A system approach to support a methodology for the design of formulated cosmetic products in the context of companies

dc.contributor.advisorNarváez Rincón, Paulo César
dc.contributor.advisorBoly, Vincent
dc.contributor.advisorFalk, Véronique
dc.contributor.advisorSerna Rodas, Juliana
dc.contributor.authorRivera Gil, Jose Luis
dc.contributor.orcidhttps://orcid.org/0000-0001-6237-8736spa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2023-02-10T19:11:27Z
dc.date.available2023-02-10T19:11:27Z
dc.date.issued2022-12-14
dc.descriptionilustracionesspa
dc.description.abstractManaging a new chemical product design and development project is a complex task at different levels. In addition to the technical challenges of the formulation and the definition of process conditions, design teams should also consider the requirements of the organization where the product design is performed. Therefore, the organizational dimension and its importance in chemical product design are explored in this research. Through a bibliometric literature review, it was found that chemical product design methodologies integrating the organizational context have not been thoroughly analyzed and are highly required. In this research, through a systemic analysis based on information collected in semi-structured interviews with design experts of the cosmetic sector, the characteristics of the organizational context and its effects on the product design process of that sector were studied. Additionally, information captured during those interviews was formalized in an expert knowledge base of recommendations to support the cosmetic product design process. A tool to adapt those recommendations to the design process of specific companies was proposed. The tool is applied through collaborative workshops which enable the active participation of the design team in the evaluation of the design process in order to select and implement the most suitable recommendations. Finally, the tool is applied in a real organization showing how it can be used to evaluate and improve a real design process. In that case it was found that the tool proposes adapted improvement solutions aligned to the company's value concepts, where the design team has the role of evaluator and builder of its own design methodology. (Texto tomado de la fuente)eng
dc.description.abstractGestionar un proyecto de diseño y desarrollo de un nuevo producto químico es una tarea compleja a diferentes niveles. Además de los retos técnicos de la formulación y la definición de las condiciones del proceso, los equipos de diseño también deben tener en cuenta los requisitos de la organización donde se realiza el diseño del producto. Por lo tanto, en esta investigación se explora la dimensión organizativa y su importancia en el diseño de productos químicos. A través de una revisión bibliográfica, se encontró que las metodologías de diseño de productos químicos que integran el contexto organizacional no han sido analizadas a fondo y son altamente requeridas. En esta investigación, a través de un análisis sistémico basado en la información recopilada en entrevistas semiestructuradas con expertos en diseño del sector cosmético, se estudiaron las características del contexto organizacional y sus efectos en el proceso de diseño de productos de dicho sector. Además, la información capturada durante dichas entrevistas se formalizó en una base de conocimiento experto de recomendaciones para apoyar el proceso de diseño de productos cosméticos. Se propuso una herramienta para adaptar esas recomendaciones al proceso de diseño de empresas específicas. La herramienta se aplica a través de talleres colaborativos que permiten la participación activa del equipo de diseño en la evaluación del proceso de diseño para seleccionar e implementar las recomendaciones más adecuadas. Por último, la herramienta se aplica en una organización real mostrando cómo puede utilizarse para evaluar y mejorar un proceso de diseño real. En ese caso se comprobó que la herramienta propone soluciones de mejora adaptadas y alineadas con los conceptos de valor de la empresa, donde el equipo de diseño tiene el papel de evaluador y constructor de su propia metodología de diseño.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.format.extentxvii, 133 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83421
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisherUniversité de Lorrainespa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAbdul Rahim, Z., Lim Sing Sheng, I., & Nooh, A. B. (2015). TRIZ methodology for applied chemical engineering: A case study of new product development. Chemical Engineering Research and Design, 103, 11–24. https://doi.org/10.1016/j.cherd.2015.08.027spa
dc.relation.referencesAbildskov, J., & Kontogeorgis, G. M. (2004). Chemical Product Design: A new challenge of applied thermodynamics. Chemical Engineering Research and Design, 82(11), 1505–1510. https://doi.org/10.1205/cerd.82.11.1505.52036spa
dc.relation.referencesAbildskov, Jens, & O’Connell, J. P. (2011). Molecular Thermodynamic Modeling and Design of Microencapsulation Systems for Drug Delivery. Journal of Chemical & Engineering Data, 56(4), 1229–1237. https://doi.org/10.1021/je1011218spa
dc.relation.referencesAlshehri, A. S., Gani, R., & You, F. (2020). Deep learning and knowledge-based methods for computer-aided molecular design—toward a unified approach: State-of-the-art and future directions. Computers & Chemical Engineering, 141, 107005. https://doi.org/10.1016/j.compchemeng.2020.107005spa
dc.relation.referencesAlvarez, O. (2017). Integrating creativity in the design of chemical products. 2017 Research in Engineering Education Symposium, REES 2017, Armstrong 2006, 1–9.spa
dc.relation.referencesAndo, S. (2020). METHOD FOR PROVIDING COSMETIC PRODUCT CUSTOMIZED FOR CUSTOMER (Patent No. WO/2020/194365). https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2020194365&tab=PCTBIBLIO&_cid=P22-KI778W-46975-1spa
dc.relation.referencesAriffin Kashinath, S. A., Abdul Manan, Z., Hashim, H., & Wan Alwi, S. R. (2012). Design of green diesel from biofuels using computer aided technique. Computers & Chemical Engineering, 41, 88–92. https://doi.org/10.1016/j.compchemeng.2012.03.006spa
dc.relation.referencesArrieta-Escobar, J. A., Bernardo, F. P., Orjuela, A., Camargo, M., & Morel, L. (2019). Incorporation of heuristic knowledge in the optimal design of formulated products: Application to a cosmetic emulsion. Computers and Chemical Engineering, 122, 265–274. https://doi.org/10.1016/j.compchemeng.2018.08.032spa
dc.relation.referencesArrieta-Escobar, J. A., Camargo, M., Morel, L., & Orjuela, A. (2020). Current approaches on chemical product design: A study of opportunities identification for integrated methodologies. Towards the Digital World and Industry X.0 - Proceedings of the 29th International Conference of the International Association for Management of Technology, IAMOT 2020, 785–794.spa
dc.relation.referencesAustin, N. D., Sahinidis, N. V., & Trahan, D. W. (2016). Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques. Chemical Engineering Research and Design, 116, 2–26. https://doi.org/10.1016/j.cherd.2016.10.014spa
dc.relation.referencesAustin, N. D., Samudra, A. P., Sahinidis, N. V., & Trahan, D. W. (2016). Mixture design using derivative-free optimization in the space of individual component properties. AIChE Journal, 62(5), 1514–1530. https://doi.org/10.1002/aic.15142spa
dc.relation.referencesAzmin, S. N., Yunus, N. A., Mustaffa, A. A., Wan Alwi, S. R., & Chua, L. S. (2015). A framework for solvent selection based on herbal extraction process design. Journal of Engineering Science and Technology, 10(October 2017), 25–34.spa
dc.relation.referencesBagajewicz, M., Hill, S., Robben, A., Lopez, H., Sanders, M., Sposato, E., Baade, C., Manora, S., & Hey Coradin, J. (2011). Product design in price-competitive markets: A case study of a skin moisturizing lotion. AIChE Journal, 57(1), 160–177. https://doi.org/10.1002/aic.12242spa
dc.relation.referencesBagajewicz, M. J. (2007). On the role of microeconomics, planning, and finances in product design. AIChE Journal, 53(12), 3155–3170. https://doi.org/10.1002/aic.11332spa
dc.relation.referencesBardow, A., Steur, K., & Gross, J. (2010). Continuous-Molecular Targeting for Integrated Solvent and Process Design. Industrial & Engineering Chemistry Research, 49(6), 2834–2840. https://doi.org/10.1021/ie901281wspa
dc.relation.referencesBergez-Lacoste, M., Thiebaud-Roux, S., De Caro, P., Fabre, J.-F., Gerbaud, V., & Mouloungui, Z. (2014). From chemical platform molecules to new biosolvents: Design engineering as a substitution methodology. Biofuels, Bioproducts and Biorefining, 8(3), 438–451. https://doi.org/10.1002/bbb.1480spa
dc.relation.referencesBernardo, F. P., & Saraiva, P. M. (2004). Value of information analysis in product/process design (pp. 151–156). https://doi.org/10.1016/S1570-7946(04)80091-9spa
dc.relation.referencesBernardo, F. P., & Saraiva, P. M. (2005). Integrated process and product design optimization: a cosmetic emulsion application. Computer Aided Chemical Engineering, 20(C), 1507–1512. https://doi.org/10.1016/S1570-7946(05)80093-8spa
dc.relation.referencesBernardo, F. P., & Saraiva, P. M. (2015). A conceptual model for chemical product design. AIChE Journal, 61(3), 802–815. https://doi.org/10.1002/aic.14681spa
dc.relation.referencesBoly, V., Camargo-Pardo, M., & Morel, L. (2016). Ingénierie de l’innovation (H. Lavoisier (ed.); 3e édition). Lavoisier, Hermès.spa
dc.relation.referencesBongers, P. M. M., & Almeida-Rivera, C. (2009). Product Driven Process Synthesis Methodology. In Computer Aided Chemical Engineering (Vol. 26). Elsevier B.V. https://doi.org/10.1016/S1570-7946(09)70039-2spa
dc.relation.referencesBosschaert, T. (2019). Symbiosis in development Making new futures possible.spa
dc.relation.referencesBrem, A., Maier, M., & Wimschneider, C. (2016). Competitive advantage through innovation: the case of Nespresso. European Journal of Innovation Management, 19(1), 133–148. https://doi.org/10.1108/EJIM-05-2014-0055spa
dc.relation.referencesBrunet, E. (2019). La boîte à outils du design thinking. In Dunod (Ed.), La boîte à outils du design thinking : 67 outils clés en main + 4 vidéos d’approfondissement. Dunod.spa
dc.relation.referencesCardona Jaramillo, J. E. C., Achenie, L. E., Álvarez, O. A., Carrillo Bautista, M. P., & González Barrios, A. F. (2020). The multiscale approach t o the design of bio-based emulsions. In Current Opinion in Chemical Engineering (Vol. 27, pp. 65–71). https://doi.org/10.1016/j.coche.2019.11.008spa
dc.relation.referencesCEFIC. (2022). 2022 Facts and figures of the European chemical industry. https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/profile/spa
dc.relation.referencesChai, S., Liu, Q., Liang, X., Guo, Y., Zhang, S., Xu, C., Du, J., Yuan, Z., Zhang, L., & Gani, R. (2020). A grand product design model for crystallization solvent design. Computers & Chemical Engineering, 135, 106764. https://doi.org/10.1016/j.compchemeng.2020.106764spa
dc.relation.referencesChan, T. H., Mihm, J., & Sosa, M. E. (2018). On styles in product design: An analysis of U.S. Design patents. Management Science, 64(3), 1230–1249. https://doi.org/10.1287/mnsc.2016.2653spa
dc.relation.referencesChan, Y. C., Fung, K. Y., & Ng, K. M. (2018). Product design: A pricing framework accounting for product quality and consumer awareness. AIChE Journal, 64(7), 2462–2471. https://doi.org/10.1002/aic.16153spa
dc.relation.referencesChandrasegaran, S. K., Ramani, K., Sriram, R. D., Horváth, I., Bernard, A., Harik, R. F., & Gao, W. (2013). The evolution, challenges, and future of knowledge representation in product design systems. CAD Computer Aided Design, 45(2), 204–228. https://doi.org/10.1016/j.cad.2012.08.006spa
dc.relation.referencesChang, S. S. L., Kong, Y. L., Lim, W. X., Ooi, J., Ng, D. K. S., & Chemmangattuvalappil, N. G. (2018). Design of alternate solvent for recovery of residual palm oil: simultaneous optimization of process performance with environmental, health and safety aspects. Clean Technologies and Environmental Policy, 20(5), 949–968. https://doi.org/10.1007/s10098-018-1515-5spa
dc.relation.referencesChavy-Macdonald, M. A., Oizumi, K., & Aoyama, K. (2019). Towards a generalized system dynamics model for product design & adoption. Advances in Transdisciplinary Engineering, 10(July), 455–464. https://doi.org/10.3233/ATDE190152spa
dc.relation.referencesChemmangattuvalappil, N. G., & Eden, M. R. (2013). A Novel Methodology for Property-Based Molecular Design Using Multiple Topological Indices. Industrial & Engineering Chemistry Research, 52(22), 7090–7103. https://doi.org/10.1021/ie302516vspa
dc.relation.referencesCheng, K. C., Khoo, Z. S., Lo, N. W., Tan, W. J., & Chemmangattuvalappil, N. G. (2020). Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants. Heliyon, 6(5), e03861. https://doi.org/10.1016/j.heliyon.2020.e03861spa
dc.relation.referencesCheng, Yuen S., Lam, K. W., Ng, K. M., Ko, R. K. M., & Wibowo, C. (2009). An integrative approach to product development—A skin-care cream. Computers & Chemical Engineering, 33(5), 1097–1113. https://doi.org/10.1016/j.compchemeng.2008.10.010spa
dc.relation.referencesCheng, Yuen S., Ng, K. M., & Wibowo, C. (2010). Product Design: a Transdermal Patch Containing a Traditional Chinese Medicinal Tincture. Industrial & Engineering Chemistry Research, 49(10), 4904–4913. https://doi.org/10.1021/ie901554sspa
dc.relation.referencesCheng, Yuen Shan, Fung, K. Y., Ng, K. M., & Wibowo, C. (2016). Economic analysis in product design - A case study of a TCM dietary supplement. Chinese Journal of Chemical Engineering, 24(1), 202–214. https://doi.org/10.1016/j.cjche.2015.06.014spa
dc.relation.referencesCholakov, G. S. (2011). Towards computer aided design of fuels and lubricants. Journal of the University of Chemical Technology and Metallurgy, 46(3), 217–236.spa
dc.relation.referencesChong, F. K., Eljack, F. T., Atilhan, M., Foo, D. C. Y., & Chemmangattuvalappil, N. G. (2016). A systematic visual methodology to design ionic liquids and ionic liquid mixtures: Green solvent alternative for carbon capture. Computers & Chemical Engineering, 91, 219–232. https://doi.org/10.1016/j.compchemeng.2016.04.006spa
dc.relation.referencesChong, F. K., Foo, D. C. Y., Eljack, F. T., Atilhan, M., & Chemmangattuvalappil, N. G. (2015). Ionic liquid design for enhanced carbon dioxide capture by computer-aided molecular design approach. Clean Technologies and Environmental Policy, 17(5), 1301–1312. https://doi.org/10.1007/s10098-015-0938-5spa
dc.relation.referencesChong, F. K., Foo, D. C. Y., Eljack, F. T., Atilhan, M., & Chemmangattuvalappil, N. G. (2016). A systematic approach to design task-specific ionic liquids and their optimal operating conditions. Molecular Systems Design & Engineering, 1(1), 109–121. https://doi.org/10.1039/C5ME00013Kspa
dc.relation.referencesCignitti, S., Mansouri, S. S., Woodley, J. M., & Abildskov, J. (2018). Systematic Optimization-Based Integrated Chemical Product–Process Design Framework. Industrial & Engineering Chemistry Research, acs.iecr.7b04216. https://doi.org/10.1021/acs.iecr.7b04216spa
dc.relation.referencesCisternas, L. A. (2006). Nature of Chemical Products. In Ka Ming Ng, R. Gani, & K. Dam-johansen (Eds.), Chemical Product Design: Towards a Perspective through Case Studies (First Edit, p. 459). Elsevier Science.spa
dc.relation.referencesConte, E., Gani, R., Cheng, Y. S. Y. S., & Ng, K. M. K. M. (2012). Design of formulated products: Experimental component. AIChE Journal, 58(1), 173–189. https://doi.org/10.1002/aic.12582spa
dc.relation.referencesConte, E., Gani, R., & Malik, T. I. (2011). The virtual Product-Process Design laboratory to manage the complexity in the verification of formulated products. Fluid Phase Equilibria, 302(1–2), 294–304. https://doi.org/10.1016/j.fluid.2010.09.031spa
dc.relation.referencesConte, E., Gani, R., & Ng, K. M. (2011). Design of Formulated Products: A Systematic Methodology. AIChE Journal, 57(9), 2431–2449. https://doi.org/10.1002/aic.12458spa
dc.relation.referencesConte, E., Morales-Rodriguez, R., & Gani, R. (2009a). The Virtual Product-Process Design Laboratory as a Tool for Product Development (pp. 249–254). https://doi.org/10.1016/S1570-7946(09)70042-2spa
dc.relation.referencesConte, E., Morales-Rodriguez, R., & Gani, R. (2009b). The Virtual Product-Process Design Laboratory for Design and Analysis of Formulations (pp. 825–830). https://doi.org/10.1016/S1570-7946(09)70358-Xspa
dc.relation.referencesCooper, R. G. (2019). The drivers of success in new-product development. Industrial Marketing Management, 76(January 2018), 36–47. https://doi.org/10.1016/j.indmarman.2018.07.005spa
dc.relation.referencesCosta, R., Elliott, P., Saraiva, P. M., Aldridge, D., & Moggridge, G. D. (2008). Development of Sustainable Solutions for Zebra Mussel Control Through Chemical Product Engineering. Chinese Journal of Chemical Engineering, 16(3), 435–440. https://doi.org/10.1016/S1004-9541(08)60101-9spa
dc.relation.referencesCosta, R., Moggridge, G. D., & Saraiva, P. M. (2006). Chemical product engineering: An emerging paradigm within chemical engineering. AIChE Journal, 52(6), 1976–1986. https://doi.org/10.1002/aic.10880spa
dc.relation.referencesCussler, E. L., & Moggridge, G. D. (2011). Chemical product design. In Chemical Product Design, Second Edition (Second, Vol. 9780521168). https://doi.org/10.1017/CBO9781139035132spa
dc.relation.referencesDahmen, M., & Marquardt, W. (2016). Model-Based Design of Tailor-Made Biofuels. Energy & Fuels, 30(2), 1109–1134. https://doi.org/10.1021/acs.energyfuels.5b02674spa
dc.relation.referencesDahmen, M., & Marquardt, W. (2017). Model-Based Formulation of Biofuel Blends by Simultaneous Product and Pathway Design. Energy & Fuels, 31(4), 4096–4121. https://doi.org/10.1021/acs.energyfuels.7b00118spa
dc.relation.referencesDerkyi, N. S. A., Acheampong, M. A., Mwin, E. N., Tetteh, P., & Aidoo, S. C. (2018). Product design for a functional non-alcoholic drink. South African Journal of Chemical Engineering, 25, 85–90. https://doi.org/10.1016/j.sajce.2018.02.002spa
dc.relation.referencesDori, D., & Shpitalni, M. (2005). Mapping knowledge about product lifecycle engineering for ontology construction via object-process methodology. CIRP Annals - Manufacturing Technology, 54(1), 117–122. https://doi.org/10.1016/S0007-8506(07)60063-8spa
dc.relation.referencesElias, E., & Chaumon, M.-E. B. (2022). Les objets intermédiaires de conception comme instruments de l’activité : quels apports dans une démarche de conception inclusive et participative de technologies ambiantes à destination des personnes fragilisées ? Activites, 19–1. https://doi.org/10.4000/activites.7295spa
dc.relation.referencesEwoldt, R. H. (2014). Extremely Soft: Design with Rheologically Complex Fluids. Soft Robotics, 1(1), 12–20. https://doi.org/10.1089/soro.2013.1508spa
dc.relation.referencesFatoni, R., Elkamel, A., Simon, L., & Almansoori, A. (2015). A computer-aided framework for product design with application to wheat straw polypropylene composites. The Canadian Journal of Chemical Engineering, 93(12), 2141–2149. https://doi.org/10.1002/cjce.22346spa
dc.relation.referencesFeng, T.-J., Ma, L.-T., Ding, X.-Q., Yang, N., & Xiao, X. (2008). Intelligent techniques for cigarette formula design. Mathematics and Computers in Simulation, 77(5–6), 476–486. https://doi.org/10.1016/j.matcom.2007.11.025spa
dc.relation.referencesTowards satisfying performance of an O/W cosmetic emulsion: screening of reformulation factors on textural and rheological properties using general experimental design. International Journal ofspa
dc.relation.referencesFilipovic, M., Lukic, M., Djordjevic, S., Krstonosic, V., Pantelic, I., Vuleta, G., & Savic, S. (2017). Cosmetic Science, 39(5), 486–499. https://doi.org/10.1111/ics.12402spa
dc.relation.referencesFrenkel, M. (2011). Thermophysical and thermochemical properties on-demand for chemical process and product design. Computers & Chemical Engineering, 35(3), 393–402. https://doi.org/10.1016/j.compchemeng.2010.12.013spa
dc.relation.referencesFrutiger, J., Cignitti, S., Abildskov, J., Woodley, J. M., & Sin, G. (2019). Computer-aided molecular product-process design under property uncertainties – A Monte Carlo based optimization strategy. Computers & Chemical Engineering, 122, 247–257. https://doi.org/10.1016/j.compchemeng.2018.08.021spa
dc.relation.referencesFrutiger, J., Cignitti, S., Abildskov, J., Woodley, J., & Sin, G. (2017). Computational working fluid design under property uncertainties: Application to organic rankine cycle. 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2017.spa
dc.relation.referencesFung, K. Y., & Ng, K. M. (2003). Product-centered processing: Pharmaceutical tablets and capsules. AIChE Journal, 49(5), 1193–1215. https://doi.org/10.1002/aic.690490512spa
dc.relation.referencesFung, K. Y., Ng, K. M., Zhang, L., & Gani, R. (2016). A grand model for chemical product design. Computers & Chemical Engineering, 91, 15–27. https://doi.org/10.1016/j.compchemeng.2016.03.009spa
dc.relation.referencesGani, R., & Ng, K. M. (2015). Product design - Molecules, devices, functional products, and formulated products. Computers and Chemical Engineering, 81, 70–79. https://doi.org/10.1016/j.compchemeng.2015.04.013spa
dc.relation.referencesGertig, C., Leonhard, K., & Bardow, A. (2020). Computer-aided molecular and processes design based on quantum chemistry: current status and future prospects. In Current Opinion in Chemical Engineering (Vol. 27, pp. 89–97). https://doi.org/10.1016/j.coche.2019.11.007spa
dc.relation.referencesGong, H., Ding, X., & Ma, L. (2006). Genetic algorithm for optimization of tobacco-group formulas design. The Proceedings of the Multiconference on “Computational Engineering in Systems Applications,” 1532–1536. https://doi.org/10.1109/CESA.2006.313558spa
dc.relation.referencesGoodwin, K. (2009). Designing for the Digital Age - How to Create Human-Centered Products and Services. 739. https://books.google.fr/books?hl=es&lr=&id=yH6Aqr5zKJEC&oi=fnd&pg=PR23&dq=The+organizational+context+for+product+design+involves+the+interaction+of+multiple+actors+with+different+competencies+and+responsibilities+&ots=IIJB6_Kgmm&sig=b1FIHttXZ34GUUfi4ylqPJspa
dc.relation.referencesGrime, M. M., & Wright, G. (2016). Delphi Method. In Wiley StatsRef: Statistics Reference Online (pp. 1–6). https://doi.org/10.1002/9781118445112.stat07879spa
dc.relation.referencesHada, S., Herring, R. H., & Eden, M. R. (2017). Mixture formulation through multivariate statistical analysis of process data in property cluster space. Computers and Chemical Engineering, 107, 26–36. https://doi.org/10.1016/j.compchemeng.2017.06.017spa
dc.relation.referencesHatchuel, A., & Weil, B. (2003). A new approach of innovative design: An introduction to C-K theory. Proceedings of the International Conference on Engineering Design, ICED, DS 31, 1–15.spa
dc.relation.referencesHeintz, J., Belaud, J.-P., Pandya, N., Teles Dos Santos, M., & Gerbaud, V. (2014). Computer aided product design tool for sustainable product development. Computers & Chemical Engineering, 71, 362–376. https://doi.org/10.1016/j.compchemeng.2014.09.009spa
dc.relation.referencesHeintz, J., Belaud, J. P., & Gerbaud, V. (2014). Chemical enterprise model and decision-making framework for sustainable chemical product design. Computers in Industry, 65(3), 505–520. https://doi.org/10.1016/j.compind.2014.01.010spa
dc.relation.referencesHill, M. (2004). Product and process design for structured products. AIChE Journal, 50(8), 1656–1661. https://doi.org/10.1002/aic.10293spa
dc.relation.referencesHill, M. (2009). Chemical Product Engineering-The third paradigm. Computers and Chemical Engineering, 33(5), 947–953. https://doi.org/10.1016/j.compchemeng.2008.11.013spa
dc.relation.referencesHo, E. N., Fung, K. Y., Wibowo, C., Zhang, X., & Ng, K. M. (2020). Conceptual design of chemical devices. Journal of Advanced Manufacturing and Processing. https://doi.org/10.1002/amp2.10073spa
dc.relation.referencesHolmes, A. M., Charlton, A., Derby, B., Ewart, L., Scott, A., & Shu, W. (2017). Rising to the challenge: applying biofabrication approaches for better drug and chemical product development. Biofabrication, 9(3), 033001. https://doi.org/10.1088/1758-5090/aa7bbdspa
dc.relation.referencesHoussein, E. H., Hosney, M. E., Oliva, D., Mohamed, W. M., & Hassaballah, M. (2020). A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Computers & Chemical Engineering, 133, 106656. https://doi.org/10.1016/j.compchemeng.2019.106656spa
dc.relation.referencesJasimuddin, S. M. (2006). Disciplinary roots of knowledge management: A theoretical review. International Journal of Organizational Analysis, 14(2), 171–180. https://doi.org/10.1108/10553180610742782/FULL/XMLspa
dc.relation.referencesJebb, A. T., Ng, V., & Tay, L. (2021). A Review of Key Likert Scale Development Advances: 1995–2019. Frontiers in Psychology, 12, 1590. https://doi.org/10.3389/FPSYG.2021.637547/BIBTEXspa
dc.relation.referencesJhamb, S., Liang, X., Dam-Johansen, K., & Kontogeorgis, G. M. (2020). A model-based solvent selection and design framework for organic coating formulations. Progress in Organic Coatings, 140, 105471. https://doi.org/10.1016/j.porgcoat.2019.105471spa
dc.relation.referencesJhamb, S., Liang, X., Gani, R., & Kontogeorgis, G. M. (2019). Systematic Model-Based Methodology for Substitution of Hazardous Chemicals. ACS Sustainable Chemistry & Engineering, 7(8), 7652–7666. https://doi.org/10.1021/acssuschemeng.8b06064spa
dc.relation.referencesJonuzaj, S., & Adjiman, C. S. (2017). Designing optimal mixtures using generalized disjunctive programming: Hull relaxations. Chemical Engineering Science, 159, 106–130. https://doi.org/10.1016/j.ces.2016.08.008spa
dc.relation.referencesJonuzaj, S., Akula, P. T., Kleniati, P., & Adjiman, C. S. (2016). The formulation of optimal mixtures with generalized disjunctive programming: A solvent design case study. AIChE Journal, 62(5), 1616–1633. https://doi.org/10.1002/aic.15122spa
dc.relation.referencesJonuzaj, S., Cui, J., & Adjiman, C. S. (2019). Computer-aided design of optimal environmentally benign solvent-based adhesive products. Computers & Chemical Engineering, 130, 106518. https://doi.org/10.1016/j.compchemeng.2019.106518spa
dc.relation.referencesKalakul, S., Zhang, L., Fang, Z., Choudhury, H. A. H. A., Intikhab, S., Elbashir, N., Eden, M. R., & Gani, R. (2018). Computer aided chemical product design – ProCAPD and tailor-made blended products. Computers & Chemical Engineering, 116, 37–55. https://doi.org/10.1016/j.compchemeng.2018.03.029spa
dc.relation.referencesKashinath, S. A. A., Hashim, H., Yunus, N. A., & Mustaffa, A. A. (2018). Design of surfactant for water in diesel emulsion fuel for designing eco-friendly fuel. Chemical Engineering Transactions, 63(2006), 433–438. https://doi.org/10.3303/CET1863073spa
dc.relation.referencesKerm, T. Van, Noël, L., & Vérilhac, I. (2012). Quand le design... s’investit dans l’entreprise: 10 entreprises témoignent de l’impact du design sur leur développement (CITE DU DE).spa
dc.relation.referencesKhor, S. Y., Liam, K. Y., Loh, W. X., Tan, C. Y., Ng, L. Y., Hassim, M. H., Ng, D. K. S., & Chemmangattuvalappil, N. G. (2017). Computer Aided Molecular Design for alternative sustainable solvent to extract oil from palm pressed fibre. Process Safety and Environmental Protection, 106, 211–223. https://doi.org/10.1016/j.psep.2017.01.006spa
dc.relation.referencesKimura, F., Ariyoshi, H., Ishikawa, H., Naruko, Y., & Yamato, H. (2004). Capturing expert knowledge for supporting design and manufacturing of injection molds. CIRP Annals - Manufacturing Technology, 53(1), 147–150. https://doi.org/10.1016/S0007-8506(07)60665-9spa
dc.relation.referencesKind, M. (1999). Product engineering. Chemical Engineering and Processing: Process Intensification, 38(4–6), 405–410. https://doi.org/10.1016/S0255-2701(99)00038-0spa
dc.relation.referencesKiskini, A., Zondervan, E., Wierenga, P. A., Poiesz, E., & Gruppen, H. (2016). Using product driven process synthesis in the biorefinery. Computers & Chemical Engineering, 91, 257–268. https://doi.org/10.1016/j.compchemeng.2016.03.030spa
dc.relation.referencesKönig, A., Neidhardt, L., Viell, J., Mitsos, A., & Dahmen, M. (2020). Integrated design of processes and products: Optimal renewable fuels. Computers & Chemical Engineering, 134, 106712. https://doi.org/10.1016/j.compchemeng.2019.106712spa
dc.relation.referencesKontogeorgis, G. M. G. M., Mattei, M., Ng, K. M. K. M., & Gani, R. (2019). An Integrated Approach for the Design of Emulsified Products. AIChE Journal, 65(1), 75–86. https://doi.org/10.1002/aic.16363spa
dc.relation.referencesKrishna, S. (1992). Introduction to Database and Knowledge-Base Systems. Introduction to Database and Knowledge-Base Systems. https://doi.org/10.1142/1374spa
dc.relation.referencesKumar Mohajan, H. (2017). The Roles of Knowledge Management for the Development of Organizations. Journal of Scientific Achievements, 2(2), 1–27.spa
dc.relation.referencesLai, Y. Y., Yik, K. C. H., Hau, H. P., Chow, C. P., Chemmangattuvalappil, N. G., & Ng, L. Y. (2019). Enterprise Decision-making Framework for Chemical Product Design in Integrated Biorefineries. Process Integration and Optimization for Sustainability, 3(1), 25–42. https://doi.org/10.1007/s41660-018-0037-2spa
dc.relation.referencesLee, C. K. H., Choy, K. L., & Chan, Y. N. (2014). A knowledge-based ingredient formulation system for chemical product development in the personal care industry. Computers and Chemical Engineering, 65, 40–53. https://doi.org/10.1016/j.compchemeng.2014.03.004spa
dc.relation.referencesLee, C. K. H. K. H. (2017). A knowledge-based product development system in the chemical industry. Journal of Intelligent Manufacturing, 1–16. https://doi.org/10.1007/s10845-017-1331-5spa
dc.relation.referencesLi, X., Chen, Y., & Qian, Y. (2009). Integration of chemical product development, process synthesis, and operation optimization. Computer Aided Chemical Engineering, 26, 37–42. https://doi.org/10.1016/S1570-7946(09)70009-4spa
dc.relation.referencesLiang, X., Zhang, X., Zhang, L., Liu, L., Du, J., Zhu, X., & Ng, K. M. (2019). Computer-Aided Polymer Design: Integrating Group Contribution and Molecular Dynamics. Industrial & Engineering Chemistry Research, 58(34), 15542–15552. https://doi.org/10.1021/acs.iecr.9b02769spa
dc.relation.referencesLinehan, S., Nizami, S. N., & Bagajewicz, M. (2010). On the Application of a Consumer Preference-Based Method for Designing Products To Wine Fermentation Monitoring Devices. Chemical Engineering Communications, 198(2), 255–272. https://doi.org/10.1080/00986445.2010.499833spa
dc.relation.referencesLiu, Q., Zhang, L., Liu, L., Du, J., Tula, A. K., Eden, M., & Gani, R. (2019). OptCAMD: An optimization-based framework and tool for molecular and mixture product design. Computers and Chemical Engineering, 124, 285–301. https://doi.org/10.1016/j.compchemeng.2019.01.006spa
dc.relation.referencesMarques, C. M., Moniz, S., de Sousa, J. P., Barbosa-Povoa, A. P., & Reklaitis, G. (2020). Decision-support challenges in the chemical-pharmaceutical industry: Findings and future research directions. Computers & Chemical Engineering, 134, 106672. https://doi.org/10.1016/j.compchemeng.2019.106672spa
dc.relation.referencesMartín, M., & Martínez, A. (2013). A methodology for simultaneous process and product design in the formulated consumer products industry: The case study of the detergent business. Chemical Engineering Research and Design, 91(5), 795–809. https://doi.org/10.1016/j.cherd.2012.08.012spa
dc.relation.referencesMartín, M., & Martínez, A. (2015). Addressing Uncertainty in Formulated Products and Process Design. Industrial & Engineering Chemistry Research, 54(22), 5990–6001. https://doi.org/10.1021/acs.iecr.5b00792spa
dc.relation.referencesMartín, M., & Martínez, A. (2018). On the effect of price policies in the design of formulated products. Computers & Chemical Engineering, 109, 299–310. https://doi.org/10.1016/j.compchemeng.2017.11.019spa
dc.relation.referencesMattei, M., Kontogeorgis, G. M., & Gani, R. (2014). A comprehensive framework for surfactant selection and design for emulsion based chemical product design. Fluid Phase Equilibria, 362, 288–299. https://doi.org/10.1016/j.fluid.2013.10.030spa
dc.relation.referencesMeyer, T. H., & Keurentjes, J. T. F. (2004). Polymer Reaction Engineering, an Integrated Approach. Chemical Engineering Research and Design, 82(12), 1580–1582. https://doi.org/10.1205/cerd.82.12.1580.58035spa
dc.relation.referencesMinisterio de Comercio, I. y T. (n.d.). Definición Tamaño Empresarial Micro, Pequeña, Mediana o Grande | Mi Pymes. Retrieved October 13, 2022, from https://www.mipymes.gov.co/temas-de-interes/definicion-tamano-empresarial-micro-pequena-medianspa
dc.relation.referencesMorel, L., & Boly, V. (2006). New Product Development Process (NPDP): Updating the identification stage practices. International Journal of Product Development, 3(2), 232–251. https://doi.org/10.1504/IJPD.2006.009373spa
dc.relation.referencesMorel, L., Camargo, M., & Boly, V. (2013). Product Development, Business Concept, and Entrepreneurship. In Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship (pp. 1487–1492). Springer New York. https://doi.org/10.1007/978-1-4614-3858-8_464spa
dc.relation.referencesMuro-Suñé, N., Munir, A., Gani, R., Bell, G., & Shirley, I. (2005). A framework for product analysis: Modelling and design of release and uptake of pesticides (pp. 733–738). https://doi.org/10.1016/S1570-7946(05)80244-5spa
dc.relation.referencesMushtaq, F., Zhang, X., Fung, K. Y., & Ng, K. M. (2020). Product design: An optimization-based approach for targeting of particulate composite microstructure. Computers & Chemical Engineering, 140, 106975. https://doi.org/10.1016/j.compchemeng.2020.106975spa
dc.relation.referencesNarvaez, P. C. (2014). Diseño conceptual de procesos químicos - Metodología con aplicaciones en esterificación. UNIVERSIDAD NACIONAL DE COLOMBIA. https://books.google.fr/books/about/Diseño_conceptual_de_procesos_químicos.html?id=SJjGDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=falsespa
dc.relation.referencesNarvaez Rincon, P. C. (2014). Diseno conceptual de procesos quimicos: metodologia con aplicaciones en esterificaciones. Editorial Universidad Nacional de Colombia. https://books.google.fr/books/about/Diseño_conceptual_de_procesos_químicos.html?id=SJjGDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=falsespa
dc.relation.referencesNelson, A. Z., Schweizer, K. S., Rauzan, B. M., Nuzzo, R. G., Vermant, J., & Ewoldt, R. H. (2019). Designing and transforming yield-stress fluids. Current Opinion in Solid State and Materials Science, 23(5), 100758. https://doi.org/10.1016/j.cossms.2019.06.002spa
dc.relation.referencesNeoh, J. Q., Chin, H. H., Mah, A. X. Y., Aboagwa, O. A., Thangalazhy-Gopakumar, S., & Chemmangattuvalappil, N. G. (2019). Design of bio-oil additives using mathematical optimisation tools considering blend functionality and sustainability aspects. Sustainable Production and Consumption, 19, 53–63. https://doi.org/10.1016/j.spc.2019.03.005spa
dc.relation.referencesNg, Ka M. (2003). MOPSD: A framework linking business decision-making to product and process design (pp. 63–73). https://doi.org/10.1016/S1570-7946(03)80527-8spa
dc.relation.referencesNg, Ka M. (2004). MOPSD: a framework linking business decision-making to product and process design. Computers & Chemical Engineering, 29(1), 51–56. https://doi.org/10.1016/j.compchemeng.2004.07.029spa
dc.relation.referencesNg, Ka M., Li, J., & Kwauk, M. (2005). Process engineering research in China: A multiscale, market-driven approach. AIChE Journal, 51(10), 2620–2627. https://doi.org/10.1002/aic.10658spa
dc.relation.referencesNg, L. Y., Andiappan, V., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2015). Novel methodology for the synthesis of optimal biochemicals in integrated biorefineries via inverse design techniques. Industrial and Engineering Chemistry Research, 54(21), 5722–5735. https://doi.org/10.1021/acs.iecr.5b00217spa
dc.relation.referencesNg, L. Y., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2014). A multiobjective optimization-based approach for optimal chemical product design. Industrial and Engineering Chemistry Research, 53(44), 17429–17444. https://doi.org/10.1021/ie502906aspa
dc.relation.referencesOmidbakhsh, N., Duever, T. A., Elkamel, A., & Reilly, P. M. (2010). Systematic statistical-based approach for product design: Application to disinfectant formulations. Industrial and Engineering Chemistry Research, 49(1), 204–209. https://doi.org/10.1021/ie900196uspa
dc.relation.referencesOmidbakhsh, N., Duever, T. A., Elkamel, A., & Reilly, P. M. (2012). A Systematic Computer-Aided Product Design and Development Procedure: Case of Disinfectant Formulations. Industrial & Engineering Chemistry Research, 51(45), 14925–14934. https://doi.org/10.1021/ie300644fspa
dc.relation.referencesOmidbakhsh, N., Elkamel, A., Duever, T. A., & Reilly, P. M. (2010). Combining Design of Experiments Techniques, Connectionist Models, and Optimization for the Efficient Design of New Product Formulations. Chemical Product and Process Modeling, 5(1). https://doi.org/10.2202/1934-2659.1441spa
dc.relation.referencesOsterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. In A handbook for visionaries, game changers, and challengers.spa
dc.relation.referencesPapadopoulos, A. I., Shavalieva, G., Papadokonstantakis, S., Seferlis, P., Perdomo, F. A., Galindo, A., Jackson, G., & Adjiman, C. S. (2020). An approach for simultaneous computer-aided molecular design with holistic sustainability assessment: Application to phase-change CO2 capture solvents. Computers & Chemical Engineering, 135, 106769. https://doi.org/10.1016/j.compchemeng.2020.106769spa
dc.relation.referencesParmar, B. L., Freeman, R. E., Harrison, J. S., Wicks, A. C., Purnell, L., & de Colle, S. (2010). Stakeholder theory: The state of the art. Academy of Management Annals, 4(1), 403–445. https://doi.org/10.1080/19416520.2010.495581spa
dc.relation.referencesPavurala, N., & Achenie, L. E. K. (2014). Identifying polymer structures for oral drug delivery – A molecular design approach. Computers & Chemical Engineering, 71, 734–744. https://doi.org/10.1016/j.compchemeng.2014.07.015spa
dc.relation.referencesPerrot, N., Ioannou, I., Allais, I., Curt, C., Hossenlopp, J., & Trystram, G. (2006). Fuzzy concepts applied to food product quality control: A review. Fuzzy Sets and Systems, 157(9), 1145–1154. https://doi.org/10.1016/j.fss.2005.12.013spa
dc.relation.referencesPicchioni, F., & Broekhuis, A. (2012). Material properties and processing in chemical product design. Current Opinion in Chemical Engineering, 1(4), 459–464. https://doi.org/10.1016/j.coche.2012.08.002spa
dc.relation.referencesQian, Y., Wu, Z., Jiang, Y., Zhihui, W., & Yanbin, J. (2006). Integration of Process Design and Operation for Chemical Product Development with Implementation of a Kilo-plant. In Computer Aided Chemical Engineering (Vol. 21, Issue 6, pp. 600–606). Elsevier. https://doi.org/10.1016/S1570-7946(06)80175-6spa
dc.relation.referencesRafeqah, R., Hassim, M. H., Denny, N. K. S., Nishanth, G. C., & Norafneeza, N. (2019). Safety and health index development for formulated product design: Paint formulation. E3S Web of Conferences, 90, 03002. https://doi.org/10.1051/e3sconf/20199003002spa
dc.relation.referencesRähse, W., & Hoffmann, S. (2002). Produkt-Design – Zusammenwirken von Chemie, Technik und Marketing im Dienste des Kunden. Chemie Ingenieur Technik, 74(9), 1220–1229. https://doi.org/10.1002/1522-2640(20020915)74:9<1220::AID-CITE1220>3.0.CO;2-Zspa
dc.relation.referencesRähse, W., & Hoffmann, S. (2003). Product Design– The Interaction between Chemistry, Technology and Marketing to Meet Customer Needs. Chemical Engineering & Technology, 26(9), 931–940. https://doi.org/10.1002/ceat.200306106spa
dc.relation.referencesRaslan, R., Hassim, M. H., Chemmangattuvalappil, N. G., Ng, D. K. S., & Ten, J. Y. (2020a). Development of inherent safety and health index for formulated product design. Journal of Loss Prevention in the Process Industries, 66, 104209. https://doi.org/10.1016/j.jlp.2020.104209spa
dc.relation.referencesRaslan, R., Hassim, M. H., Chemmangattuvalappil, N. G., Ng, D. K. S., & Ten, J. Y. (2020b). Safety and health risk assessment methodology of dermal and inhalation exposure to formulated products ingredients. Regulatory Toxicology and Pharmacology, 116, 104753. https://doi.org/10.1016/j.yrtph.2020.104753spa
dc.relation.referencesRivera-Gil, J.-L., Rodas, J. S., Narváez-Rincón, P. C., Boly, V., & Falk, V. (2021). Towards a systemic approach for cosmetics formulation within companies: modeling the design system. 30th Annual Conference of the International Association for Management of Technology (IAMOT 2021), 529–540. https://doi.org/10.52202/060557-0039spa
dc.relation.referencesRivera Gil, J. L., Serna, J., Arrieta‐Escobar, J. A., Narváez Rincón, P. C., Boly, V., & Falk, V. (2022). Triggers for Chemical Product Design: A Systematic Literature Review. AIChE Journal, December 2021, 1–16. https://doi.org/10.1002/aic.17563spa
dc.relation.referencesRodriguez-Donis, I., Thiebaud-Roux, S., Lavoine, S., & Gerbaud, V. (2018). Computer-aided product design of alternative solvents based on phase equilibrium synergism in mixtures. Comptes Rendus Chimie, 21(6), 606–621. https://doi.org/10.1016/j.crci.2018.04.005spa
dc.relation.referencesSalim, H. K., Stewart, R. A., Sahin, O., & Dudley, M. (2020). Systems approach to end-of-life management of residential photovoltaic panels and battery energy storage system in Australia. Renewable and Sustainable Energy Reviews, 134(June), 110176. https://doi.org/10.1016/j.rser.2020.110176spa
dc.relation.referencesSamudra, A., & Sahinidis, N. V. (2013). Design of Heat-Transfer Media Components for Retail Food Refrigeration. Industrial & Engineering Chemistry Research, 52(25), 8518–8526. https://doi.org/10.1021/ie303611vspa
dc.relation.referencesSantos, J., Trujillo-Cayado, L. A., Calero, N., & Muñoz, J. (2014). Physical characterization of eco-friendly O/W emulsions developed through a strategy based on product engineering principles. AIChE Journal, 60(7), 2644–2653. https://doi.org/10.1002/aic.14460spa
dc.relation.referencesSerna, J., Boly, V., Rincon, P. C. N., & Falk, V. (2018). Improving knowledge capitalization in product formulation: A cosmetic industry study case. Towards Sustainable Technologies and Innovation - Proceedings of the 27th Annual Conference of the International Association for Management of Technology, IAMOT 2018, 1–7.spa
dc.relation.referencesSerna, J., Narváez Rincón, P. C., Falk, V., Boly, V., & Camargo, M. (2021). A Methodology for Emulsion Design Based on Emulsion Science and Expert Knowledge. Part 1: Conceptual Approach. Industrial & Engineering Chemistry Research, 60(7), 3210–3227. https://doi.org/10.1021/acs.iecr.0c04942spa
dc.relation.referencesŠimberová, I., & Kita, P. (2020). New business models based on multiple value creation for the customer: A case study in the chemical industry. Sustainability (Switzerland), 12(9), 1–18. https://doi.org/10.3390/su12093932spa
dc.relation.referencesSmith, B. V., & Ierapepritou, M. (2009). Framework for Consumer-Integrated Optimal Product Design. Industrial & Engineering Chemistry Research, 48(18), 8566–8574. https://doi.org/10.1021/ie900377espa
dc.relation.referencesSmith, B. V., & Ierapepritou, M. G. (2010). Integrative chemical product design strategies: Reflecting industry trends and challenges. Computers and Chemical Engineering, 34(6), 857–865. https://doi.org/10.1016/j.compchemeng.2010.02.039spa
dc.relation.referencesSolvason, C. C., Chemmangattuvalappil, N. G., & Eden, M. R. (2010). Multi-Scale Chemical Product Design using the Reverse Problem Formulation (pp. 1285–1290). https://doi.org/10.1016/S1570-7946(10)28215-9spa
dc.relation.referencesStelzer, T., & Ulrich, J. (2010). Crystallization a tool for product design. Advanced Powder Technology, 21(3), 227–234. https://doi.org/10.1016/j.apt.2010.04.006spa
dc.relation.referencesSuárez Palacios, O. Y., Narváez Rincón, P. C., Camargo, M., Corriou, J.-P., Fonteix, C., Suárez-Palacios, O. Y., Narváez-Rincón, P. C., Camargo, M., Corriou, J.-P., & Fonteix, C. (2020). Chemical product design integrating MCDA: Performance prediction and human preferences modelling. Canadian Journal of Chemical Engineering, June 2020, 1–15. https://doi.org/10.1002/cjce.23956spa
dc.relation.referencesSuaza Montalvo, A. (2020). Desarrollo de una estrategia de escalamiento para procesos de producción de emulsiones. Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química.spa
dc.relation.referencesSunkle, S., Saxena, K., Patil, A., Kulkarni, V., Jain, D., Chacko, R., & Rai, B. (2020). Information Extraction and Graph Representation for the Design of Formulated Products. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12127 LNCS, 433–448. https://doi.org/10.1007/978-3-030-49435-3_27spa
dc.relation.referencesTaifouris, M., Martín, M., Martínez, A., & Esquejo, N. (2020a). Challenges in the design of formulated products: multiscale process and product design. Current Opinion in Chemical Engineering, 27, 1–9. https://doi.org/10.1016/j.coche.2019.10.001spa
dc.relation.referencesTaifouris, M., Martín, M., Martínez, A., & Esquejo, N. (2020b). On the effect of the selection of suppliers on the design of formulated products. Computers & Chemical Engineering, 141, 106980. https://doi.org/10.1016/j.compchemeng.2020.106980spa
dc.relation.referencesTam, S. K., Fung, K. Y., Poon, G. S. H., & Ng, K. M. (2016). Product design: Metal nanoparticle-based conductive inkjet inks. AIChE Journal, 62(8), 2740–2753. https://doi.org/10.1002/aic.15271spa
dc.relation.referencesTomba, E., Barolo, M., & García-Muñoz, S. (2014). In-silico product formulation design through latent variable model inversion. Chemical Engineering Research and Design, 92(3), 534–544. https://doi.org/10.1016/j.cherd.2013.08.027spa
dc.relation.referencesTorres, J. J., Tinjaca, C. D., Alvarez, O. A., & Gómez, J. M. (2020). Optimization proposal for emulsions formulation considering a multiscale approach. Chemical Engineering Science, 212, 115326. https://doi.org/10.1016/j.ces.2019.115326spa
dc.relation.referencesUhlemann, J., Costa, R., & Charpentier, J. C. (2019). Product Design and Engineering in Chemical Engineering: Past, Present State, and Future. Chemical Engineering and Technology, 42(11), 2258–2274. https://doi.org/10.1002/ceat.201900236spa
dc.relation.referencesUllmann, F. (2005). Ullmann’s Chemical Engineering and Plant Design. In Engineering.spa
dc.relation.referencesVictoria Villeda, J., Dahmen, M., Hechinger, M., Voll, A., & Marquardt, W. (2012). Towards model-based design of biofuel value chains. Current Opinion in Chemical Engineering, 1(4), 465–471. https://doi.org/10.1016/j.coche.2012.08.001spa
dc.relation.referencesVictoria Villeda, J. J., Dahmen, M., Hechinger, M., Voll, A., & Marquardt, W. (2015). Towards model-based design of tailor-made fuels from biomass. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 129, 193–211. https://doi.org/10.1007/978-3-662-45425-1_12spa
dc.relation.referencesVoinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling and Software, 25(11), 1268–1281. https://doi.org/10.1016/j.envsoft.2010.03.007spa
dc.relation.referencesWan Qi, W., Lik Yin, N., Sivaneswaran, U., & Chemmangattuvalappil, N. G. (2017). A Novel Methodology for Molecular Design via Data Driven Techniques. Journal of Physical Science, 28(Suppl. 1), 1–24. https://doi.org/10.21315/jps2017.28.s1.1spa
dc.relation.referencesWang, H., Chen, K., Zheng, H., Zhang, G., Wu, R., & Yu, X. (2021). Knowledge transfer methods for expressing product design information and organization. Journal of Manufacturing Systems, 58(PA), 1–15. https://doi.org/10.1016/j.jmsy.2020.11.009spa
dc.relation.referencesWarrier, P., Sathyanarayana, A., Bazdar, S., Joshi, Y., & Teja, A. S. (2012). Selection and Evaluation of Organosilicon Coolants for Direct Immersion Cooling of Electronic Systems. Industrial & Engineering Chemistry Research, 51(31), 10517–10523. https://doi.org/10.1021/ie300664vspa
dc.relation.referencesWarrier, P., Sathyanarayana, A., Patil, D. V., France, S., Joshi, Y., & Teja, A. S. (2012). Novel heat transfer fluids for direct immersion phase change cooling of electronic systems. International Journal of Heat and Mass Transfer, 55(13–14), 3379–3385. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.063spa
dc.relation.referencesWassick, J. M., Agarwal, A., Akiya, N., Ferrio, J., Bury, S., & You, F. (2012). Addressing the operational challenges in the development, manufacture, and supply of advanced materials and performance products. Computers & Chemical Engineering, 47, 157–169. https://doi.org/10.1016/j.compchemeng.2012.06.041spa
dc.relation.referencesWibowo, C., & Ng, K. M. (2001). Product-oriented process synthesis and development: Creams and pastes. AIChE Journal, 47(12), 2746–2767. https://doi.org/10.1002/aic.690471214spa
dc.relation.referencesWibowo, C., & Ng, K. M. (2002). Product-centered processing: Manufacture of chemical-based consumer products. AIChE Journal, 48(6), 1212–1230. https://doi.org/10.1002/aic.690480609spa
dc.relation.referencesWu, Z., Lei Li, & Ming Pan. (2010). A experimental platform for process operation system based on data integration. 2010 2nd International Conference on Education Technology and Computer, V2-131-V2-135. https://doi.org/10.1109/ICETC.2010.5529420spa
dc.relation.referencesYang, Y., Zou, X., Xiao, F., & Dong, H. (2017). Integrated product-process design approach for polyethylene production. Chemical Engineering Transactions, 61(2014), 1009–1014. https://doi.org/10.3303/CET1761166spa
dc.relation.referencesYin, R. K. (2018). Case study research and applications. Sage Publications, 352.spa
dc.relation.referencesYu, Q., Zhihui, W., & Yanbin, J. (2006). Integration of chemical product development, process design and operation based on a kilo-plant*. Progress in Natural Science, 16(6), 600–606. https://doi.org/10.1080/10020070612330041spa
dc.relation.referencesYunus, N. A., Gernaey, K. V., Woodley, J. M., & Gani, R. (2014). A systematic methodology for design of tailor-made blended products. Computers & Chemical Engineering, 66, 201–213. https://doi.org/10.1016/j.compchemeng.2013.12.011spa
dc.relation.referencesZhang, L., Fung, K. Y., Zhang, X., Fung, H. K., & Ng, K. M. (2017). An integrated framework for designing formulated products. Computers and Chemical Engineering, 107, 61–76. https://doi.org/10.1016/j.compchemeng.2017.05.014spa
dc.relation.referencesZhang, L., Kalakul, S., Liu, L., Elbashir, N. O., Du, J., & Gani, R. (2018). A Computer-Aided Methodology for Mixture-Blend Design. Applications to Tailor-Made Design of Surrogate Fuels. Industrial & Engineering Chemistry Research, 57(20), 7008–7020. https://doi.org/10.1021/acs.iecr.8b00775spa
dc.relation.referencesZhang, L., Mao, H., Liu, L., Du, J., & Gani, R. (2018). A machine learning based computer-aided molecular design/screening methodology for fragrance molecules. Computers and Chemical Engineering, 115, 295–308. https://doi.org/10.1016/j.compchemeng.2018.04.018spa
dc.relation.referencesZhang, L., Mao, H., Liu, Q., & Gani, R. (2020). Chemical product design – recent advances and perspectives. Current Opinion in Chemical Engineering, 27, 22–34. https://doi.org/10.1016/j.coche.2019.10.005spa
dc.relation.referencesZhang, X., Zhang, L., Fung, K. Y., & Ng, K. M. (2019). Product design: Incorporating make-or-buy analysis and supplier selection. Chemical Engineering Science, 202, 357–372. https://doi.org/10.1016/j.ces.2019.03.021spa
dc.relation.referencesZhang, Xiang, Zhang, L., Fung, K. Y., Rangaiah, G. P., & Ng, K. M. (2018). Product design: Impact of government policy and consumer preference on company profit and corporate social responsibility. Computers & Chemical Engineering, 118, 118–131. https://doi.org/10.1016/j.compchemeng.2018.06.026spa
dc.relation.referencesZhang, Xiang, Zhou, T., Zhang, L., Fung, K. Y., & Ng, K. M. (2019). Food Product Design: A Hybrid Machine Learning and Mechanistic Modeling Approach [Research-article]. Industrial and Engineering Chemistry Research, 58(36), 16743–16752. https://doi.org/10.1021/acs.iecr.9b02462spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembCosméticaspa
dc.subject.lembBeauty cultureeng
dc.subject.lembIndustria de cosméticosspa
dc.subject.lembCosmetics industryeng
dc.subject.proposalChemical product designeng
dc.subject.proposalcosmetic productseng
dc.subject.proposalsystems analysiseng
dc.subject.proposalorganizational contexteng
dc.subject.proposaldesign methodologyeng
dc.subject.proposalDiseño de productos químicosspa
dc.subject.proposalproductos cosméticosspa
dc.subject.proposalanálisis de sistemasspa
dc.subject.proposalcontexto organizativospa
dc.subject.proposalmetodología de diseñospa
dc.titleA system approach to support a methodology for the design of formulated cosmetic products in the context of companieseng
dc.title.translatedUn enfoque de sistema para apoyar una metodología de diseño de productos cosméticos formulados en el contexto de las empresasspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032446331.2022.pdf
Tamaño:
3.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Documento de Tesis de Doctorado

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
U.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4.doc (1).pdf
Tamaño:
337.4 KB
Formato:
Adobe Portable Document Format
Descripción: