Technical-environmental assessment of the potential of polyhydroxyalkanoates production from mixed microbial cultures and waste feedstocks

dc.contributor.advisorMoreno Sarmiento, Nubiaspa
dc.contributor.advisorCabeza Rojas, Ivánspa
dc.contributor.authorMosquera Tobar, Jhessica Danielaspa
dc.contributor.cvlacJhessica Daniela Mosquera Tobarspa
dc.contributor.orcidMosquera, Jhessica [0000000339732439]spa
dc.contributor.researchgroupGema ­ Grupo de Estudio de Materialesspa
dc.contributor.researchgroupBioprocesos y Bioprospecciónspa
dc.contributor.scopusMosquera, Jhessica D. [57214898878]spa
dc.coverage.cityBogotáspa
dc.coverage.countryColombiaspa
dc.date.accessioned2024-09-23T19:04:01Z
dc.date.available2024-09-23T19:04:01Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractThe scope of this work was to contribute to the assessment of PHA production process from mixed microbial cultures and complex waste streams by process simulation and prospective life cycle assessment to support the scale-up of the process. Therefore, three scenarios were constructed based on the valorisation of waste streams available in Bogotá, Colombia. The scenario development methodology involves the definition of goal and scope as stated in the life cycle assessment methodology: ISO 14040: 2006 and 14044: 2006. Experimental data from literature was used to define process parameters and yields. A three-stage configuration was identified as the most common ensemble for the unit operations and unit procedures required to transform waste into PHA. Operational conditions and operational parameters were defined to construct process flow diagrams for each scenario. The scenarios pursued the evaluation of the valorisation of sewage sludge (Scenario 1, S1), organic fraction of solid waste (Scenario 2, S2), and the mixture of the residues (Scenario 3, S3). Each scenario was evaluated from a technical and environmental perspective, and the functional unit for the evaluation was 1,7 kg CODPHA (1 kg of PHA). The process simulation was performed in SuperPRO Designer, while the prospective life cycle assessment was completed in SimaPro. The average overall yields obtained during the simulation were: S1 30.80, S2 7.80, S3 12.52 kg VS per kg of PHA; the scenario with the highest yield was Scenario 2. The result was a prospective environmental assessment that made possible the identification and reduction of gaps in terms of carbon source production, biomass production, PHA production, and cross-cutting aspects for technology transfer.eng
dc.description.abstractEl objetivo de este trabajo contribuir a la evaluación del proceso de producción de PHA a partir cultivos mixtos y sustratos de origen residual, a partir de la simulación de procesos y el análisis de ciclo de vida para soportar el escalado del proceso. Para lo cual, se construyeron tres escenarios basados en la valorización de corrientes de residuos disponibles en Bogotá, Colombia. La metodología para la construcción de escenarios incluyó la definición objetivo y el alcance, tal como se establece en la metodología de análisis de ciclo de vida: ISO 14040: 2006 y 14044: 2006. Mientras que los datos experimentales tomados de literatura vigente fueron empleados para la definición de parámetros y rendimientos de proceso. Se identificó una configuración de tres etapas como el conjunto más común de operaciones y procedimientos unitarios necesarios para la transformación de sustratos residuales en PHA. Se definieron condiciones y parámetros operativos para construir diagramas de flujo para cada uno de los escenarios. Los escenarios tienen por objeto la evaluación de la valorización de lodos de PTAR (Escenario 1, S1), fracción orgánica de residuos sólidos (Escenario 2, S2), y una mezcla de ambos residuos (Escenario 3, S3). Cada escenario se evaluó desde una perspectiva técnica y ambiental, y la unidad funcional para la evaluación fue 1,7 kg de CODPHA (1 kg de PHA). La simulación del proceso se realizó en SuperPRO Designer, mientras que la evaluación prospectiva del ciclo de vida se completó en SimaPro. Los rendimientos globales medios obtenidos durante la simulación fueron: S1 30,80, S2 7,80, S3 12,82 kg VS por kg de PHA; siendo el Escenario 2 el que presentó un mayor rendimiento. El resultado fue un análisis de ciclo de vida prospectivo que permitió la identificación y reducción de brechas en términos de producción de fuente de carbono, producción de biomasa, producción de PHA y aspectos transversales para la transferencia de tecnología (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaBioprocessesspa
dc.format.extent98 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86855
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAhring, B.K., Angelidaki, I., De Macario, E.C., Gavala, H.N., Hofman-Bang, J., Macario, A.J.L., Elferink, S.J.W.H.O., Raskin, L., Stams, A.J.M., Westermann, P., Zheng, D. (Eds.), 2003. Biomethanation I, Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45839-5spa
dc.relation.referencesAlbuquerque, M.G.E., Concas, S., Bengtsson, S., Reis, M.A.M., 2010. Mixed culture polyhydroxyalkanoates production from sugar molasses: The use of a 2-stage CSTR system for culture selection. Bioresource Technology 101, 7112–7122. https://doi.org/10.1016/j.biortech.2010.04.019spa
dc.relation.referencesAmulya, K., Jukuri, S., Venkata Mohan, S., 2015. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling. Bioresource Technology 188, 231–239. https://doi.org/10.1016/j.biortech.2015.01.070spa
dc.relation.referencesAndhalkar, V.V., Foong, S.Y., Kee, S.H., Lam, S.S., Chan, Y.H., Djellabi, R., Bhubalan, K., Medina, F., Constantí, M., 2023. Integrated Biorefinery Design with Techno-Economic and Life Cycle Assessment Tools in Polyhydroxyalkanoates Processing. Macromolecular Materials and Engineering 308, 2300100. https://doi.org/10.1002/mame.202300100spa
dc.relation.referencesArvidsson, R., Tillman, A.-M., Sandén, B.A., Janssen, M., Nordelöf, A., Kushnir, D., Molander, S., 2018. Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA. Journal of Industrial Ecology 22, 1286–1294. https://doi.org/10.1111/jiec.12690spa
dc.relation.referencesAsunis, F., De Gioannis, G., Francini, G., Lombardi, L., Muntoni, A., Polettini, A., Pomi, R., Rossi, A., Spiga, D., 2021. Environmental life cycle assessment of polyhydroxyalkanoates production from cheese whey. Waste Management 132, 31–43. https://doi.org/10.1016/j.wasman.2021.07.010spa
dc.relation.referencesBaghchehsaraee, B., Nakhla, G., Karamanev, D., Margaritis, A., Reid, G., 2008. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. International Journal of Hydrogen Energy 33, 4064–4073. https://doi.org/10.1016/j.ijhydene.2008.05.069spa
dc.relation.referencesBalakrishna Pillai, A., Kumarapillai, H.K., 2017. Bacterial polyhydroxyalkanoates: Recent trends in production and applications, in: Recent Advances in Applied Microbiology. pp. 19–53. https://doi.org/10.1007/978-981-10-5275-0_2spa
dc.relation.referencesBare, J.C., Hofstetter, P., Pennington, D.W., de Haes, H.A.U., 2000. Midpoints versus endpoints: The sacrifices and benefits. Int. J. LCA 5, 319–326. https://doi.org/10.1007/BF02978665spa
dc.relation.referencesBatstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A., 2002. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci Technol 45, 65–73.spa
dc.relation.referencesBattista, F., Frison, N., Pavan, P., Cavinato, C., Gottardo, M., Fatone, F., Eusebi, A.L., Majone, M., Zeppilli, M., Valentino, F., Fino, D., Tommasi, T., Bolzonella, D., 2020. Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added-value bioproducts. Journal of Chemical Technology & Biotechnology 95, 328–338. https://doi.org/10.1002/jctb.6096spa
dc.relation.referencesBeckers, V., Poblete-Castro, I., Tomasch, J., Wittmann, C., 2016. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Microbial Cell Factories 15, 73. https://doi.org/10.1186/s12934-016-0470-2spa
dc.relation.referencesBengtsson, S., Karlsson, A., Alexandersson, T., Quadri, L., Hjort, M., Johansson, P., Morgan-Sagastume, F., Anterrieu, S., Arcos-Hernandez, M., Karabegovic, L., Magnusson, P., Werker, A., 2017. A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnology 35, 42–53. https://doi.org/10.1016/j.nbt.2016.11.005spa
dc.relation.referencesBengtsson, S., Werker, A., Visser, C., Korving, L., 2018. PHARIO. Stepping stone to a value chain for PHA bioplastic using municipal activated sludge | STOWA [WWW Document]. URL https://www.stowa.nl/publicaties/phario-stepping-stone-value-chain-pha-bioplastic-using-municipal-activated-sludge (accessed 7.13.24).spa
dc.relation.referencesBluemink, E.D., van Nieuwenhuijzen, A.F., Wypkema, E., Uijterlinde, C.A., 2016. Bio-plastic (poly-hydroxy-alkanoate) production from municipal sewage sludge in the Netherlands: a technology push or a demand driven process? Water Sci Technol 74, 353–358. https://doi.org/10.2166/wst.2016.191spa
dc.relation.referencesBolhuis, H., Grego, M., 2024. Cryopreservation and recovery of a complex hypersaline microbial mat community. Cryobiology 114. https://doi.org/10.1016/j.cryobiol.2024.104859spa
dc.relation.referencesBoyle, K., Örmeci, B., 2020. Microplastics and Nanoplastics in the Freshwater and Terrestrial Environment: A Review. Water 12, 2633. https://doi.org/10.3390/w12092633spa
dc.relation.referencesCampuzano, R., González-Martínez, S., 2016. Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management 54, 3–12. https://doi.org/10.1016/j.wasman.2016.05.016spa
dc.relation.referencesChen, Y., Cheng, J.J., Creamer, K.S., 2008. Inhibition of anaerobic digestion process: A review. Bioresource technology 99, 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057spa
dc.relation.referencesChicco, D., Warrens, M.J., Jurman, G., 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci 7, e623. https://doi.org/10.7717/peerj-cs.623spa
dc.relation.referencesChoi, S.Y., Rhie, M.N., Kim, H.T., Joo, J.C., Cho, I.J., Son, J., Jo, S.Y., Sohn, Y.J., Baritugo, K.-A., Pyo, J., Lee, Y., Lee, S.Y., Park, S.J., 2020. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metabolic Engineering, Metabolic Engineering Products Issue 58, 47–81. https://doi.org/10.1016/j.ymben.2019.05.009spa
dc.relation.referencesColombo, B., Favini, F., Scaglia, B., Sciarria, T.P., D’Imporzano, G., Pognani, M., Alekseeva, A., Eisele, G., Cosentino, C., Adani, F., 2017. Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnology for Biofuels 10, 201. https://doi.org/10.1186/s13068-017-0888-8spa
dc.relation.referencesCrognale, S., Tonanzi, B., Valentino, F., Majone, M., Rossetti, S., 2019. Microbiome dynamics and phaC synthase genes selected in a pilot plant producing polyhydroxyalkanoate from the organic fraction of urban waste. Science of The Total Environment 689, 765–773. https://doi.org/10.1016/j.scitotenv.2019.06.491spa
dc.relation.referencesde Mello, A.F.M., Vandenberghe, L.P. de S., Machado, C.M.B., Brehmer, M.S., de Oliveira, P.Z., Binod, P., Sindhu, R., Soccol, C.R., 2024. Polyhydroxyalkanoates production in biorefineries: A review on current status, challenges and opportunities. Bioresource Technology 393, 130078. https://doi.org/10.1016/j.biortech.2023.130078spa
dc.relation.referencesDincer, I., Bicer, Y., 2018. 2.1 Ammonia, in: Dincer, I. (Ed.), Comprehensive Energy Systems. Elsevier, Oxford, pp. 1–39. https://doi.org/10.1016/B978-0-12-809597-3.00201-7spa
dc.relation.referencesDoug, C., Charles, S., Alexandros, K., Demetri, P., 2018. Bioprocess Simulation and Scheduling, in: Emerging Areas in Bioengineering. John Wiley & Sons, Ltd, pp. 723–760. https://doi.org/10.1002/9783527803293.ch42spa
dc.relation.referencesEllen MacArthur Foundation, 2013. Towards the circular economy Vol. 1: an economic and business rationale for an accelerated transition [WWW Document]. URL https://www.ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an (accessed 11.11.23).spa
dc.relation.referencesEstévez-Alonso, Á., Pei, R., van Loosdrecht, M.C.M., Kleerebezem, R., Werker, A., 2021. Scaling-up microbial community-based polyhydroxyalkanoate production: status and challenges. Bioresource Technology 327, 124790. https://doi.org/10.1016/j.biortech.2021.124790spa
dc.relation.referencesFoo, D.C.Y., Elyas, R., 2017. Chapter 1 - Introduction to Process Simulation, in: Yee Foo, D.C., Chemmangattuvalappil, N., Ng, D.K.S., Elyas, R., Chen, C.-L., Elms, R.D., Lee, H.-Y., Chien, I.-L., Chong, S., Chong, C.H. (Eds.), Chemical Engineering Process Simulation. Elsevier, pp. 3–21. https://doi.org/10.1016/B978-0-12-803782-9.00001-7spa
dc.relation.referencesFu, X., Xu, H., Zhang, Q., Xi, J., Zhang, H., Zheng, M., Xi, B., Hou, L., 2023. A review on polyhydroxyalkanoates production from various organic waste streams: Feedstocks, strains, and production strategy. Resources, Conservation and Recycling 198, 107166. https://doi.org/10.1016/j.resconrec.2023.107166spa
dc.relation.referencesGarcia-Aguirre, J., Aymerich, E., González-Mtnez. de Goñi, J., Esteban-Gutiérrez, M., 2017. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence. Bioresource Technology 244, 1081–1088. https://doi.org/10.1016/j.biortech.2017.07.187spa
dc.relation.referencesGarcia-Aguirre, J., Esteban-Gutiérrez, M., Irizar, I., González-Mtnez de Goñi, J., Aymerich, E., 2019. Continuous acidogenic fermentation: Narrowing the gap between laboratory testing and industrial application. Bioresource Technology 282, 407–416. https://doi.org/10.1016/j.biortech.2019.03.034spa
dc.relation.referencesGottardo, M., Dosta, J., Cavinato, C., Crognale, S., Tonanzi, B., Rossetti, S., Bolzonella, D., Pavan, P., Valentino, F., 2023. Boosting butyrate and hydrogen production in acidogenic fermentation of food waste and sewage sludge mixture: a pilot scale demonstration. Journal of Cleaner Production 404. https://doi.org/10.1016/j.jclepro.2023.136919spa
dc.relation.referencesGracia, J., Acevedo, O., Acevedo, P., Mosquera, J., Montenegro, C., Cabeza, I., 2024. Statistical modeling and optimization of volatile fatty acids pro-duction by anaerobic digestion of municipal wastewater sludge. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-34091-2spa
dc.relation.referencesGracia, J., Montenegro, C., Acevedo, P., Cabeza, I., 2023a. Acidogenic Fermentation at a Thermophilic Temperature from Municipal Sewage Sludge for the Production of VFAs. Chemical Engineering Transactions 100, 553–558. https://doi.org/10.3303/CET23100093spa
dc.relation.referencesGracia, J., Montenegro, C., Moreno, N., Cabeza, I., 2023b. Production of Polyhydroxyalkanoates using Volatile Fatty Acids from Municipal Wastewater Treatment Plant Sludge. Chemical Engineering Transactions 100, 559–564. https://doi.org/10.3303/CET23100094spa
dc.relation.referencesGracia, J., Mosquera, J., Montenegro, C., Acevedo, P., Cabeza, I., 2020. Volatile fatty acids production from fermentation of waste activated sludge. Chemical Engineering Transactions 79, 217–222. https://doi.org/10.3303/CET2079037spa
dc.relation.referencesGuthrie, S., Giles, S., Dunkerley, F., Tabaqchali, H., Harshfield, A., Loppolo, B., Manville, C., 2018. Impact of ammonia emissions from agriculture on biodiversity: An evidence synthesis 76. https://doi.org/10.7249/RR2695spa
dc.relation.referencesGuzik, M., Witko, T., Steinbüchel, A., Wojnarowska, M., Sołtysik, M., Wawak, S., 2020. What Has Been Trending in the Research of Polyhydroxyalkanoates? A Systematic Review. Frontiers in Bioengineering and Biotechnology 8.spa
dc.relation.referencesHao, J., Wang, H., 2015. Volatile fatty acids productions by mesophilic and thermophilic sludge fermentation: Biological responses to fermentation temperature. Bioresource Technology 175, 367–373. https://doi.org/10.1016/j.biortech.2014.10.106spa
dc.relation.referencesHao, J., Wang, H., Wang, X., 2018. Selecting optimal feast-to-famine ratio for a new polyhydroxyalkanoate (PHA) production system fed by valerate-dominant sludge hydrolysate. Appl Microbiol Biotechnol 102, 3133–3143. https://doi.org/10.1007/s00253-018-8799-6spa
dc.relation.referencesHassan, M.A., Yee, L.-N., Yee, P.L., Ariffin, H., Raha, A.R., Shirai, Y., Sudesh, K., 2013. Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass and Bioenergy 50, 1–9. https://doi.org/10.1016/j.biombioe.2012.10.014spa
dc.relation.referencesHazen and Sawyer, Nippon Koei, 2017. Informe de selección de alternativas de tratamiento consideradas para la expasión de la PTAR El Salitre.spa
dc.relation.referencesHeinzle, E., Biwer, A.P., Cooney, C.L., 2007. Development of Sustainable Bioprocesses: Modeling and Assessment, 1st ed. John Wiley & Sons.spa
dc.relation.referencesHermann-Krauss, C., Koller, M., Muhr, A., Fasl, H., Stelzer, F., Braunegg, G., 2013. Archaeal Production of Polyhydroxyalkanoate (PHA) Co- and Terpolyesters from Biodiesel Industry-Derived By-Products. Archaea 2013, e129268. https://doi.org/10.1155/2013/129268spa
dc.relation.referencesIglesias-Iglesias, R., Campanaro, S., Treu, L., Kennes, C., Veiga, M.C., 2019. Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation. Bioresource Technology 291, 121817. https://doi.org/10.1016/j.biortech.2019.121817spa
dc.relation.referencesJanesch, E., Pereira, J., Neubauer, P., Junne, S., 2021. Phase Separation in Anaerobic Digestion: A Potential for Easier Process Combination? Frontiers in Chemical Engineering 3.spa
dc.relation.referencesJankowska, E., Chwialkowska, J., Stodolny, M., Oleskowicz-Popiel, P., 2017. Volatile fatty acids production during mixed culture fermentation – The impact of substrate complexity and pH. Chemical Engineering Journal 326, 901–910. https://doi.org/10.1016/j.cej.2017.06.021spa
dc.relation.referencesJie, W., Peng, Y., Ren, N., Li, B., 2014. Volatile fatty acids (VFAs) accumulation and microbial community structure of excess sludge (ES) at different pHs. Bioresource Technology 152, 124–129. https://doi.org/10.1016/j.biortech.2013.11.011spa
dc.relation.referencesJRC European Commission, 2010. ILCD Handbook: General guide for Life Cycle Assessment - Provisions and action steps [WWW Document]. URL (accessed 3.31.24).spa
dc.relation.referencesKerckhof, F.-M., Courtens, E.N.P., Geirnaert, A., Hoefman, S., Ho, A., Vilchez-Vargas, R., Pieper, D.H., Jauregui, R., Vlaeminck, S.E., Van De Wiele, T., Vandamme, P., Heylen, K., Boon, N., 2014. Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0099517spa
dc.relation.referencesKhatami, K., Perez-Zabaleta, M., Owusu-Agyeman, I., Cetecioglu, Z., 2021. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? Waste Management 119, 374–388. https://doi.org/10.1016/j.wasman.2020.10.008spa
dc.relation.referencesKleerebezem, R., van Loosdrecht, M.C., 2007. Mixed culture biotechnology for bioenergy production. Current Opinion in Biotechnology, Energy biotechnology / Environmental biotechnology 18, 207–212. https://doi.org/10.1016/j.copbio.2007.05.001spa
dc.relation.referencesKoller, M., 2021. Chapter 1 - Production, properties, and processing of microbial polyhydroxyalkanoate (PHA) biopolyesters, in: Das, S., Dash, H.R. (Eds.), Microbial and Natural Macromolecules. Academic Press, pp. 3–55. https://doi.org/10.1016/B978-0-12-820084-1.00001-6spa
dc.relation.referencesKoller, M. (Ed.), 2020. The Handbook of Polyhydroxyalkanoates: Microbial Biosynthesis and Feedstocks. CRC Press, Boca Raton. https://doi.org/10.1201/9780429296611spa
dc.relation.referencesKoller, M., 2019. Chemical and Biochemical Engineering Approaches in Manufacturing Polyhydroxyalkanoate (PHA) Biopolyesters of Tailored Structure with Focus on the Diversity of Building Blocks. Chemical and Biochemical Engineering Quarterly 32, 413–438. https://doi.org/10.15255/CABEQ.2018.1385spa
dc.relation.referencesKourmentza, K., Kachrimanidou, V., Psaki, O., Pateraki, C., Ladakis, D., Koutinas, A., 2020. Competitive Advantage and Market Introduction of PHA Polymers and Potential Use of PHA Monomers, in: The Handbook of Polyhydroxyalkanoates. CRC Press.spa
dc.relation.referencesKumar, G., Ponnusamy, V.K., Bhosale, R.R., Shobana, S., Yoon, J.-J., Bhatia, S.K., Rajesh Banu, J., Kim, S.-H., 2019. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresource Technology 287, 121427. https://doi.org/10.1016/j.biortech.2019.121427spa
dc.relation.referencesKumar, M., Rathour, R., Singh, R., Sun, Y., Pandey, A., Gnansounou, E., Andrew Lin, K.-Y., Tsang, D.C.W., Thakur, I.S., 2020. Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. Journal of Cleaner Production 263, 121500. https://doi.org/10.1016/j.jclepro.2020.121500spa
dc.relation.referencesLangkau, S., Steubing, B., Mutel, C., Ajie, M.P., Erdmann, L., Voglhuber-Slavinsky, A., Janssen, M., 2023. A stepwise approach for Scenario-based Inventory Modelling for Prospective LCA (SIMPL). Int J Life Cycle Assess 28, 1169–1193. https://doi.org/10.1007/s11367-023-02175-9spa
dc.relation.referencesLebreton, L.C.M., van der Zwet, J., Damsteeg, J.-W., Slat, B., Andrady, A., Reisser, J., 2017. River plastic emissions to the world’s oceans. Nat Commun 8, 15611. https://doi.org/10.1038/ncomms15611spa
dc.relation.referencesLee, S.Y., Lee, Y., 2003. Metabolic engineering of Escherichia coli for production of enantiomerically pure (R)-(--)-hydroxycarboxylic acids. Appl Environ Microbiol 69, 3421–3426. https://doi.org/10.1128/AEM.69.6.3421-3426.2003spa
dc.relation.referencesLiguori, R., Amore, A., Faraco, V., 2013. Waste valorization by biotechnological conversion into added value products. Appl Microbiol Biotechnol 97, 6129–6147. https://doi.org/10.1007/s00253-013-5014-7spa
dc.relation.referencesLiu, X., Gao, X., Wang, W., Zheng, L., Zhou, Y., Sun, Y., 2012. Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renewable Energy 44, 463–468. https://doi.org/10.1016/j.renene.2012.01.092spa
dc.relation.referencesLorini, L., Munarin, G., Salvatori, G., Alfano, S., Pavan, P., Majone, M., Valentino, F., 2022. Sewage sludge as carbon source for polyhydroxyalkanoates: a holistic approach at pilot scale level. Journal of Cleaner Production 354, 131728. https://doi.org/10.1016/j.jclepro.2022.131728spa
dc.relation.referencesMagdouli, S., Brar, S.K., Blais, J.F., Tyagi, R.D., 2015. How to direct the fatty acid biosynthesis towards polyhydroxyalkanoates production? Biomass and Bioenergy 74, 268–279. https://doi.org/10.1016/j.biombioe.2014.12.017spa
dc.relation.referencesMajone, M., Chronopoulou, L., Lorini, L., Martinelli, A., Palocci, C., Rossetti, S., Valentino, F., Villano, M., 2017. PHA copolymers from microbial mixed cultures: Synthesis, extraction and related properties, in: Current Advances in Biopolymer Processing and Characterization. pp. 223–276.spa
dc.relation.referencesMarkets and Markets, 2023. Polyhydroxyalkanoate (PHA) Market Share, Size | 2023 - 2028 [WWW Document]. MarketsandMarkets. URL https://www.marketsandmarkets.com/Market-Reports/pha-market-395.html (accessed 9.10.23).spa
dc.relation.referencesMatos, M., Cruz, R.A.P., Cardoso, P., Silva, F., Freitas, E.B., Carvalho, G., Reis, M.A.M., 2021a. Sludge retention time impacts on polyhydroxyalkanoate productivity in uncoupled storage/growth processes. Science of The Total Environment 799, 149363. https://doi.org/10.1016/j.scitotenv.2021.149363spa
dc.relation.referencesMatos, M., Cruz, R.A.P., Cardoso, P., Silva, F., Freitas, E.B., Carvalho, G., Reis, M.A.M., 2021b. Combined Strategies to Boost Polyhydroxyalkanoate Production from Fruit Waste in a Three-Stage Pilot Plant. ACS Sustainable Chem. Eng. 9, 8270–8279. https://doi.org/10.1021/acssuschemeng.1c02432spa
dc.relation.referencesMazitova, A.K., Aminova, G.K., Zaripov, I.I., Vikhareva, I.N., 2021. Biodegradable polymer materials and modifying additives: State of the art. Part II. Nanotechnologies in Construction 13, 32–38. https://doi.org/10.15828/2075-8545-2021-13-1-32-38spa
dc.relation.referencesMendez, D.A., Cabeza, I.O., Moreno, N.C., Riascos, C.A.M., 2016. Mathematical modelling and scale-up of batch fermentation with burkholderia cepacia B27 using vegetal oil as carbon source to produce polyhydroxyalkanoates. Chemical Engineering Transactions 49, 277–282. https://doi.org/10.3303/CET1649047spa
dc.relation.referencesMengist, W., Soromessa, T., Legese, G., 2020. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777. https://doi.org/10.1016/j.mex.2019.100777spa
dc.relation.referencesMenon, A., Lyng, J.G., 2021. Circular bioeconomy solutions: driving anaerobic digestion of waste streams towards production of high value medium chain fatty acids. Reviews in Environmental Science and Biotechnology 20, 189–208. https://doi.org/10.1007/s11157-020-09559-5spa
dc.relation.referencesMillati, R., Wikandari, R., Ariyanto, T., Hasniah, N., Taherzadeh, M.J., 2023. Anaerobic digestion biorefinery for circular bioeconomy development. Bioresource Technology Reports 21, 101315. https://doi.org/10.1016/j.biteb.2022.101315spa
dc.relation.referencesMohamed Shaffril, H.A., Samsuddin, S.F., Abu Samah, A., 2021. The ABC of systematic literature review: the basic methodological guidance for beginners. Quality and Quantity 55, 1319–1346. https://doi.org/10.1007/s11135-020-01059-6spa
dc.relation.referencesMontiel-Jarillo, G., Morales-Urrea, D.A., Contreras, E.M., López-Córdoba, A., Gómez-Pachón, E.Y., Carrera, J., Suárez-Ojeda, M.E., 2022. Improvement of the Polyhydroxyalkanoates Recovery from Mixed Microbial Cultures Using Sodium Hypochlorite Pre-Treatment Coupled with Solvent Extraction. Polymers 14. https://doi.org/10.3390/polym14193938spa
dc.relation.referencesMoretto, Giulia, Lorini, L., Pavan, P., Crognale, S., Tonanzi, B., Rossetti, S., Majone, M., Valentino, F., 2020. Biopolymers from Urban Organic Waste: Influence of the Solid Retention Time to Cycle Length Ratio in the Enrichment of a Mixed Microbial Culture (MMC). ACS Sustainable Chem. Eng. 8, 14531–14539. https://doi.org/10.1021/acssuschemeng.0c04980spa
dc.relation.referencesMoretto, G., Russo, I., Bolzonella, D., Pavan, P., Majone, M., Valentino, F., 2020. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Water Research 170. https://doi.org/10.1016/j.watres.2019.115371spa
dc.relation.referencesMorgan-Sagastume, F., Heimersson, S., Laera, G., Werker, A., Svanström, M., 2016. Techno-environmental assessment of integrating polyhydroxyalkanoate (PHA) production with services of municipal wastewater treatment. Journal of Cleaner Production 137, 1368–1381. https://doi.org/10.1016/j.jclepro.2016.08.008spa
dc.relation.referencesMorgan-Sagastume, F., Hjort, M., Cirne, D., Gérardin, F., Lacroix, S., Gaval, G., Karabegovic, L., Alexandersson, T., Johansson, P., Karlsson, A., Bengtsson, S., Arcos-Hernández, M.V., Magnusson, P., Werker, A., 2015. Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresource Technology 181, 78–89. https://doi.org/10.1016/j.biortech.2015.01.046spa
dc.relation.referencesMorgan-Sagastume, F., Valentino, F., Hjort, M., Cirne, D., Karabegovic, L., Gerardin, F., Johansson, P., Karlsson, A., Magnusson, P., Alexandersson, T., Bengtsson, S., Majone, M., Werker, A., 2014. Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment. Water Sci Technol 69, 177–184. https://doi.org/10.2166/wst.2013.643spa
dc.relation.referencesMosquera, J., Rangel, C., Thomas, J., Santis, A., Acevedo, P., Cabeza, I., 2021. Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence. Processes 9, 1875. https://doi.org/10.3390/pr9111875spa
dc.relation.referencesMuneer, F., Rasul, I., Azeem, F., Siddique, M.H., Zubair, M., Nadeem, H., 2020. Microbial Polyhydroxyalkanoates (PHAs): Efficient Replacement of Synthetic Polymers. J Polym Environ 28, 2301–2323. https://doi.org/10.1007/s10924-020-01772-1spa
dc.relation.referencesMuralikrishna, I.V., Manickam, V., 2017. Chapter Five - Life Cycle Assessment, in: Muralikrishna, I.V., Manickam, V. (Eds.), Environmental Management. Butterworth-Heinemann, pp. 57–75. https://doi.org/10.1016/B978-0-12-811989-1.00005-1spa
dc.relation.referencesNguyenhuynh, T., Yoon, L.W., Chow, Y.H., Chua, A.S.M., 2021. An insight into enrichment strategies for mixed culture in polyhydroxyalkanoate production: feedstocks, operating conditions and inherent challenges. Chemical Engineering Journal 420, 130488. https://doi.org/10.1016/j.cej.2021.130488spa
dc.relation.referencesNtaikou, I., Valencia Peroni, C., Kourmentza, C., Ilieva, V.I., Morelli, A., Chiellini, E., Lyberatos, G., 2014. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system. Journal of Biotechnology 188, 138–147. https://doi.org/10.1016/j.jbiotec.2014.08.015spa
dc.relation.referencesObeso Rodríguez, J.I., 2017. Síntesis de polihidroxialcanoatos en “Pseudomonas putida”: estudios bioquímicos, genéticos y ultraestructurales = Synthesis of polyhydroxyalkanoates in Pseudomonas putida: biochemical, genetic and ultrastructural studies. https://doi.org/10.18002/10612/6940spa
dc.relation.referencesOspina-Betancourth, C., Echeverri, S., Rodriguez-Gonzalez, C., Wist, J., Combariza, M.Y., Sanabria, J., 2022. Enhancement of PHA Production by a Mixed Microbial Culture Using VFA Obtained from the Fermentation of Wastewater from Yeast Industry. Fermentation 8. https://doi.org/10.3390/fermentation8040180spa
dc.relation.referencesPalmeiro-Sánchez, T., O’Flaherty, V., Lens, P.N.L., 2022. Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. Journal of Biotechnology 348, 10–25. https://doi.org/10.1016/j.jbiotec.2022.03.001spa
dc.relation.referencesPan, C., Ge, L., Lee, P.-H. (Henry), Tan, G.-Y.A., 2020. An Introduction to the Thermodynamics Calculation of PHA Production in Microbes, in: The Handbook of Polyhydroxyalkanoates. CRC Press.spa
dc.relation.referencesPérez, V., Mota, C.R., Muñoz, R., Lebrero, R., 2020. Polyhydroxyalkanoates (PHA) production from biogas in waste treatment facilities: Assessing the potential impacts on economy, environment and society. Chemosphere 255, 126929. https://doi.org/10.1016/j.chemosphere.2020.126929spa
dc.relation.referencesPerez-Zabaleta, M., Atasoy, M., Khatami, K., Eriksson, E., Cetecioglu, Z., 2021. Bio-based conversion of volatile fatty acids from waste streams to polyhydroxyalkanoates using mixed microbial cultures. Bioresource Technology 323, 124604. https://doi.org/10.1016/j.biortech.2020.124604spa
dc.relation.referencesPikaar, I., Guest, J., Ganigué, R., Jensen, P., Rabaey, K., Seviour, T., Trimmer, J., van der Kolk, O., Vaneeckhaute, C., Verstraete, W. (Eds.), 2022. Resource Recovery from Water: Principles and Application. IWA Publishing. https://doi.org/10.2166/9781780409566spa
dc.relation.referencesPranckutė, R., 2021. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 9, 12. https://doi.org/10.3390/publications9010012spa
dc.relation.referencesRamos-Suarez, M., Zhang, Y., Outram, V., 2021. Current perspectives on acidogenic fermentation to produce volatile fatty acids from waste. Rev Environ Sci Biotechnol 20, 439–478. https://doi.org/10.1007/s11157-021-09566-0spa
dc.relation.referencesRangel, C., Sastoque, J., Calderón, J., Gracia, J., Cabeza, I., Villamizar, S., Acevedo, P., 2022. Pilot-Scale Assessment of Biohydrogen and Volatile Fatty Acids Production via Dark Fermentation of Residual Biomass. Chemical Engineering Transactions 92, 61–66. https://doi.org/10.3303/CET2292011spa
dc.relation.referencesRangel, C.J., Hernández, M.A., Mosquera, J.D., Castro, Y., Cabeza, I.O., Acevedo, P.A., 2021. Hydrogen production by dark fermentation process from pig manure, cocoa mucilage, and coffee mucilage. Biomass Conversion and Biorefinery 11, 241–250. https://doi.org/10.1007/s13399-020-00618-zspa
dc.relation.referencesRathna, G. v. n., Gadgil, B.S.T., Killi, N., 2016. Polyhydroxyalkanoates: The Application of Eco-Friendly Materials, in: Biodegradable and Biobased Polymers for Environmental and Biomedical Applications. John Wiley & Sons, Ltd, pp. 25–54. https://doi.org/10.1002/9781119117360.ch2spa
dc.relation.referencesReis, M., Albuquerque, M., Villano, M., Majone, M., 2011. Mixed Culture Processes for Polyhydroxyalkanoate Production from Agro-Industrial Surplus/Wastes as Feedstocks. Comprehensive Biotechnology 6, 669–683. https://doi.org/10.1016/B978-0-08-088504-9.00464-5spa
dc.relation.referencesRosmalina, R.T., Widyarani, Hamidah, U., Sintawardani, N., 2020. Determination of volatile fatty acids in tofu wastewater by capillary gas chromatography with flame ionization detection: A Comparison of extraction methods. Presented at the IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/483/1/012038spa
dc.relation.referencesRossi, E., Pecorini, I., Panico, A., Iannelli, R., 2022. Impact of reactor configuration and relative operating conditions on volatile fatty acids production from organic waste. Environmental Technology Reviews 11, 156–186. https://doi.org/10.1080/21622515.2022.2139641spa
dc.relation.referencesRudnik, E., 2013. 13 - Compostable Polymer Properties and Packaging Applications, in: Ebnesajjad, S. (Ed.), Plastic Films in Food Packaging, Plastics Design Library. William Andrew Publishing, Oxford, pp. 217–248. https://doi.org/10.1016/B978-1-4557-3112-1.00013-2spa
dc.relation.referencesSaavedra del Oso, M., Mauricio-Iglesias, M., Hospido, A., 2021. Evaluation and optimization of the environmental performance of PHA downstream processing. Chemical Engineering Journal 412, 127687. https://doi.org/10.1016/j.cej.2020.127687spa
dc.relation.referencesSaavedra del Oso, M., Mauricio-Iglesias, M., Hospido, A., Steubing, B., 2023. Prospective LCA to provide environmental guidance for developing waste-to-PHA biorefineries. Journal of Cleaner Production 383, 135331. https://doi.org/10.1016/j.jclepro.2022.135331spa
dc.relation.referencesSabapathy, P.C., Devaraj, S., Meixner, K., Anburajan, P., Kathirvel, P., Ravikumar, Y., Zabed, H.M., Qi, X., 2020. Recent developments in Polyhydroxyalkanoates (PHAs) production – A review. Bioresource Technology 306, 123132. https://doi.org/10.1016/j.biortech.2020.123132spa
dc.relation.referencesSabra, W., Zeng, A.-P., 2014. Mixed microbial cultures for industrial biotechnology: Success, chance, and challenges, in: Industrial Biocatalysis. pp. 205–238.spa
dc.relation.referencesSamani, P., 2023. Synergies and gaps between circularity assessment and Life Cycle Assessment (LCA). Science of The Total Environment 903, 166611. https://doi.org/10.1016/j.scitotenv.2023.166611spa
dc.relation.referencesSarkar, O., Katakojwala, R., Venkata Mohan, S., 2021. Low carbon hydrogen production from a waste-based biorefinery system and environmental sustainability assessment. Green Chemistry 23, 561–574. https://doi.org/10.1039/d0gc03063espa
dc.relation.referencesSd, H., C, G., Ml, F., Sd, G., Tc, F., Te, S., 2015. Volatile fatty acids production from anaerobic treatment of cassava waste water: effect of temperature and alkalinity. Environmental technology 36. https://doi.org/10.1080/09593330.2015.1041426spa
dc.relation.referencesSerafim, L.S., Pereira, J., Lemos, P.C., 2020. Polyhydroxyalkanoates by Mixed Microbial Cultures: The Journey So Far and Challenges Ahead, in: The Handbook of Polyhydroxyalkanoates. CRC Press.spa
dc.relation.referencesSevella, B., Bertalan, G., 2000. Development of a MATLAB based bioprocess simulation tool. Bioprocess Engineering 23, 621–626. https://doi.org/10.1007/s004490000211spa
dc.relation.referencesShen, M., Huang, W., Chen, M., Song, B., Zeng, G., Zhang, Y., 2020. (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. Journal of Cleaner Production 254, 120138. https://doi.org/10.1016/j.jclepro.2020.120138spa
dc.relation.referencesSilva, F., Matos, M., Pereira, B., Ralo, C., Pequito, D., Marques, N., Carvalho, G., Reis, M.A.M., 2022. An integrated process for mixed culture production of 3-hydroxyhexanoate-rich polyhydroxyalkanoates from fruit waste. Chemical Engineering Journal 427, 131908. https://doi.org/10.1016/j.cej.2021.131908spa
dc.relation.referencesSteinbüchel, A., Lütke-Eversloh, T., 2003. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochemical Engineering Journal, Biopolymers 16, 81–96. https://doi.org/10.1016/S1369-703X(03)00036-6spa
dc.relation.referencesSteinbüchel, A., Valentin, H.E., 1995. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiology Letters 128, 219–228. https://doi.org/10.1111/j.1574-6968.1995.tb07528.xspa
dc.relation.referencesSzacherska, K., Oleskowicz-Popiel, P., Ciesielski, S., Mozejko-Ciesielska, J., 2021. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production. Polymers 13, 321. https://doi.org/10.3390/polym13030321spa
dc.relation.referencesTayou, L.N., Lauri, R., Incocciati, E., Pietrangeli, B., Majone, M., Micolucci, F., Gottardo, M., Valentino, F., 2022. Acidogenic fermentation of food waste and sewage sludge mixture: Effect of operating parameters on process performance and safety aspects. Process Safety and Environmental Protection 163, 158–166. https://doi.org/10.1016/j.psep.2022.05.011spa
dc.relation.referencesThomassen, G., Dael, M.V., Passel, S.V., You, F., 2019. How to assess the potential of emerging green technologies? Towards a prospective environmental and techno-economic assessment framework. Green Chem. 21, 4868–4886. https://doi.org/10.1039/C9GC02223Fspa
dc.relation.referencesThonemann, N., Schulte, A., Maga, D., 2020. How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance. Sustainability 12, 1192. https://doi.org/10.3390/su12031192spa
dc.relation.referencesUnidad Administrativa Especial de Servicios Públicos, 2020. Plan de Gestión Integral de Residuos Sólidos.spa
dc.relation.referencesValentino, F., Brusca, A.A., Beccari, M., Nuzzo, A., Zanaroli, G., Majone, M., 2013. Start up of biological sequencing batch reactor (SBR) and short-term biomass acclimation for polyhydroxyalkanoates production. Journal of Chemical Technology and Biotechnology 88, 261–270. https://doi.org/10.1002/jctb.3824spa
dc.relation.referencesValentino, F., Gottardo, M., Micolucci, F., Pavan, P., Bolzonella, D., Rossetti, S., Majone, M., 2018. Organic Fraction of Municipal Solid Waste Recovery by Conversion into Added-Value Polyhydroxyalkanoates and Biogas. ACS Sustainable Chemistry and Engineering 6, 16375–16385. https://doi.org/10.1021/acssuschemeng.8b03454spa
dc.relation.referencesValentino, F., Karabegovic, L., Majone, M., Morgan-Sagastume, F., Werker, A., 2015. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels. Water Research 77, 49–63. https://doi.org/10.1016/j.watres.2015.03.016spa
dc.relation.referencesValentino, F., Moretto, G., Gottardo, M., Pavan, P., Bolzonella, D., Majone, M., 2019a. Novel routes for urban bio-waste management: A combined acidic fermentation and anaerobic digestion process for platform chemicals and biogas production. Journal of Cleaner Production 220, 368–375. https://doi.org/10.1016/j.jclepro.2019.02.102spa
dc.relation.referencesValentino, F., Moretto, G., Lorini, L., Bolzonella, D., Pavan, P., Majone, M., 2019b. Pilot-Scale Polyhydroxyalkanoate Production from Combined Treatment of Organic Fraction of Municipal Solid Waste and Sewage Sludge. Ind. Eng. Chem. Res. 58, 12149–12158. https://doi.org/10.1021/acs.iecr.9b01831spa
dc.relation.referencesValentino, F., Munarin, G., Biasiolo, M., Cavinato, C., Bolzonella, D., Pavan, P., 2021. Enhancing volatile fatty acids (VFA) production from food waste in a two-phases pilot-scale anaerobic digestion process. Journal of Environmental Chemical Engineering 9, 106062. https://doi.org/10.1016/j.jece.2021.106062spa
dc.relation.referencesValentino, F., Villano, M., Lorini, L., Majone, M., 2020. PHA Production by Mixed Microbial Cultures and Organic Waste of Urban Origin: Pilot Scale Evidence, in: The Handbook of Polyhydroxyalkanoates. CRC Press.spa
dc.relation.referencesVarghese, V.K., Poddar, B.J., Shah, M.P., Purohit, H.J., Khardenavis, A.A., 2022. A comprehensive review on current status and future perspectives of microbial volatile fatty acids production as platform chemicals. Science of The Total Environment 815, 152500. https://doi.org/10.1016/j.scitotenv.2021.152500spa
dc.relation.referencesVea, E.B., Fabbri, S., Spierling, S., Owsianiak, M., 2021. Inclusion of multiple climate tipping as a new impact category in life cycle assessment of polyhydroxyalkanoate (PHA)-based plastics. Science of The Total Environment 788, 147544. https://doi.org/10.1016/j.scitotenv.2021.147544spa
dc.relation.referencesVeeken, A., Hamelers, B., 1999. Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology 69, 249–254. https://doi.org/10.1016/S0960-8524(98)00188-6spa
dc.relation.referencesVogli, L., Macrelli, S., Marazza, D., Galletti, P., Torri, C., Samorì, C., Righi, S., 2020. Life Cycle Assessment and Energy Balance of a Novel Polyhydroxyalkanoates Production Process with Mixed Microbial Cultures Fed on Pyrolytic Products of Wastewater Treatment Sludge. Energies 13, 2706. https://doi.org/10.3390/en13112706spa
dc.relation.referencesWerker, A., Bengtsson, S., Johansson, P., Magnusson, P., Gustafsson, E., Hjort, M., Anterrieu, S., Karabegovic, L., Alexandersson, T., Karlsson, A., 2020. Production Quality Control of Mixed Culture Poly(3-Hydroxbutyrate-co-3-Hydroxyvalerate) Blends Using Full-Scale Municipal Activated Sludge and Non-Chlorinated Solvent Extraction, in: The Handbook of Polyhydroxyalkanoates. CRC Press.spa
dc.relation.referencesWerker, A., Bengtsson, S., Korving, L., Hjort, M., Anterrieu, S., Alexandersson, T., Johansson, P., Karlsson, A., Karabegovic, L., Magnusson, P., Morgan-Sagastume, F., Sijstermans, L., Tietema, M., Visser, C., Wypkema, E., van der Kooij, Y., Deeke, A., Uijterlinde, C., 2018. Consistent production of high quality PHA using activated sludge harvested from full scale municipal wastewater treatment - PHARIO. Water Sci Technol 78, 2256–2269. https://doi.org/10.2166/wst.2018.502spa
dc.relation.referencesWerker, A., Lorini, L., Villano, M., Valentino, F., Majone, M., 2022. Modelling Mixed Microbial Culture Polyhydroxyalkanoate Accumulation Bioprocess towards Novel Methods for Polymer Production Using Dilute Volatile Fatty Acid Rich Feedstocks. Bioengineering 9, 125. https://doi.org/10.3390/bioengineering9030125spa
dc.relation.referencesXiong, H., Chen, J., Wang, H., Shi, H., 2012. Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids. Bioresource Technology 119, 285–292. https://doi.org/10.1016/j.biortech.2012.05.126spa
dc.relation.referencesYuan, Y., Hu, X., Chen, H., Zhou, Yaoyu, Zhou, Yefeng, Wang, D., 2019. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Science of The Total Environment 694, 133741. https://doi.org/10.1016/j.scitotenv.2019.133741spa
dc.relation.referencesZhang, P., Chen, Y., Zhou, Q., 2009. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH. Water Research 43, 3735–3742. https://doi.org/10.1016/j.watres.2009.05.036spa
dc.relation.referencesZhou, Y., Takaoka, M., Wang, W., Liu, X., Oshita, K., 2013. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China. J Biosci Bioeng 116, 101–105. https://doi.org/10.1016/j.jbiosc.2013.01.014spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembCULTIVOS MIXTOSspa
dc.subject.lembCompanion cropseng
dc.subject.lembSUELOS ENCAPSULADOSspa
dc.subject.lembPotting soilseng
dc.subject.lembPLANTAS PARA TRATAMIENTO DE RESIDUOSspa
dc.subject.lembWaste treatment plantseng
dc.subject.lembEQUIPOS DE TRATAMIENTO DEL AGUAspa
dc.subject.lembWater treatment equipmenteng
dc.subject.lembTECNOLOGIA AMBIENTALspa
dc.subject.lembEnvironmental technologyeng
dc.subject.proposalPolyhydroxyalkanoateseng
dc.subject.proposalVolatile fatty acidseng
dc.subject.proposalLife cycle assessmenteng
dc.subject.proposalBioprocesses simulationeng
dc.subject.proposalPolihidroxialcanoatosspa
dc.subject.proposalÁcidos grasos volátilesspa
dc.subject.proposalAnálisis de ciclo de vidaspa
dc.subject.proposalSimulación de bioprocesosspa
dc.titleTechnical-environmental assessment of the potential of polyhydroxyalkanoates production from mixed microbial cultures and waste feedstockseng
dc.title.translatedEvaluación técnico-ambiental del potencial de producción de polihidroxialcanoatos PHA a partir de cultivos microbianos mixtos y sustratos de origen residualspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018476626.2024.pdf
Tamaño:
2.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Licencia_Jhessica Mosquera_2024.pdf
Tamaño:
273.33 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia de publicación con embargo