergy, vol. 18, no. 6, pp. 489–497, 2000.spa
dc.relation.references[20] S. Al Arni, “Comparison of slow and fast pyrolysis for converting biomass into fuel,” Renew. Energy, pp. 1–5, 2017.spa
dc.relation.references[21] S. Zhang et al., “Liquefaction of biomass and upgrading of bio-oil: A review,” Molecules, vol. 24, no. 12, pp. 1–30, 2019.spa
dc.relation.references[22] A. R. K. Gollakota, N. Kishore, and S. Gu, “A review on hydrothermal liquefaction of biomass,” Renew. Sustain. Energy Rev., vol. 81, no. August 2016, pp. 1378–1392, 2018.spa
dc.relation.references[23] K. F. Adekunle and J. A. Okolie, “A Review of Biochemical Process of Anaerobic Digestion,” Adv. Biosci. Biotechnol., vol. 06, no. 03, pp. 205–212, 2015.spa
dc.relation.references[24] Y. Lin and S. Tanaka, “Ethanol fermentation from biomass resources: Current state and prospects,” Appl. Microbiol. Biotechnol., vol. 69, no. 6, pp. 627–642, 2006.spa
dc.relation.references[25] M. Lübken, T. Gehring, and M. Wichern, “Microbiological fermentation of lignocellulosic biomass: Current state and prospects of mathematical modeling,” Appl. Microbiol. Biotechnol., vol. 85, no. 6, pp. 1643–1652, 2010.spa
dc.relation.references[26] L. Kong, S. M. Sen, C. A. Henao, J. A. Dumesic, and C. T. Maravelias, “A superstructure-based framework for simultaneous process synthesis, heat integration, and utility plant design,” Comput. Chem. Eng., vol. 91, pp. 68–84, 2016.spa
dc.relation.references[28] J. E. White, W. J. Catallo, and B. L. Legendre, “Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies,” J. Anal. Appl. Pyrolysis, vol. 91, no. 1, pp. 1–33, 2011.spa
dc.relation.references[29] S. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog. Energy Combust. Sci., vol. 62, pp. 33–86, 2017.spa
dc.relation.references[30] M. A. Hernández, J. Romero, C. Jaime, and J. León-pulido, “Lignocellulosic Biomass from Fast-Growing Species in Colombia and their Use as Bioresources for Biofuel Production,” vol. 58, pp. 541–546, 2017.spa
dc.relation.references[31] S. R. Rubio, F. E. Sierra, and A. Guerrero, “Gasificación de materiales orgáni- cos residuales Gasification from waste organic materials,” Ing. e Investig., vol. 31, no. 3, pp. 17–25, 2011.spa
dc.relation.references[32] G. Marrugo, C. F. Valdés, and F. Chejne, “Biochar Gasification: An Experimental Study on Colombian Agroindustrial Biomass Residues in a Fluidized Bed,” Energy and Fuels, vol. 31, no. 9, pp. 9408–9421, 2017.spa
dc.relation.references[33] A. Blanco and F. Chejne, “Modeling and simulation of biomass fast pyrolysis in a fluidized bed reactor,” J. Anal. Appl. Pyrolysis, vol. 118, pp. 105–114, 2016.spa
dc.relation.references[34] UPME Unidad de Planeación Minero Energética, “Balance Energético Colombiano BECO,” upme.gov.co, 2022. [Online]. Available: https://www1.upme.gov.co/DemandayEficiencia/Paginas/BECO.aspx.spa
dc.relation.references[35] UPME Unidad de Planeación Minero Energética, “Atlas del Potencial Energético de la Biomasa Residual en Colombia.” bo, p. 180, 2008.spa
dc.relation.references[36] UPME Unidad de Planeación Minero Energética, “Informe de Gestión 2017- 2018,” Bogotá D.C., 2018.spa
dc.relation.references[37] Patiño Martínez PE, “PE Biomasa Residual Vegetal: Tecnologías de transformación y estado actual. Innovaciencia facultad cienc. exactas fis. naturales.,” Innovaciencia, vol. 2, no. 1, pp. 45–52, 2014.spa
dc.relation.references[38] P. McKendry, “Energy production from biomass (part 1): Overview of biomass,” Bioresour. Technol., vol. 83, no. 1, pp. 37–46, 2002.spa
dc.relation.references[39] S. V Vassilev, C. G. Vassileva, and V. S. Vassilev, “Advantages and disadvantages of composition and properties of biomass in comparison with coal : An overview,” FUEL, vol. 158, pp. 330–350, 2015.spa
dc.relation.references[40] J. Sadhukhan, K. Siew, and E. Martinez, Biorefineries and Chemical Processes. Chichester: John Wiley & Sons, Ltd, 2014.spa
dc.relation.references[41] A. Valverde G., B. Sarria L., and J. P. Monteagudo Y., “Análisis comparativo de las características fisicoquímicas de la cascarilla de arroz.,” Sci. Tech., no. 37, p. 6, 2007.spa
dc.relation.references[42] R. J. Macías Naranjo, F. Chejne Janna, J. I. Montoya Arbeláez, and A. Blanco Leal, “Gasificación de bagazo de caña y carbón en planta piloto,” Rev. Mutis, vol. 4, no. 1, pp. 24–32, 2014.spa
dc.relation.references[43] D. V Vidal, J. Torres, and L. O. González, “Ceniza De Bagazo De Caña Para Elaboración De Materiales De Construcción: Estudio Preliminar,” MOMENTO - Rev. Física, vol. 0, no. 48E, pp. 14–23, 2014.spa
dc.relation.references[44] P. Lahijani and Z. A. Zainal, “Bioresource Technology Gasification of palm empty fruit bunch in a bubbling fluidized bed : A performance and agglomeration study,” Bioresour. Technol., vol. 102, no. 2, pp. 2068–2076, 2011.spa
dc.relation.references[45] E. Del, E. Del, D. Andrés, and R. Ramírez, “LAS TÉCNICAS DE CO-FIRING Y REBURN,” pp. 1–58, 2018.spa
dc.relation.references[46] X. Li, V. Strezov, and T. Kan, “Energy recovery potential analysis of spent coffee grounds pyrolysis products,” J. Anal. Appl. Pyrolysis, vol. 110, pp. 79–87, 2014.spa
dc.relation.references[47] E. Arenas, Z. Zapata, A. Jos, and D. A. Camargo-trillos, “Biomass and Bioenergy CaCO 3 and air / steam effect on the gasification and biohydrogen performance of corn cob as received : Application in the Colombian Caribbean region,” vol. 153, no. July, 2021.spa
dc.relation.references[48] N. Abdullah, F. Sulaiman, R. M. Taib, and M. A. Miskam, “Pyrolytic oil of banana (Musa spp.) pseudo-stem via fast process,” AIP Conf. Proc., vol. 1657, 2015.spa
dc.relation.references[49] Universidad Nacional de Colombia, TECSOL, and UPME Unidad de Planeación Minero Energética, “Estimación del potencial de conversión a biogás de la biomasa en colombia y su aprovechamiento,” Bogotá D.C., 2018.spa
dc.relation.references[50] G. Su et al., “Valorization of animal manure via pyrolysis for bioenergy: A review,” J. Clean. Prod., vol. 343, no. February, p. 130965, 2022.spa
dc.relation.references[51] A. Kuila and V. Sharma, Principles and Applications of Fermentation Technology, 1st ed. Beverly, USA: John Wiley & Sons, Ltd, 2018.spa
dc.relation.references[52] A. P. C. Faaij, “Bio-energy in Europe: Changing technology choices,” Energy Policy, vol. 34, no. 3, pp. 322–342, 2006.spa
dc.relation.references[53] M. Mandø, “4 - Direct combustion of biomass,” in Biomass combustion science, technology and engineering, Woodhead Publishing Limited, 2013, pp. 61–83.spa
dc.relation.references[54] M. Won et al., “Recent advances of thermochemical conversion processes for biorefinery,” Bioresour. Technol., vol. 343, no. August 2021, p. 126109, 2022.spa
dc.relation.references[55] A. M. Elgarahy, A. Hammad, D. M. El-sherif, M. Abouzid, M. S. Gaballah, and K. Z. Elwakeel, “Thermochemical conversion strategies of biomass to biofuels, techno-economic and bibliometric analysis : A conceptual review,” J. Environ. Chem. Eng., vol. 9, no. 6, p. 106503, 2021.spa
dc.relation.references[56] S. Van Loo and J. Koppeja, The Handbook of Biomass Combustion and Co-firing. London: Earthscan, 2008.spa
dc.relation.references[57] M. Kaltschmitt, N. J. Themelis, L. Y. Bronicki, S. Lennart, and L. A. Vega, Renewable Energy Systems. Nueva York: Springer, 2013.spa
dc.relation.references[58] P. Roy and G. Dias, “Prospects for pyrolysis technologies in the bioenergy sector: A review,” Renew. Sustain. Energy Rev., vol. 77, no. May 2016, pp. 59–69, 2017.spa
dc.relation.references[59] E. Thorin et al., STATE OF THE ART IN THE WASTE TO ENERGY AREA Technology and Systems, no. May. 2011, pp. 1–79.spa
dc.relation.references[60] P. A. Brownsort, “Biomass Pyrolysis Processes: Review of Scope, Control and Variability,” Biomass, p. 38, 2009.spa
dc.relation.references[61] A. Nosakhare, P. U. Okoye, B. Gunes, and H. T. L. Al, “Waste biomass valorization for the production of biofuels and value- added products: A comprehensive review of thermochemical, biological and integrated processes,” Process Saf. Environ. Prot., vol. 159, pp. 323–344, 2022.spa
dc.relation.references[62] A. Krishna, S. Sree, V. Vuppaladadiyam, and A. Awasthi, “Biomass pyrolysis : A review on recent advancements and green hydrogen production,” Bioresour. Technol., vol. 364, no. August, p. 128087, 2022.spa
dc.relation.references[63] J. A. Garcia-Nunez et al., “Historical Developments of Pyrolysis Reactors: A Review,” Energy and Fuels, vol. 31, no. 6, pp. 5751–5775, 2017.spa
dc.relation.references[64] J. De Wilde, “Gas-solid fluidized beds in vortex chambers,” Chem. Eng. Process. Process Intensif., vol. 85, pp. 256–290, 2014.spa
dc.relation.references[65] J. O. Ighalo et al., “Flash pyrolysis of biomass: a review of recent advances,” Clean Technol. Environ. Policy, vol. 24, no. 8, pp. 2349–2363, 2022.spa
dc.relation.references[66] H. Shahbeik et al., “Synthesis of liquid biofuels from biomass by hydrothermal gasification : A critical review,” Renew. Sustain. Energy Rev., vol. 167, no. June, p. 112833, 2022.spa
dc.relation.references[67] A. Kushwah, T. R. Reina, and M. Short, “Modelling approaches for biomass gasi fi ers : A comprehensive overview,” Sci. Total Environ., vol. 834, no. March, p. 155243, 2022.spa
dc.relation.references[68] F. B. C. Mandl, I. Obrenberger, “Updraft- Fixed Bed gasification of Softwood Bellets: Mathematical Modelling and Comparison with experimental data,” Eur. biomass Conf. Exhib., no. July, pp. 1–9, 2009.spa
dc.relation.references[69] N. S. Barman, S. Ghosh, and S. De, “Gasification of biomass in a fixed bed downdraft gasifier - A realistic model including tar,” Bioresour. Technol., vol. 107, pp. 505–511, 2012.spa
dc.relation.references[70] K. Qin, P. A. Jensen, W. Lin, and A. D. Jensen, “Biomass gasification behavior in an entrained flow reactor: Gas product distribution and soot formation,” Energy and Fuels, vol. 26, no. 9, pp. 5992–6002, 2012.spa
dc.relation.references[71] P. Mckendry, “Energy production from biomass ( part 2 ): conversion technologies,” vol. 83, no. July 2001, pp. 47–54, 2002.spa
dc.relation.references[72] M. M. Uddin and M. M. Wright, “Anaerobic digestion fundamentals, challenges, and technological advances,” Phys. Sci. Rev., 2022.spa
dc.relation.references[73] C. A. Sevillano, A. A. Pesantes, E. Peña Carpio, E. J. Martínez, and X. Gómez, “Anaerobic digestion for producing renewable energy-the evolution of this technology in a new uncertain scenario,” Entropy, vol. 23, no. 2, pp. 1–23, 2021.spa
dc.relation.references[74] G. Náthia-Neves, M. Berni, G. Dragone, S. I. Mussatto, and T. Forster-Carneiro, “Anaerobic digestion process: technological aspects and recent developments,” Int. J. Environ. Sci. Technol., vol. 15, no. 9, pp. 2033–2046, 2018.spa
dc.relation.references[75] A. Tiwary, I. D. Williams, D. C. Pant, and V. V. N. Kishore, “Emerging perspectives on environmental burden minimisation initiatives from anaerobic digestion technologies for community scale biomass valorisation,” Renew. Sustain. Energy Rev., vol. 42, pp. 883–901, 2015.spa
dc.relation.references[76] Preethi, M. Gunasekaran, G. Kumar, O. P. Karthikeyan, S. Varjani, and J. Rajesh Banu, “Lignocellulosic biomass as an optimistic feedstock for the production of biofuels as valuable energy source: Techno-economic analysis, Environmental Impact Analysis, Breakthrough and Perspectives,” Environ. Technol. Innov., vol. 24, p. 102080, 2021.spa
dc.relation.references[77] S. Manikandan, S. Vickram, R. Sirohi, and R. Subbaiya, “Critical review of biochemical pathways to transformation of waste and biomass into bioenergy,” Bioresour. Technol., vol. 372, no. December 2022, p. 128679, 2023.spa
dc.relation.references[78] K. Kucharska, P. Rybarczyk, I. Hołowacz, R. Łukajtis, M. Glinka, and M. Kamiński, “Pretreatment of lignocellulosic materials as substrates for fermentation processes,” Molecules, vol. 23, no. 11, pp. 1–32, 2018.spa
dc.relation.references[79] B. Volynets, F. Ein-Mozaffari, and Y. Dahman, “Biomass processing into ethanol: Pretreatment, enzymatic hydrolysis, fermentation, rheology, and mixing,” Green Process. Synth., vol. 6, no. 1, pp. 1–22, 2017.spa
dc.relation.references[80] H. Jørgensen, J. Vibe-Pedersen, J. Larsen, and C. Felby, “Liquefaction of lignocellulose at high-solids concentrations,” Biotechnol. Bioeng., vol. 96, no. 5, pp. 862–870, 2007.spa
dc.relation.references[81] A. Wiese, “Biomass Combustion for Electricity Generation,” in Encyclopedia of Sustainability Science and Technology, Nueva York: Springer, 2012, pp. 1231–1268.spa
dc.relation.references[82] M. Tahmid Islam, J. L. Klinger, and M. Toufiq Reza, “Evaluating combustion characteristics and combustion kinetics of corn stover-derived hydrochars by cone calorimeter,” Chem. Eng. J., vol. 452, no. P2, p. 139419, 2023.spa
dc.relation.references[83] A. M. Shoaib, R. A. El-Adly, M. H. M. Hassanean, A. Youssry, and A. A. Bhran, “Developing a free-fall reactor for rice straw fast pyrolysis to produce bio-products,” Egypt. J. Pet., vol. 27, no. 4, pp. 1305–1311, 2018.spa
dc.relation.references[84] C. A. Mullen, A. A. Boateng, N. M. Goldberg, I. M. Lima, D. A. Laird, and K. B. Hicks, “Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis,” Biomass and Bioenergy, vol. 34, no. 1, pp. 67–74, 2010.spa
dc.relation.references[85] E. V. Gonçalves, F. L. Seixas, L. R. de Souza Scandiuzzi Santana, M. H. N. O. Scaliante, and M. L. Gimenes, “Economic trends for temperature of sugarcane bagasse pyrolysis,” Can. J. Chem. Eng., vol. 95, no. 7, pp. 1269–1279, 2017.spa
dc.relation.references[86] A. E. Atabani et al., “A state-of-the-art review on spent coffee ground (SCG) pyrolysis for future biorefinery,” Chemosphere, vol. 286, no. April 2021, 2022.spa
dc.relation.references[87] S. Fukuda, “Pyrolysis investigation for bio-oil production from various biomass feedstocks in Thailand,” Int. J. Green Energy, vol. 12, no. 3, pp. 215–224, 2015.spa
dc.relation.references[88] A. L. Maglinao, S. C. Capareda, and H. Nam, “Fluidized bed gasification of high tonnage sorghum, cotton gin trash and beef cattle manure: Evaluation of synthesis gas production,” Energy Convers. Manag., vol. 105, pp. 578–587, 2015.spa
dc.relation.references[89] M. Tańczuk, R. Junga, S. Werle, M. Chabiński, and Ziółkowski, “Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass,” Renew. Energy, vol. 136, pp. 1055–1063, 2019.spa
dc.relation.references[90] D. Perondi et al., “Steam gasification of poultry litter biochar for bio-syngas production,” Process Saf. Environ. Prot., vol. 109, pp. 478–488, 2017.spa
dc.relation.references[91] M. A. Hamad, A. M. Radwan, D. A. Heggo, and T. Moustafa, “Hydrogen rich gas production from catalytic gasi fi cation of biomass,” Renew. Energy, vol. 85, pp. 1290–1300, 2016.spa
dc.relation.references[92] Y. Pang, S. Shen, and Y. Chen, “High Temperature Steam Gasification of Corn Straw Pellets in Downdraft Gasifier: Preparation of Hydrogen-Rich Gas,” Waste and Biomass Valorization, vol. 10, no. 5, pp. 1333–1341, 2019.spa
dc.relation.references[93] G. Venkatesh, P. R. Reddy, and S. Kotari, “Generation of producer gas using coconut shells and sugar cane bagasse in updraft gasifier,” Mater. Today Proc., vol. 4, no. 8, pp. 9203–9209, 2017.spa
dc.relation.references[94] J. George, P. Arun, and C. Muraleedharan, “Experimental investigation on co-gasification of coffee husk and sawdust in a bubbling fluidised bed gasifier,” J. Energy Inst., vol. 92, no. 6, pp. 1977–1986, 2019.spa
dc.relation.references[95] W. A. Solís, J. A. Vel, S. Cardona, L. M. Orozco, L. G. Claudia, and L. A. Rios, “Valorization of banana residues via gasification coupled with electricity generation,” Sustain. Energy Technol. Assessments, vol. 44, no. January 2020, 2021.spa
dc.relation.references[96] G. G. Jankes, M. R. Trninić, M. S. Stamenić, T. S. Simonović, N. D. Tanasić, and J. M. Labus, “Biomass gasification with CHP production: A review of the state-of-the-art technology and near future perspectives,” Therm. Sci., vol. 16, no. SUPPL. 1, pp. 115–130, 2012.spa
dc.relation.references[97] J. Ahrenfeldt, T. P. Thomsen, U. Henriksen, and L. R. Clausen, “Biomass gasification cogeneration - A review of state of the art technology and near future perspectives,” Appl. Therm. Eng., vol. 50, no. 2, pp. 1407–1417, 2013.spa
dc.relation.references[98] S. Jain, S. Jain, I. T. Wolf, J. Lee, and Y. W. Tong, “A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste,” Renew. Sustain. Energy Rev., vol. 52, pp. 142–154, 2015.spa
dc.relation.references[99] I. Rocamora, S. T. Wagland, R. Villa, E. W. Simpson, O. Fernández, and Y. Bajón-Fernández, “Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance,” Bioresour. Technol., vol. 299, no. September 2019, 2020.spa
dc.relation.references[100] P. S. Bandgar, S. Jain, and N. L. Panwar, “Biomass and Bioenergy A comprehensive review on optimization of anaerobic digestion technologies for lignocellulosic biomass available in India,” Biomass and Bioenergy, vol. 161, no. May, p. 106479, 2022.spa
dc.relation.references[101] I. M. Nasir, T. I. Mohd Ghazi, and R. Omar, “Anaerobic digestion technology in livestock manure treatment for biogas production: A review,” Eng. Life Sci., vol. 12, no. 3, pp. 258–269, 2012.spa
dc.relation.references[102] R. Boopathy and M. Mariappan, “Anaerobic digestion of coffee pulp,” Asian Environ., vol. 8, no. 4, pp. 21–23, 1986.spa
dc.relation.references[103] S. Suhartini et al., “Sustainable strategies for anaerobic digestion of oil palm empty fruit bunches in Indonesia: a review,” Int. J. Sustain. Energy, vol. 41, no. 11, pp. 2044–2096, 2022.spa
dc.relation.references[104] V. C. Kalia, V. Sonakya, and N. Raizada, “Anaerobic digestion of banana stem waste,” Bioresour. Technol., vol. 73, no. 2, pp. 191–193, 2000.spa
dc.relation.references[105] Q. Yan et al., “Cow manure as a lignocellulosic substrate for fungal cellulase expression and bioethanol production,” AMB Express, vol. 8, no. 1, 2018.spa
dc.relation.references[106] G. W. Asrat, S. Gizachew, S. C. Bhagwan, and ravanshi, “Bio-ethanol production from poultry manure at Bonga Poultry Farm in Ethiopia,” African J. Environ. Sci. Technol., vol. 7, no. 6, pp. 435–440, 2013.spa
dc.relation.references[107] X. Jin, J. Ma, J. Song, and G. Q. Liu, “Promoted bioethanol production through fed-batch semisimultaneous saccharification and fermentation at a high biomass load of sodium carbonate-pretreated rice straw,” Energy, vol. 226, p. 120353, 2021.spa
dc.relation.references[108] D. He et al., “High-solids saccharification and fermentation of ball-milled corn stover enabling high titer bioethanol production,” Renew. Energy, vol. 202, no. November 2022, pp. 336–346, 2023.spa
dc.relation.references[109] Y. Jugwanth, Y. Sewsynker-Sukai, and E. B. Gueguim Kana, “Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies,” Fuel, vol. 262, no. August 2019, p. 116552, 2020.spa
dc.relation.references[110] I. S. Choi, S. G. Wi, S. B. Kim, and H. J. Bae, “Conversion of coffee residue waste into bioethanol with using popping pretreatment,” Bioresour. Technol., vol. 125, pp. 132–137, 2012.spa
dc.relation.references[111] M. Han, Y. Kim, S. W. Kim, and G. W. Choi, “High efficiency bioethanol production from OPEFB using pilot pretreatment reactor,” J. Chem. Technol. Biotechnol., vol. 86, no. 12, pp. 1527–1534, 2011.spa
dc.relation.references[112] E. L. de Souza, N. Sellin, C. Marangoni, and O. Souza, “The Influence of Different Strategies for the Saccharification of the Banana Plant Pseudostem and the Detoxification of Concentrated Broth on Bioethanol Production,” Appl. Biochem. Biotechnol., vol. 183, no. 3, pp. 943–965, 2017.spa
dc.relation.references[113] F. Kabir et al., “Techno-economic comparison of process technologies for biochemical ethanol production from corn stover q,” Fuel, vol. 89, pp. S20–S28, 2010.spa
dc.relation.references[114] S. Satchatippavarn, E. Martinez-Hernandez, M. Y. Leung Pah Hang, M. Leach, and A. Yang, “Urban biorefinery for waste processing,” Chem. Eng. Res. Des., vol. 107, pp. 81–90, 2016.spa
dc.relation.references[115] R. L. Bain et al., “Biopower Technical Assessment: State of the Industry and Technology,” Renew. Energy, no. March, 2003.spa
dc.relation.references[116] M. M. Wright, D. E. Daugaard, J. A. Satrio, and R. C. Brown, “Techno-economic analysis of biomass fast pyrolysis to transportation fuels,” Fuel, vol. 89, no. SUPPL. 1, pp. S2–S10, 2010.spa
dc.relation.references[117] M. A. Najm and G. Ayoub, “An optimisation model for regional integrated solid waste management I . Model formulation,” Waste Manag. Res., vol. 20, no. 1, pp. 37–45, 2002.spa
dc.relation.references[118] J. D. Murphy and N. M. Power, “A technical, economic and environmental comparison of composting and anaerobic digestion of biodegradable municipal waste,” J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., vol. 41, no. 5, pp. 865–879, 2006.spa
dc.relation.references[119] M. Patel, X. Zhang, and A. Kumar, “Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies : A review,” Renew. Sustain. Energy Rev., vol. 53, pp. 1486–1499, 2016.spa
dc.relation.references[120] J. Aburto, E. Martinez-Hernández, and M. A. Amezcua-Allieri, “Techno-Economic Feasibility of Steam and Electric Power Generation from the Gasification of Several Biomass in a Sugarcane Mill,” Bioenergy Res., vol. 15, no. 4, pp. 1777–1786, 2022.spa
dc.relation.references[121] U.S. Bureau of Labor Statistics, “Average energy prices for the United States,” Midwest Information Office, 2023. [Online]. Available: https://www.bls.gov/regions/midwest/data/averageenergyprices_selectedareas_table.htm.spa
dc.relation.references[122] M. Talmadge et al., “Techno-economic analysis for co-processing fast pyrolysis liquid with vacuum gasoil in FCC units for second-generation biofuel production,” Fuel, vol. 293, p. 119960, 2021.spa
dc.relation.references[123] Global Petrol Prices, “Ethanol prices,” Global Petrol Prices, 2023. [Online]. Available: https://www.globalpetrolprices.com/ethanol_prices/.spa
dc.relation.references[124] J. Moncada B, V. Aristizábal M, and C. A. Cardona A, “Design strategies for sustainable biorefineries,” Biochem. Eng. J., vol. 116, pp. 122–134, 2016.spa
dc.relation.references[125] M. A. Najm, M. El-fadel, G. Ayoub, and M. El-taha, “An optimisation model for regional integrated solid waste management II . Model application and sensitivity analyses,” Waste Manag. Res. ISWA., vol. 20, no. May 2014, pp. 46–50, 2002.spa
dc.relation.references[126] J. P. Eason and S. Cremaschi, “A multi-objective superstructure optimization approach to biofeedstocks-to-biofuels systems design,” Biomass and Bioenergy, vol. 63, pp. 64–75, 2014.spa
dc.relation.references[127] R. Hakawati, B. M. Smyth, G. McCullough, F. De Rosa, and D. Rooney, “What is the most energy efficient route for biogas utilization: Heat, electricity or transport?,” Appl. Energy, vol. 206, no. May, pp. 1076–1087, 2017.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.lembTermoquímicaspa
dc.subject.lembThermochemistryeng
dc.subject.lembEnergía biomásicaspa
dc.subject.lembVital forcespa
dc.subject.lembBiomass energyeng
dc.subject.proposalBiomasaspa
dc.subject.proposalProcesos termoquímicosspa
dc.subject.proposalProcesos bioquímicosspa
dc.subject.proposalAprovechamiento energéticospa
dc.subject.proposalProgramación linealspa
dc.subject.proposalBiomasseng
dc.subject.proposalThermochemical processeseng
dc.subject.proposalBiochemical processeseng
dc.subject.proposalEnergy useeng
dc.subject.proposalLinear programmingeng
dc.titleDesarrollo de una herramienta de modelamiento para la evaluación de alternativas de aprovechamiento energético de biomasa en Colombiaspa
dc.title.translatedDevelopment of a modeling tool for evaluation of energy alternatives uses of biomass in Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1143355086.2023.pdf
Tamaño:
1.95 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: