Desarrollo de prototipo para la biofiltración simultánea de compuestos orgánicos e inorgánicos volátiles a través de un lecho orgánico

dc.contributor.advisorde Brito Brandão, Pedro Filipe
dc.contributor.advisorCabeza Rojas, Iván Orlando
dc.contributor.authorGuzmán Beltrán, Ana María
dc.contributor.cvlacGuzmán Beltrán, Ana María [0000122008]spa
dc.contributor.orcidGuzmán Beltrán, Ana María [0000000226730795]spa
dc.contributor.researchgroupGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente Germinaspa
dc.contributor.supervisorVela Aparicio, Diana Gisset
dc.date.accessioned2023-05-25T16:03:52Z
dc.date.available2023-05-25T16:03:52Z
dc.date.issued2023-05-24
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractEste trabajo evaluó un prototipo de biofiltración a escala laboratorio usando un lecho orgánico de compost para la remoción en simultáneo de compuestos inorgánicos volátiles (CIV: sulfuro de hidrógeno y el amonio) y compuestos orgánicos volátiles (COV: tolueno) que producen olores ofensivos, simulando las concentraciones de una planta de tratamiento de aguas residuales (PTAR). Tomando el caso de la PTAR El Salitre, Bogotá, Colombia, estas concentraciones variaron entre 5 y 86 ppm para H2S, 1 a 5 ppm para NH3 y 1 a 10 ppm para COVs, y fueron mayores en los días secos que en los lluviosos. Así mismo, el tolueno se seleccionó para simular la corriente de COVs porque es uno de los compuestos más comunes y abundantes. El lecho del prototipo fue compost de pollinaza y bagazo de caña (proporción 4:6), el cual posee características óptimas para la biofiltración: pH (8,05), conductividad (1758 uS/cm), capacidad buffer (0,51 mol H+/Kg compost), capacidad de retención de agua (1,53 gH2O/ g compost), densidad (538 g/L), porosidad (40%), distribución de tamaño de partícula (60% >2,38 mm) y abundante comunidad microbiana intrínseca. El prototipo de biofiltración tuvo una máxima eficiencia de remoción del H2S de 96,9 ± 1,2%, para una tasa de carga de 4,7 g/m3h, del NH3 de 68 ± 2%, para una tasa de carga de 1,2 g/m3h, y del tolueno de 71,5 ± 4,0%, para una tasa de carga de 1,32 g/m3h. El sistema recuperó su eficiencia después de un pico de concentración de tolueno superior a 40 mg/m3. Estos resultados demuestran el uso potencial del prototipo de biofiltración para el tratamiento de olores en una PTAR. (Texto tomado de la fuente)spa
dc.description.abstractThis work assessed a laboratory-scale biofiltration prototype using an organic compost bed for the simultaneous removal of volatile inorganic compounds (VIC: hydrogen sulfide and ammonium) and volatile organic compounds (VOC: toluene) that produce offensive odors, simulating the concentrations of a wastewater treatment plant (WWTP). Taking the case of El Salitre WWTP, these concentrations varied between 5 and 86 ppm for H2S, 1 to 5 ppm for NH3, and 1 to 10 ppm for VOCs, and were greater on dry days compared to rainy days. Likewise, toluene was selected to simulate the VOCs current because it is one of the most common and abundant compounds. The prototype bed was compost of manure and bagasse cane (ratio 4:6), which has optimal characteristics for biofiltration: pH (8.05), conductivity (1758 uS/cm), buffer capacity (0.51 mol H+/Kg compost), water retention capacity (1.53 gH2O/ g compost), density (538 g/L), porosity (40%), particle size distribution (60% >2.38 mm) and abundant intrinsic microbial community. The biofiltration prototype had a maximum removal efficiency for H2S of 96.9 ±1.2%, at a load rate of 4.7 g/m3h, for NH3 of 68 ± 2%, at a load rate of 1.2 g/m3h, and for toluene of 71.5 ± 4.0%, at a load rate of 1.32 g/m3h. The system recovered its efficiency after a toluene concentration peak at over 40 mg/m3. These results demonstrate the potential use of the prototype in odor treatment in a WWTP.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambientalspa
dc.description.researchareaBiotecnología Ambientalspa
dc.description.sponsorshipUN Innova»: Convocatoria de Proyectos para el Fortalecimiento de la Innovación en la Universidad Nacional de Colombia a partir del Desarrollo de Prototipos y Experiencias Piloto 2019-2021 (primera cohorte)spa
dc.format.extentxviii, 142 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83866
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesACS IOL 108- Informe de Resultados y Análisis del Monitoreo de Olores en la PTAR El Salitre- Air Clean System Bogotá D. C November 2010spa
dc.relation.referencesAcueducto de Bogotá. (2019). Informe Mensual De Actividades Septiembre. https://www.acueducto.com.co/wps/html/resources/2019/INFORME_FINAL_SEPTIEMBRE_2019.pdfspa
dc.relation.referencesAl-Batanony, M. A., & El-Shafie, M. K. (2011). Work-related health effects among wastewater treatment plants workers. International Journal of Occupational and Environmental Medicine, 2(4), 237–244. https://www.theijoem.com/ijoem/index.php/ijoem/article/download/104/211.spa
dc.relation.referencesAllen, J. (2003). Modular biofilter unit and method of use. U.S. Patent No. 6,534,306. Shoreline, WA (US). CH2M Hill, Inc.spa
dc.relation.referencesAlinezhad, E., Haghighi, M., Rahmani, F., Keshizadeh, H., Abdi, M., & Naddafi, K. (2019). Technical and economic investigation of chemical scrubber and bio-filtration in removal of H 2 S and NH 3 from wastewater treatment plant. Journal of Environmental Management, 241(February), 32–43. https://doi.org/10.1016/j.jenvman.2019.04.003spa
dc.relation.referencesAnet, B., Couriol, C., Lendormi, T., Amrane, A., Le Cloirec, P., Cogny, G., & Fillières, R. (2013). Characterization and selection of packing materials for biofiltration of rendering odourous emissions. Water, Air, and Soil Pollution, 224(7). https://doi.org/10.1007/s11270-013-1622-1spa
dc.relation.referencesÁlvarez, A., Jiménez, J., & Camargo, Y. (2011). Biofiltración para la remoción de sulfuro de hidrógeno en la estación de bombeo norte de aguas residuales. Inge-Cuc, 7(1), 113–126. Recuperado a partir de https://revistascientificas.cuc.edu.co/ingecuc/article/view/281spa
dc.relation.referencesÁlvarez-Hernández, F., & Ramírez O. (2019). Identificación de impactos ambientales reportados durante la operación de rellenos sanitarios en Colombia Estudiante: Universidad Nacional Abierta y a Distancia – UNAD. Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente – Último acceso 20 de octubre de 2022 https://repository.unad.edu.co/bitstream/handle/10596/25366/falvarezh.pdf?sequence=2&isAllowed=yspa
dc.relation.referencesAPHA. (2005). Standard methods for the examination of water & wastewater. (21) Washington, DC: American Public Health Association.spa
dc.relation.referencesAPHA. (2017). SM 4110 B. Standard methods for the examination of water & wastewater. (23) Washington, DC: American Public Health Associationspa
dc.relation.referencesAnet, B., Couriol, C., Lendormi, T., Amrane, A., Le Cloirec, P., Cogny, G., & Fillières, R. (2013). Characterization and selection of packing materials for biofiltration of rendering odourous emissions. Water, Air, and Soil Pollution, 224(7). https://doi.org/10.1007/s11270-013-1622-1spa
dc.relation.referencesAsano, R., Sasaki, T., & Nakai, Y. (2007). Isolation and characterization of sulfur oxidizing bacteria from cattle manure compost. Animal Science Journal, 78(3), 330–333. https://doi.org/10.1111/j.1740-0929.2007.00443.xspa
dc.relation.referencesAzim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S., & Thami Alami, I. (2018). Composting parameters and compost quality: a literature review. Organic Agriculture, 8(2), 141–158. https://doi.org/10.1007/s13165-017-0180-zspa
dc.relation.referencesBadilla, D. B., Gostomski, P. A., & Dalida, M. L. P. (2011). Influence of Water Content on Biofiltration Performance. ASEAN Journal of Chemical Engineering, 10(2), 31. https://doi.org/10.22146/ajche.50087spa
dc.relation.referencesBarbusinski, K., Kalemba, K., Kasperczyk, D., Urbaniec, K., & Kozik, V. (2017). Biological methods for odor treatment – A review. Journal of Cleaner Production, 152, 223–241. https://doi.org/10.1016/j.jclepro.2017.03.093spa
dc.relation.referencesBeuger, A. L., & Gostomski, P. A. (2009). Development of a biofilter with water content control for research purposes. Chemical Engineering Journal, 151(1–3), 89–96. https://doi.org/10.1016/j.cej.2009.01.045spa
dc.relation.referencesBernal, M.P., Alburquerque, J.A., Moral, R. (2009). Bioresource technology composting of animal manures and chemical criteria for compost maturity assessment. a review. Bioresour Technol 100:5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027spa
dc.relation.referencesBloom PR (2000) Soil pH and pH buffering. In ‘Handbook of soil science’. (Eds ME Sumner, et al.) pp. B333–B352. (CRC Press: Boca Raton, FL). Soil pH buffering capacityspa
dc.relation.referencesBrancher, M., Schauberger, G., Franco, D., & de Melo Lisboa, H. (2016). Odour impact criteria in south American regulations. Chemical Engineering Transactions, 54, 169–174. https://doi.org/10.3303/CET1654029spa
dc.relation.referencesBrancher, M., Griffiths, K. D., Franco, D., & de Melo Lisboa, H. (2017). A review of odour impact criteria in selected countries around the world. Chemosphere, 168, 1531–1570. https://doi.org/10.1016/j.chemosphere.2016.11.160spa
dc.relation.referencesBueno, P., Tapias, R., López, F., & Díaz, M. J. (2008). Optimizing composting parameters for nitrogen conservation in composting. Bioresource Technology, 99(11), 5069–5077. https://doi.org/10.1016/j.biortech.2007.08.087spa
dc.relation.referencesCabeza, I. O., López, R., Giraldez, I., Stuetz, R.M., Díaz, M.J., 2013. Biofiltration of α-pinene vapours using municipal solid waste (MSW) - Pruning residues (P) composts as packing materials. Chem. Eng. J. 233, 149–158. https://doi.org/10.1016/j.cej.2013.08.032spa
dc.relation.referencesCabrol, L., Poly, F., Malhautier, L., Pommier, T., Lerondelle, C., Verstraete, W., Lepeuple, A. S., Fanlo J. L., & Roux, X. Le. (2016). Management of Microbial Communities through Transient Disturbances Enhances the Functional Resilience of Nitrifying Gas-Biofilters to Future Disturbances. Environmental Science and Technology, 50(1), 338–348. https://doi.org/10.1021/acs.est.5b02740spa
dc.relation.referencesCáceres, R., Malińska, K., & Marfà, O. (2018). Nitrification within composting: A review. Waste Management, 72, 119–137. https://doi.org/10.1016/j.wasman.2017.10.049spa
dc.relation.referencesCámara de comercio de Bogotá (2007). Perfil económico y empresarial. Localidad Suba. Último acceso 20 de octubre de 2022 https://bibliotecadigital.ccb.org.co/bitstream/handle/11520/2888/6231_perfil_economico_suba.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesCha L. M., J., Cha, W. S., & Lee, J. H. (1999). Removal of organo-sulphur odour compounds by Thiobacillus novellus SRM, sulphur-oxidizing microorganisms. Process Biochemistry, 34(6–7), 659–665. https://doi.org/10.1016/S0032-9592(98)00139-3spa
dc.relation.referencesChacha, M. S., Andrew, B., & Vegi, M. R. A. O. (2019). Amendment of Soil Water Retention and Nutrients Holding Capacity by using Sugar Cane Bagasse. 7(2).spa
dc.relation.referencesChen, L., & Hoff, S. J. (2009). Mitigating Odors from Agricultural Facilities: A Review of Literature Concerning Biofilters. Applied Engineering in Agriculture, 25(5), 751–766. https://doi.org/10.13031/2013.28854spa
dc.relation.referencesChen, L., Li, W., Zhao, Y., Zhou, Y., Zhang, S., & Meng, L. (2022). Isolation and application of a mixotrophic sulfide-oxidizing Cohnella thermotolerans LYH-2 strain to sewage sludge composting for hydrogen sulfide odor control. Bioresource Technology, 345(November 2021), 126557. https://doi.org/10.1016/j.biortech.2021.126557spa
dc.relation.referencesCorola Ambiental S.A.S., (2018). Monitoreo de sustancias generadoras de olores ofensivos TRS – H2S – NH3.Área Metropolitana de Bucaramanga. https://drive.google.com/drive/u/0/folders/1VtI1Vn6QOso92hhpDvjOePA1Mfhos6DTspa
dc.relation.referencesCostello, R. C., & Sullivan, D. M. (2014). Determining the pH buffering capacity of compost via titration with dilute sulfuric acid. Waste and Biomass Valorization, 5(3), 505–513. https://doi.org/10.1007/s12649-013-9279-yspa
dc.relation.referencesDanila, V., & Zagorskis, A. (2022). Effects of Water Content and Irrigation of Packing Materials on the Performance of Biofilters and Biotrickling Filters : A Review.spa
dc.relation.referencesDas, J., Rene, E. R., Dupont, C., Dufourny, A., Blin, J., & van Hullebusch, E. D. (2019). Performance of a compost and biochar packed biofilter for gas-phase hydrogen sulfide removal. Bioresource Technology, 273(September 2018), 581–591. https://doi.org/10.1016/j.biortech.2018.11.052spa
dc.relation.referencesDatta, I., Allen, D.G., 2005. Biofilter technology, in: Shareefdeen, Z., Singh, A. (Eds.), Biotechnology for Odor and Air Pollution Control. Springer, Berlin, Heidelberg, pp. 125–145. https://doi.org/10.1007/3-540-27007-8_6spa
dc.relation.referencesDincer, F., & Muezzinoglu, A. (2008). Odor-causing volatile organic compounds in wastewater treatment plant units and sludge management areas. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 43(13 SPEC. ISS.), 1569–1574. https://doi.org/10.1080/10934520802293776spa
dc.relation.referencesDelhomã, M., & Bibeau, L. (2002). A study of the impact of particle size and adsorption phenomena in a compost-based biological ÿlter. 57, 4999–5010.spa
dc.relation.referencesDelhoménie, M. C., & Heitz, M. (2005). Biofiltration of air: A review. Critical Reviews in Biotechnology, 25(1–2), 53–72. https://doi.org/10.1080/07388550590935814spa
dc.relation.referencesDincer, F., & Muezzinoglu, A. (2008). Odor-causing volatile organic compounds in wastewater treatment plant units and sludge management areas. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 43(13 SPEC. ISS.), 1569–1574. https://doi.org/10.1080/10934520802293776spa
dc.relation.referencesDorado, A.D., Lafuente, F.J., Gabriel, D., Gamisans, X., 2010. A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environ.Technol. 31, 193–204. https://doi.org/10.1080/09593330903426687spa
dc.relation.referencesEAAB- Empresa de Acueducto y Alcantarillado de Bogotá (2021) Informes de actividades PTAR El Salitre https://www.acueducto.com.co/wps/portal/EAB2/Home/ambiente/saneamiento/rio-bogota/ptarsalitre/!ut/p/z0/04_Sj9CPykssy0xPLMnMz0vMAfIjo8zizQKdDQwtDIz83F09zQwCHY1C3F39Qo18vY31C7IdFQEf7jxa/ (última consulta 5 de agosto de 2021)spa
dc.relation.referencesEl Bellanita. (12 de abril 2020). 1.237 reportes por la PTAR Aguas Claras entre agosto y noviembre. Último acceso 06 de agosto 2022 https://elbellanita.com/noticias/1237-reportes-por-la-ptar-aguas-claras-entre-agosto-y-noviembre/spa
dc.relation.referencesEngelking L.R. (2013). Textbook of Veterinary Physiological Chemistry (Third Edition). Chapter 5 - Properties of Enzymes. Academic Press. pp. 26-31,ISBN 9780123919090. https://doi.org/10.1016/B978-0-12-391909-0.50005-0spa
dc.relation.referencesEnglande, A. J., Krenkel, P., & Shamas, J. (2015). Wastewater Treatment & Water Reclamation. In Reference Module in Earth Systems and Environmental Sciences. Elsevier https://doi.org/10.1016/b978-0-12-409548-9.09508-7spa
dc.relation.referencesEarthgreen. 2023. «Ficha Técnica SAC-100». [En línea]. Disponible en: https://www.earthgreen.com.co/sistemas-de-compostaje/spa
dc.relation.referencesEscalas, A., Guadayol, J. M., Cortina, M., Rivera, J., & Caixach, J. (2003). Time and space patterns of volatile organic compounds in a sewage treatment plant. Water Research, 37(16), 3913–3920. https://doi.org/10.1016/S0043-1354(03)00336-1spa
dc.relation.referencesEstrada, J.M., Kraakman, N.J.R.B., Muñoz, R., Lebrero, R., 2011. A comparative analysis of odour treatment technologies in wastewater treatment plants. Environ. Sci. Technol. 45, 1100–1106. https://doi.org/10.1021/es103478jspa
dc.relation.referencesEPA, U.S.E.P.A., 2014. Method 5021A: Volatile Organic Compounds in Various Sample Matrices using Equilibrium Headspace Analysis | US EPA ARCHIVE DOCUMENT | Enhanced Reader [WWW Document].spa
dc.relation.referencesEPA, U.S.E.P.A., 1996. Method 8260B: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods | US EPA ARCHIVE DOCUMENT | Enhanced Reader [WWW Document].spa
dc.relation.referencesEPA, U.S.E.P.A., 1999. Method TO-17 :Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. | US EPA ARCHIVE DOCUMENT | Enhanced Reader [WWW Document].spa
dc.relation.referencesEuropean Committee for Standardization (2007) CEN - EN 13040 Soil improvers and growing media - Sample preparation for chemical and physical tests, determination of dry matter content, moisture content and laboratory compacted bulk densityspa
dc.relation.referencesFischer-Romero, C., Tindall, B. J., & Jüttner, F. (1996). Tolumonas auensis gen. nov., sp. nov., a toluene-producing bacterium from anoxic sediments of a freshwater lake. International journal of systematic bacteriology, 46(1), 183–188. https://doi.org/10.1099/00207713-46-1-183spa
dc.relation.referencesForero, D. F., Peña, C. E., Acevedo, P., Hernández, M. A., & Cabeza, I. O. (2018). Biofiltration of acetic acid vapours using filtering bed compost from poultry manure - pruning residues - rice husks. Chemical Engineering Transactions, 64, 511–516. https://doi.org/10.3303/CET1864086spa
dc.relation.referencesGalera, M. M., Cho, E., Tuuguu, E., Park, S., Lee, C., & Chung, W. (2008). Effects of pollutant concentration ratio on the simultaneous removal of NH 3 , H 2 S and toluene gases using rock wool-compost biofilter. 152, 624–631. https://doi.org/10.1016/j.jhazmat.2007.07.025spa
dc.relation.referencesGarcía-de-la-Fuente, R., Cuesta, G., Sanchís-Jiménez, E., Botella, S., Abad, M., & Fornes, F. (2011). Bacteria involved in sulfur amendment oxidation and acidification processes of alkaline “alperujo” compost. Bioresource Technology, 102(2), 1481–1488. https://doi.org/10.1016/j.biortech.2010.09.103spa
dc.relation.referencesGarcia-Valbuena, L.T. (2022, 7 Marzo). Olores de la Ptar Salitre afectan a habitantes de dos barrios de Engativá. El Tiempo. Ultimo acceso agosto 5, 2022, de https://www.eltiempo.com/bogota/malos-olores-a-causa-de-la-ampliacion-de-la-ptar-salitre-656602spa
dc.relation.referencesGaudin, F., Andres, Y., & Le Cloirec, P. (2008). Packing material formulation for odorous emission biofiltration. Chemosphere, 70(6), 958–966. https://doi.org/10.1016/j.chemosphere.2007.08.014spa
dc.relation.referencesGhasemi, R., Golbabaei, F., Rezaei, S., Pourmand, M. R., & Nabizadeh, R. (2020). A comparison of biofiltration performance based on bacteria and fungi for treating toluene vapors from airflow. AMB Express. https://doi.org/10.1186/s13568-019-0941-zspa
dc.relation.referencesGodoi, A. F. L., Grasel, A. M., Polezer, G., Brown, A., Potgieter-Vermaak, S., Scremim, D. C., Yamamoto, C.I., & Godoi, R. H. M. (2018). Human exposure to hydrogen sulphide concentrations near wastewater treatment plants. Science of the Total Environment, 610–611, 583–590. https://doi.org/10.1016/j.scitotenv.2017.07.20spa
dc.relation.referencesGonzález, D., Colón, J., Sánchez, A., & Gabriel, D. (2022). Multipoint characterization of the emission of odour, volatile organic compounds and greenhouse gases from a full-scale membrane based municipal WWTP. Journal of Environmental Management, 313(April). https://doi.org/10.1016/j.jenvman.2022.115002spa
dc.relation.referencesGonzález- Ramírez L., (2021) Informe final pasantía-Alcaldía Municipal de Zipaquirá. Seguimiento y apoyo al plan de recuperación, restauración y manejo de ocho (8) quebradas ubicadas en la zona urbana del municipio de Zipaquirá. Universidad Nacional Abierta y a Distancia – UNAD. Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente – ECAPMA. Último acceso 06 de agosto de 2022 https://repository.unad.edu.co/bitstream/handle/10596/40151/Lagonzalezrami.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesGonzález-Parra J.D. (2011) Modelación integrada del sistema de drenaje – PTAR – río de la ciudad de Bogotá. Escenarios de control regional. Universidad Nacional de Colombia de Ingeniería Civil y Agrícola. Último acceso 20 de octubre de 2022 https://repositorio.unal.edu.co/bitstream/handle/unal/7918/juandiegogonzalezparra.2011.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesGreff, B., Szigeti, J., Nagy, Á., Lakatos, E., & Varga, L. (2022). Influence of microbial inoculants on co-composting of lignocellulosic crop residues with farm animal manure: A review. Journal of Environmental Management, 302(November 2021). https://doi.org/10.1016/j.jenvman.2021.114088spa
dc.relation.referencesGuieysse, B., Hort, C., Platel, V., Munoz, R., Ondarts, M., & Revah, S. (2008). Biological treatment of indoor air for VOC removal : Potential and challenges. 26, 398–410. https://doi.org/10.1016/j.biotechadv.2008.03.005spa
dc.relation.referencesHan, M. F., Hu, X. R., Wang, Y. C., Tong, Z., Wang, C., Cheng, Z. W., … Hsi, H. C. (2022). Comparison of separated and combined photodegradation and biofiltration technology for the treatment of volatile organic compounds: A critical review. Critical Reviews in Environmental Science and Technology, 52(8), 1325–1355. https://doi.org/10.1080/10643389.2020.1854566spa
dc.relation.referencesHaghdan, S., Renneckar, S., & Smith, G. D. (2016). Sources of Lignin. In Lignin in Polymer Composites. https://doi.org/10.1016/B978-0-323-35565-0.00001-1spa
dc.relation.referencesHoneywell. (2015). Serie MultiRAE. Guía del usuario. [En línea]. Disponible. https://www.raespain.com/es/documents/multirae2_usersguide_rev_h_a4_es.pdfspa
dc.relation.referencesHanzen, Fichtner & Conhydra S.A. (2018). Sección 11. Sistemas de Control de Olores. https://www.aguasyaguas.com.co/images/ptar/Cap%202%3A%20Descripcion%20del%20Proyecto/Anexos/3.MEMORIAS%20DE%20CALCULO/Seccion%2011.%20Control%20de%20Olores.pdfspa
dc.relation.referencesHaug, R. T. (1993). The Practical Handbook of Compost Engineering. New York: Routledge, https://doi.org/10.1201/9780203736234spa
dc.relation.referencesHort, C, Gracy, S., Platel, V., & Moynault, L. (2013). A comparative study of two composts as filter media for the removal of gaseous reduced sulfur compounds ( RSCs ) by biofiltration : Application at industrial scale. Waste Management, 33(1), 18–25. https://doi.org/10.1016/j.wasman.2012.09.009spa
dc.relation.referencesHou, J., Li, M., Xia, T., Hao, Y., & Ding, J. (2016). Simultaneous removal of ammonia and hydrogen sulfide gases using biofilter media from the biodehydration stage and curing stage of composting. (8), 20628–20636. https://doi.org/10.1007/s11356-016-7238-4spa
dc.relation.referencesHu, S.M. (2021). Advances in Spectroscopic Monitoring of the Atmosphere. Chen, W., Venables, D.S. & Sigrist, M.W.(Eds) Chapter 8 - Trace gas measurements using cavity ring-down spectroscopy. Elsevier. Pp 412-441. ISBN 9780128150146, https://doi.org/10.1016/B978-0-12-815014-6.00002-6spa
dc.relation.referencesHuang, C. H., Chen, K. S., & Wang, H. K. (2012). Measurements and PCA/APCS analyses of volatile organic compounds in kaohsiung municipal sewer systems, Southern Taiwan. Aerosol and Air Quality Research, 12(6), 1315–1326. https://doi.org/10.4209/aaqr.2012.02.0035spa
dc.relation.referencesHvitved-Jacobsen, T., Vollertsen, J., & Nielsen, A.H. (2013). Sewer Processes: Microbial and Chemical Process Engineering of Sewer Networks, Second Edition (2nd ed.). CRC Press. https://doi.org/10.1201/b14666spa
dc.relation.referencesICONTEC (2011). NTC 5167. Productos para la industria agrícola. productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelospa
dc.relation.referencesICONTEC (2022). NTC 5167. Productos para la industria agrícola. productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelospa
dc.relation.referencesInstituto de Hidrología, Meteorología y Estudios Ambientales. (2007). IDEAM Agua. Metodologías Analíticas. http://www.ideam.gov.co/documents/14691/38155/Sulfuro+en+agua+por+volumetr%C3%ADa.pdf/769f14b4-55fc-4107-beb6-de229e33ea71spa
dc.relation.referencesInstituto Geográfico Agustín Codazzi. (2006). Métodos analíticos de laboratorio de Suelos”. Sexta Edición. (6ta ed.)spa
dc.relation.referencesIranpour, R., Cox, H.H.J., Deshusses, M.A., Schroeder, E.D., 2005. Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ. Prog. 24, 254–267. https://doi.org/10.1002/ep.10077spa
dc.relation.referencesJiang, G., Melder, D., Keller, J., & Yuan, Z. (2017). Odor emissions from domestic wastewater: A review. Critical Reviews in Environmental Science and Technology, 47(17), 1581–1611. https://doi.org/10.1080/10643389.2017.1386952spa
dc.relation.referencesJiang, X., Tay, J.H., 2010. Microbial community structures in a horizontal biotrickling filter degrading H2S and NH3. Bioresour. Technol. 101, 1635–1641. https://doi.org/10.1016/j.biortech.2009.09.074spa
dc.relation.referencesJianwei, L. & Welin, Ma. (2011). Treatment Plant Using a Full-scale Biofilter. Proceedings International Conference on Business Management and Electronic Information, 4, art. no. 5914235, pp. 840 - 843, DOI: 10.1109/ICBMEI.2011.5914235spa
dc.relation.referencesJiménez, E. & Villegas, A. (Escuela de I. de A. (2006). Diseño de un sistema de biofiltración para la remoción de estireno. Revista EIA, 3(1794–1237), 9–20.spa
dc.relation.referencesJones & Henry Engineers. (2019). City of Allegan , MI Wastewater Treatment Plant Odor Study (p. 25).spa
dc.relation.referencesKim, I. S., & Ivanov, V. N. (2000). Detection of nitrifying bacteria in activated sludge by fluorescent in situ hybridization and fluorescence spectrometry. World Journal of Microbiology and Biotechnology, 16(5), 425–430. https://doi.org/10.1023/A:1008949821236spa
dc.relation.referencesKim, H., Lee, H., Choi, E., Choi, I., Shin, T., Im, H., & Ahn, S. (2014). Characterization of odor emission from alternating aerobic and anoxic activated sludge systems using real-time total reduced sulfur analyzer. Chemosphere, 117(1), 394–401. https://doi.org/10.1016/j.chemosphere.2014.08.008spa
dc.relation.referencesKleinheinz, G. T., & Langolf, B. M. (2016). A Long-term Study of a Lava Rock-based Biofilter for Hydrogen Sulfide , Ammonia and Volatile Organic Compounds ( VOCs ) Treatment at a Wastewater Treatment Facility.spa
dc.relation.referencesKnapp J.S. & Bromley-Challoner K.C.A (2003). Recalcitrant organic compounds (chemical oxygen demand sources) in biologically treated pulp and paper mill effluents: their fate and environmental impact in receiving waters. In Water Environment Research (Vol. 70). https://doi.org/10.2175/106143098x123705spa
dc.relation.referencesKogan, V., & Torres, E. M. (1997). Ammonia Emissions from Publicly Owned Treatment Works (POTWs). Air & Waste Management Association’s 90th-Annual Meeting and Exhibition.spa
dc.relation.referencesKoziel, J. A., Spinhirne, J. P., Lloyd, J. D., Parker, D. B., Wright, D. W., & Kuhrt, F. W. (2005). Evaluation of sample recovery of malodorous livestock gases from air sampling bags, solid-phase microextraction fibers, tenax TA sorbent tubes, and sampling canisters. Journal of the Air and Waste Management Association, 55(8), 1147–1157. https://doi.org/10.1080/10473289.2005.10464711spa
dc.relation.referencesKulig, A., & Szyłak-Szydłowski, M. (2019). Assessment of the effects of wastewater treatment plant modernization by means of the field olfactometry method. Water (Switzerland), 11(11). https://doi.org/10.3390/w11112367spa
dc.relation.referencesKumar, M., Shekher, B., Kim, K., Prasad, R., Rene, E. R., López, M. E., … Sharan, R. (2019). Bioresource Technology Performance of a bio fi lter with compost and activated carbon based packing material for gas-phase toluene removal under extremely high loading rates. Bioresource Technology, 285(April), 121317. https://doi.org/10.1016/j.biortech.2019.121317spa
dc.relation.referencesKuypers, M.M.M., Marchant, H.K., Kartal, B., 2018. M I C R O B I A L B I O G E O C H E M I S T RY The microbial nitrogen-cycling network. Nat. Publ. Gr. 16, 263–276. https://doi.org/10.1038/nrmicro.2018.9spa
dc.relation.referencesLasaridi, K., Katsabanis, G., Kyriacou, A., Maggos, T., Manios, T., Fountoulakis, M., Kalogerakis, N., Karageorgos, P., & Stentiford, E. I. (2010). Assessing odour nuisance from wastewater treatment and composting facilities in Greece. Waste Management and Research, 28(11), 977–984. https://doi.org/10.1177/0734242X10372660spa
dc.relation.referencesLe Borgne, S., Baquerizo, G., 2019. Microbial ecology of biofiltration units used for the desulfurization of biogas. ChemEngineering 3, 1–26. https://doi.org/10.3390/chemengineering3030072spa
dc.relation.referencesLebrero, R., Rodríguez, E., Martin, M., García-Encina, P. A., & Muñoz, R. (2010). H2S and VOCs abatement robustness in biofilters and air diffusion bioreactors: A comparative study. Water Research, 44(13), 3905–3914. https://doi.org/10.1016/j.watres.2010.05.008spa
dc.relation.referencesLebrero, R., Bouchy, L., Stuetz, R., Muñoz, R., Lebrero, R., Bouchy, L., & Stuetz, R. (2011). Technology Odor Assessment and Management in Wastewater Treatment Plants : A Review Odor Assessment and Management in Wastewater Treatment Plants : A Review (Vol. 3389). https://doi.org/10.1080/10643380903300000spa
dc.relation.referencesLee, J. H., Hwang, S. M., Lee, D. W., & Heo, G. S. (2002). Determination of volatile organic compounds (VOCs) using tedlar bag/solid-phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) in ambient and workplace air. Bulletin of the Korean Chemical Society, 23(3), 488–496. https://doi.org/10.5012/bkcs.2002.23.3.488spa
dc.relation.referencesLehtinen, J., & Veijanen, A. (2011). Determination of odorous VOCs and the risk of occupational exposure to airborne compounds at the waste water treatment plants. Water Science and Technology, 63(10), 2183–2192. https://doi.org/10.2166/wst.2011.372spa
dc.relation.referencesLewkowska, P., Cieslik, B., Dymerski, T., Konieczka, P., Namiesnik, J., 2016. Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environ. Res. 151, 573–586. https://doi.org/10.1016/j.envres.2016.08.030spa
dc.relation.referencesLi, L., Zhang, J., Lin, J., Liu, J., 2015. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics. World J. Microbiol. Biotechnol. 31, 1501–1515. https://doi.org/10.1007/s11274-015-1915-1spa
dc.relation.referencesLin, S., Mackey, H. R., Hao, T., Guo, G., van Loosdrecht, M. C. M., & Chen, G. (2018). Biological sulfur oxidation in wastewater treatment: A review of emerging opportunities. Water Research, 143, 399–415. https://doi.org/10.1016/j.watres.2018.06.051spa
dc.relation.referencesLiu, T., Dong, H., Zhu, Z., Shang, B., & Yin, F. (2017). Effects of biofilter media depth and moisture content on removal of gases from a swine barn. 2247. https://doi.org/10.1080/10962247.2017.1321591spa
dc.relation.referencesLópez, R., Cabeza, I. O., Giráldez, I., & Díaz, M. J. (2011). Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose. Bioresource Technology, 102(17), 7984–7993. https://doi.org/10.1016/j.biortech.2011.05.085spa
dc.relation.referencesMaeda, K., Hanajima, D., Toyoda, S., Yoshida, N., Morioka, R., & Osada, T. (2011). Microbiology of nitrogen cycle in animal manure compost. Microbial Biotechnology, 4(6), 700–709. https://doi.org/10.1111/j.1751-7915.2010.00236.xspa
dc.relation.referencesMaestre, J. P., Gamisans, X., Gabriel, D., & Lafuente, J. (2007). Fungal biofilters for toluene biofiltration: Evaluation of the performance with four packing materials under different operating conditions. Chemosphere, 67(4), 684–692. https://doi.org/10.1016/j.chemosphere.2006.11.004spa
dc.relation.referencesMaia, G.D.N., Day V, G.B., Gates, R.S., Taraba, J.L., 2012. Ammonia biofiltration and nitrous oxide generation during the start-up of gas-phase compost biofilters. Atmos. Environ. 46, 659–664. https://doi.org/10.1016/j.atmosenv.2011.10.019spa
dc.relation.referencesMalhautier, L., Khammar, N., Bayle, S., & Fanlo, J. L. (2005). Biofiltration of volatile organic compounds. Applied Microbiology and Biotechnology, 68(1), 16–22. https://doi.org/10.1007/s00253-005-1960-zspa
dc.relation.referencesMárquez, P., Herruzo-Ruiz, A. M., Siles, J. A., Alhama, J., Michán, C., & Martín, M. A. (2021). Influence of packing material on the biofiltration of butyric acid: A comparative study from a physico-chemical, olfactometric and microbiological perspective. Journal of Environmental Management, 294(March). https://doi.org/10.1016/j.jenvman.2021.113044spa
dc.relation.referencesMartínez, J.M., Durán, D.M., Quintero, O., Duarte, C.S., Guevara, P.O., & Velásquez, M.E. (2018). Disponibilidad de Biomasa Residual y su Potencial para la Producción de Biogás en Colombia. Revista CIDET, 16–25. Retrieved from http://www.cidet.org.co/sites/default/files/documentos/2-compressed.pdfspa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible (2013). Resolución 1541 de 12 de noviembre de 2013 Colombia. http://parquearvi.org/wp-content/uploads/2016/11/Resolucion-1541-de-2013.pdfspa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible (2015). Decreto 1076 de 26 de mayo de 2015 Colombia. https://www.funcionpublica.gov.co/eva/gestornormativo/norma_pdf.php?i=78153spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural (2006). Reglamento para la producción primaria, procesamiento, empacado, etiquetado, almacenamiento, certificación, importación y comercialización de Productos Agropecuarios Ecológicos. https://www.ica.gov.co/getattachment/efc964b6-2ad3-4428-aad5-a9f2de5629d3/187.aspxspa
dc.relation.referencesMinisterio de Ambiente, Vivienda y Desarrollo Territorial (2009). Resolución 909. 1287http://www.ideam.gov.co/documents/51310/527650/Resolucion+909+de+2008.pdf/a3bcdf0d-f1ee-4871-91b9-18eac559dbd9spa
dc.relation.referencesMinisterio de Vivienda, Ciudad y Territorio (2014). Decreto 1287. https://minvivienda.gov.co/normativa/decreto-1287-2014spa
dc.relation.referencesMowa, E., Akundabweni, L., Chimwamurombe, P., & Liswaniso, G. (2018). Analysis of nitrifying microbial community for organic hydroponics. African Journal of Microbiology Research, 12(1), 1–8. https://doi.org/10.5897/ajmr2017.8635spa
dc.relation.referencesMrowiec, B. (2014). Toluene in sewage and sludge in wastewater treatment plants. Water Science and Technology, 69(1), 128–134. https://doi.org/10.2166/wst.2013.563spa
dc.relation.referencesMudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., Pandey, R., Juwarkar, A., & Vaidya, A. (2010). Bioreactors for treatment of VOCs and odours - A review. Journal of Environmental Management, 91(5), 1039–1054. https://doi.org/10.1016/j.jenvman.2010.01.006spa
dc.relation.referencesMulvaney, R. L. (1996) ‘Nitrogen—Inorganic Forms’, in Methods of Soil Analysis Part 3—Chemical Methods.spa
dc.relation.referencesMuñoz, R., Malhautier, L., Fanlo, J. L., & Quijano, G. (2015). Malhautier, L., Khammar, N., Bayle, S., & Fanlo, J. L. (2005). Biofiltration of volatile organic compounds. Applied Microbiology and Biotechnology, 68(1), 16–22. https://doi.org/10.1007/s00253-005-1960-zspa
dc.relation.referencesNagaraj, A., & Sattler, M. L. (2005). Correlating emissions with time and temperature to predict worst-case emissions from open liquid area sources. Journal of the Air and Waste Management Association, 55(8), 1077–1084. https://doi.org/10.1080/10473289.2005.10464713spa
dc.relation.referencesNational Institute of Standards and Technology (2021a) NIST Web book of chemistry: 69. Available at https://webbook.nist.gov/cgi/cbook.cgi?ID=C7664417&Mask=10spa
dc.relation.referencesNational Institute of Standards and Technology (2021b) NIST Web book of chemistry: 69. Available at https://webbook.nist.gov/cgi/cbook.cgi?ID=C7783064&Mask=10spa
dc.relation.referencesNational Institute of Standards and Technology (2021c) NIST Web book of chemistry: 69. Available at https://webbook.nist.gov/cgi/cbook.cgi?ID=C64197&Mask=10spa
dc.relation.referencesNational Institute of Standards and Technology (2021d) NIST Web book of chemistry: 69. Available at https://webbook.nist.gov/cgi/cbook.cgi?ID=C108883&Mask=10spa
dc.relation.referencesNimmermark S. (2004). Odour influence on well-being and health with specific focus on animal production emissions. Ann Agric Environ Med, 11, 163–173.spa
dc.relation.referencesNing, X. A., Wang, J. Y., Li, R. J., Wen, W. bin, Chen, C. M., Wang, Y. J., Yang, Z. Y., & Liu, J. Y. (2015). Fate of volatile aromatic hydrocarbons in the wastewater from six textile dyeing wastewater treatment plants. Chemosphere, 136, 50–55. https://doi.org/10.1016/j.chemosphere.2015.03.086spa
dc.relation.referencesNoguera, K. M., & Olivero, J. T. (2010). Los rellenos sanitarios en Latinoamérica: caso colombiano. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales34(132),347+.https://link.gale.com/apps/doc/A253627289/IFME?u=anon~9cadbd7b&sid=googleScholar&xid=a41c0fd0spa
dc.relation.referencesOccupational Safety and Health Administration. (2020, December 17). OSHA Occupational Chemical Database AMMONIA. United States Department of Labor. https://www.osha.gov/chemicaldata/623spa
dc.relation.referencesOccupational Safety and Health Administration. (2021, January 29). OSHA Occupational Chemical Database HYDROGEN SULFIDE. United States Department of Labor. https://www.osha.gov/chemicaldata/652spa
dc.relation.referencesOmri, I., Aouidi, F., Bouallagui, H., Godon, J. J., & Hamdi, M. (2013). Performance study of biofilter developed to treat H2S from wastewater odour. Saudi Journal of Biological Sciences, 20(2), 169–176. https://doi.org/10.1016/j.sjbs.2013.01.005spa
dc.relation.referencesOndarts, M., Hort, C., Sochard, S., Platel, V., Moynault, L., & Seby, F. (2012). Evaluation of compost and a mixture of compost and activated carbon as biofilter media for the treatment of indoor air pollution. 37–41. https://doi.org/10.1080/09593330.2011.570793spa
dc.relation.referencesOndarts, M., Hort, C., Sochard, S. & Platel, V. (2010). Indoor Air Purification by Compost Packed Biofilter Indoor Air Purification by Compost Packed Biofilter. (January). https://doi.org/10.2202/1542-6580.2176spa
dc.relation.referencesPark, B.-G., Shin, W.-S., Jeong, Y.-S., & Chung, J.-S. (2008). Simultaneous Removal of H 2 S, NH 3 and Toluene in a Biofilter Packed with Zeocarbon Carrier. Journal of Environmental Science International, 17(1), 7–17. https://doi.org/10.5322/jes.2008.17.1.007spa
dc.relation.referencesParseh, I., Hajizadeh, Y., Jaafarzadeh, N., Goudarzi, G., Shakerinejad, G., Badeenezhad, A., … Fallahizadeh, S. (2021). Removal behavior of gaseous furfural using a biofilter packed with perlite, ripe compost, and oak woodchips. Process Safety and Environmental Protection, 149, 135–143. https://doi.org/10.1016/j.psep.2020.10.039spa
dc.relation.referencesPokorna, D., & Zabranska, J. (2015). Sulfur-oxidizing bacteria in environmental technology. Biotechnology Advances, 33(6), 1246–1259. https://doi.org/10.1016/j.biotechadv.2015.02.007spa
dc.relation.referencesPortilla, E. & Torres-Saéz, R. (2007) Hydrogen sulphide removal by a biofiltration system in the waste-water treatment plant of the city of Bucaramanga in Colombia. J. Biotechnol. 131, S158–S159. https://doi.org/10.1016/j.jbiotec.2007.07.880spa
dc.relation.referencesRavina, M., Panepinto, D., Mejia Estrada, J., De Giorgio, L., Salizzoni, P., Chiara Zanetti, M., & Meucci, L. (2019). Characterization of odorous emissions from a civil wastewater treatment plant in Italy. WIT Transactions on Ecology and the Environment, 236(i), 159–170. https://doi.org/10.2495/AIR190161spa
dc.relation.referencesRabbani, K. A., Charles, W., Kayaalp, A., Cord-Ruwisch, R., & Ho, G. (2016). Pilot-scale biofilter for the simultaneous removal of hydrogen sulphide and ammonia at a wastewater treatment plant. Biochemical Engineering Journal, 107(2), 1–10. https://doi.org/10.1016/j.bej.2015.11.018spa
dc.relation.referencesRalebitso-senior, T. K., Senior, E., Felice, R. Di, & Jarvis, K. (2012). Waste Gas Bio fi ltration : Advances and Limitations of Current Approaches in Microbiology.spa
dc.relation.referencesRen, B., Zhao, Y., Lyczko, N., & Nzihou, A. (2019). Current Status and Outlook of Odor Removal Technologies in Wastewater Treatment Plant. Waste and Biomass Valorization, 10(6), 1443–1458. https://doi.org/10.1007/s12649-018-0384-9spa
dc.relation.referencesRene, E. R., Mohammad, B. T., Veiga, M. C., & Kennes, C. (2012). Bioresource Technology Biodegradation of BTEX in a fungal biofilter : Influence of operational parameters , effect of shock-loads and substrate stratification. Bioresource Technology, 116, 204–213. https://doi.org/10.1016/j.biortech.2011.12.006spa
dc.relation.referencesRevah, S. & Morgan-Sagastume, J.M., 2005. Methods of odor and VOC control. Biotechnology for Odor and Air Pollution Control. pp. 29–63. https://doi.org/10.1007/3-540-27007-8_3spa
dc.relation.referencesRincón-Sierra N.C. (2005) Análisis de esquemas de integración de la PTAR El Salitre al alcantarillado y río Bogotá. Universidad de los Andes. Departamento de Ingeniería Civil y Ambiental. Último acceso 20 de octubre de 2022 https://repositorio.uniandes.edu.co/bitstream/handle/1992/21823/u258551.pdf?sequence=1spa
dc.relation.referencesRolewicz-kali, A., Lelici, K., & Manczarski, P. (2020). Chemical Engineering Research and Design Volatile organic compounds , ammonia and hydrogen sulphide removal using a two-stage membrane biofiltration process. 5, 69–80. https://doi.org/10.1016/j.cherd.2020.10.017spa
dc.relation.referencesRueda Saa, G.H., 2001. Capacidad de eliminación de H2S en un biofiltro empacado con mezcla de suelo carbonilla y ceniza volcánica. Universidad del Valle.spa
dc.relation.referencesSánchez Melo, M. (2016). Evaluación del conflicto ambiental generado por las obras de ampliación de la planta de tratamiento de aguas residuales “El Salitre” en área del humedal Cortijo –Tibabuyes. http://hdl.handle.net/10654/15454spa
dc.relation.referencesSecretaria Distrital de Ambiente. (2021) Descripción y contexto de las cuencas hídricas del Distrito Capital (Torca, Salitre, Fucha y Tunjuelo). Informe Técnico No. 04284. Último acceso 20 de octubre de 2022 https://ambientebogota.gov.co/documents/10184/2406242/Descripci%C3%B3n+y+contexto+de+las+cuencas+h%C3%ADdricas.pdf/41164d35-d76e-4c8a-aacc-569759a320fespa
dc.relation.referencesSchiffman, S. S., Walker, J. M., Dalton, P., Lorig, T. S., Raymer, J. H., Shusterman, D., & Williams, C. M. (2005). Potential health effects of odor from animal operations, wastewater treatment, and recycling of byproducts. Journal of Agromedicine, 9(2), 395–403. https://doi.org/10.1300/J096v09n02_24spa
dc.relation.referencesShareefdeen, Z., & Singh, A. (2008). Biotechnology for odor and air pollution control: With 70 figures. Berlin: Springer.spa
dc.relation.referencesSharma, D., Varma, V. S., Yadav, K. D., & Kalamdhad, A. S. (2017). Evolution of chemical and biological characterization during agitated pile composting of flower waste. International Journal of Recycling of Organic Waste in Agriculture, 6(1), 89–98. https://doi.org/10.1007/s40093-017-0155-9spa
dc.relation.referencesShilev, S., Naydenov, M., Vancheva, V., Aladjadjiyan, A. (2007). Composting of Food and Agricultural Wastes. In: Oreopoulou, V., Russ, W. (eds) Utilization of By-Products and Treatment of Waste in the Food Industry., vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35766-9_15spa
dc.relation.referencesShimaya, C., & Hashimoto, T. (2011). Isolation and characterization of novel thermophilic nitrifying Bacillus sp. from compost. Soil Science and Plant Nutrition, 57(1), 150–156. https://doi.org/10.1080/00380768.2010.548312spa
dc.relation.referencesSivret, E. C., Wang, B., Parcsi, G., & Stuetz, R. M. (2016). Prioritisation of odorants emitted from sewers using odour activity values. Water Research, 88, 308–321. https://doi.org/10.1016/j.watres.2015.10.020spa
dc.relation.referencesSun, Y., Quan, X., Chen, J., Yang, F., & Xue, D. (2002). Toluene v apour degradation and microbial community in biofilter at v arious moisture content. 38, 109–113.spa
dc.relation.referencesTaghipour, H., & Attar, H. M. (2006). Comparison of the Biological NH3 Removal Characteristics of a Three Stage Biofilter with a One Stage Biofilter Comparison of the biological NH 3 removal characteristics of a three stage biofilter with a one stage biofilter. (September). https://doi.org/10.1007/BF03325951spa
dc.relation.referencesTeixeira, J. V., Miranda, S., Monteiro, R. A. R. et al. (2013). Assessment of indoor airborne contamination in a wastewater treatment plant. Environmental Monitoring and Assessment, 185(1), 59–72. https://doi.org/10.1007/s10661-012-2533-0spa
dc.relation.referencesTian, W., Chen, X., Zhou, P., Fu, X., & Zhao, H. (2020). Removal of H 2 S by vermicompost bio fi lter and analysis on bacterial community. 720–731.spa
dc.relation.referencesTopp, E., Millar, S., Bork, H., & Welsh, M. (1998). Effects of marigold (Tagetes sp.) roots on soil microorganisms. Biology and Fertility of Soils, 27(2), 149–154. https://doi.org/10.1007/s003740050413spa
dc.relation.referencesTsang, Y. F., Wang, Y., & Wang, H. (2017). Biodegradation of Ammonia in Biofiltration Systems : Changes of Metabolic Products and Microbial Communities.spa
dc.relation.referencesVela-Aparicio, D.G., Forero, D.F., Acevedo P., Brandão P.F.B., Hernández M.A. & Cabeza I. O. (2019). Evaluation of compost from chicken manure and lignocellulosic materials as packing material in a biofiltration system for the simultaneous removal of H2S and NH3. Paper presented at the 7th International Conference on Sustainable Solid Waste Management.Heraklion-Greece. http://uest.ntua.gr/heraklion2019/proceedings/pdf/133_HERAKLION2019_Vela-Aparicio_etal.pdfspa
dc.relation.referencesVela-Aparicio, D., Forero, D. F., Hernández, M. A., Brandão, P. F. B., & Cabeza, I. O. (2020). Simultaneous biofiltration of H2S and NH3 using compost mixtures from lignocellulosic waste and chicken manure as packing material. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-10817-wspa
dc.relation.referencesVela-Aparicio, D. G., Forero, D. F., Fernandez, A., Mario, A., Brandão, P. F. B., & Cabeza, I. O. (2021). Operational Parameters Analysis for the Removal of H 2 S and NH 3 under Transient Conditions by a Biofiltration System of Compost Beds. 85(March), 163–168. https://doi.org/10.3303/CET2185028spa
dc.relation.referencesVela-Aparicio, D. G., Bautista, C. J., Forero, D. F., Acevedo, P., Brandão, P. F. B., & Cabeza, I. O. (2022). Inoculation of Compost Biofilter for the Simultaneous Removal of H 2 S and NH 3 under Transient Conditions of Gas Concentration. 93(January), 157–162. https://doi.org/10.3303/CET2293027spa
dc.relation.referencesWidiana, D. R., Wang, Y. F., You, S. J., Yang, H. H., Wang, L. C., Tsai, J. H., & Chen, H. M. (2019). Air pollution profiles and health risk assessment of ambient volatile organic compounds above a municipal wastewater treatment plant, Taiwan. Aerosol and Air Quality Research, 19(2), 375–382. https://doi.org/10.4209/aaqr.2018.11.040spa
dc.relation.referencesWorld Health Organization. Regional Office for Europe. (2000). Air quality guidelines for Europe, 2nd ed.. World Health Organization. Regional Office for Europe. https://apps.who.int/iris/handle/10665/107335spa
dc.relation.referencesWong, J. W. C., Mak, K. F., Chan, N. W., Lam, A., Fang, M., Zhou, L. X., Wu, Q.T. & Liao, X. D. (2001). Co-composting of soybean residues and leaves in Hong Kong. Bioresource Technology, 76(2), 99–106. https://doi.org/10.1016/S0960-8524(00)00103-6spa
dc.relation.referencesWongkiew, S., Koottatep, T., Polprasert, C., Prombutara, P., Jinsart, W., & Khanal, S. K. (2021). Bioponic system for nitrogen and phosphorus recovery from chicken manure: Evaluation of manure loading and microbial communities. Waste Management, 125, 67–76. https://doi.org/10.1016/j.wasman.2021.02.014spa
dc.relation.referencesXie, B., Liang, S. B., Tang, Y., Mi, W. X., & Xu, Y. (2009). Petrochemical wastewater odor treatment by biofiltration. Bioresource Technology, 100(7), 2204–2209. https://doi.org/10.1016/j.biortech.2008.10.035spa
dc.relation.referencesYamamoto, N., Otawa, K., & Nakai, Y. (2010). Diversity and Abundance of Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea During Cattle Manure Composting. 807–815. https://doi.org/10.1007/s00248-010-9714-6spa
dc.relation.referencesYang, L., Wang, X. , Funk, T. L. & Gates., R. S. (2011). Biofilter Media Characterization and Airflow Resistance Test. Transactions of the ASABE, 54(3), 1127–1136. https://doi.org/10.13031/2013.37104spa
dc.relation.referencesYan, L., Li, Z., Bao, J., Wang, G., Wang, C., & Wang, W. (2015). Diversity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea during composting of municipal sludge. Annals of Microbiology, 65(3), 1729–1739. https://doi.org/10.1007/s13213-014-1012-yspa
dc.relation.referencesYang, L., Kent, A. D., Wang, X., Funk, T. L., & Gates, R. S. (2014). Moisture effects on gas-phase biofilter ammonia removal efficiency , nitrous oxide generation , and microbial communities. Journal of Hazardous Materials, 271(2), 292–301. https://doi.org/10.1016/j.jhazmat.2014.01.058spa
dc.relation.referencesYañez, R., Bueno, P., Rivera, A., García-Barneto, A., & Díaz, M. J. (2010). Selective organic compounds degradation under controlling composting conditions. Waste Management, 30(5), 755–763. https://doi.org/10.1016/j.wasman.2010.01.022spa
dc.relation.referencesYoon, I. K., Kim, C. N., & Park, C. H. (2002). Optimum operating conditions for the removal of volatile organic compounds in a Compost-Packed biofilter. Korean Journal of Chemical Engineering, 19(6), 954–959. https://doi.org/10.1007/BF02707217spa
dc.relation.referencesYuan, J., Du, L., Li, S., Yang, F., Zhang, Z., Li, G., Wang, G., 2019. Use of mature compost as filter media and the effect of packing depth on hydrogen sulfide removal from composting exhaust gases by biofiltration. Environ. Sci. Pollut. Res. 26, 3762–3770. https://doi.org/10.1007/s11356-018-3795-zspa
dc.relation.referencesZarra, T., Naddeo, V., Belgiorno, V., Reiser, M., & Kranert, M. (2008). Odour monitoring of small wastewater treatment plant located in sensitive environment. Water Science and Technology, 58(1), 89–94. https://doi.org/10.2166/wst.2008.330spa
dc.relation.referencesZhang, Y., Chen, M., Guo, J., Liu, N., Yi, W., Yuan, Z., & Zeng, L. (2022). Study on dynamic changes of microbial community and lignocellulose transformation mechanism during green waste composting. Engineering in Life Sciences, 22(5), 376–390. https://doi.org/10.1002/elsc.202100102spa
dc.relation.referencesZhu, Y., Li, S., Luo, Y., Ma, H., & Wang, Y. (2016). A biofilter for treating toluene vapors : performance evaluation and microbial counts behavior. https://doi.org/10.7717/peerj.2045spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembBIODEGRADACION DE AGUAS RESIDUALESspa
dc.subject.lembSewage - purification - biological treatmenteng
dc.subject.proposalBiofiltraciónspa
dc.subject.proposalSulfuro de hidrógenospa
dc.subject.proposalAmoniacospa
dc.subject.proposalCompuestos orgánicos volátilesspa
dc.subject.proposalToluenospa
dc.subject.proposalCompostspa
dc.subject.proposalOlores ofensivosspa
dc.subject.proposalBiofiltrationeng
dc.subject.proposalHydrogen sulfideeng
dc.subject.proposalAmmoniaeng
dc.subject.proposalVolatile organic compoundseng
dc.subject.proposalTolueneeng
dc.subject.proposalComposteng
dc.subject.proposalOffensive odorseng
dc.titleDesarrollo de prototipo para la biofiltración simultánea de compuestos orgánicos e inorgánicos volátiles a través de un lecho orgánicospa
dc.title.translatedPrototype development for simultaneous biofiltration of organic and inorganic volatile compounds in an organic bedeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameDivisión de Investigación Sede Bogotá de la Universidad Nacionalspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032481508.2023.pdf
Tamaño:
1.98 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: