Estudio de viabilidad técnico económica de generación de energía eléctrica a partir de energía solar fotovoltaica en la isla de San Andrés
dc.contributor.advisor | Rosero García, Javier Alveiro | |
dc.contributor.author | Moreno López, Wilmar Albeiro | |
dc.contributor.researchgroup | Grupo de Investigación Emc-Un | spa |
dc.coverage.city | San Andrés - Isla | |
dc.date.accessioned | 2023-03-29T20:14:51Z | |
dc.date.available | 2023-03-29T20:14:51Z | |
dc.date.issued | 2023-03-27 | |
dc.description | ilustraciones, fotografías a color | other |
dc.description.abstract | Dada la presencia de extensos arrecifes coralinos, praderas de pastos marinos, manglares, playas, mar abierto y bosques secos tropicales, los cuales albergan puntos de alto endemismo, la región del Archipiélago de San Andrés, Providencia y Santa Catalina fue declarada como reserva de Biósfera Seaflower en el año 2000 por la UNESCO (Seaflower Foundation, 2019). Sin embargo, en la actualidad no se lleva a cabo una adecuada conservación de las especies claves y ecosistemas estratégicos antes enunciados, por factores entre los que se encuentra la generación de electricidad que se efectúa 100% a partir de combustibles fósiles con un modelo obsoleto que ya sobrepasa los 60 años. Mediante el uso de herramientas computacionales como Neplan, Homer Pro y MATLAB, se desarrolla un modelo de optimización para el planteamiento de la diversificación de la matriz energética de la isla de San Andrés, mediante la implementación de SSFV considerando las restricciones técnicas de la red eléctrica actual. Se encuentra que la penetración de las SSFV puede ser de hasta 28 MW. El ahorro de un solo año en combustible y subsidios, sumado a la monetización de bonos de carbono por toneladas de CO2 no emitidas permiten el financiamiento completo de las políticas departamentales orientadas a la totalidad de la población vulnerable del Departamento Archipiélago para el cuatrienio 2020 – 2023. El retorno de la inversión con el resultado del modelo de optimización planteado es de 3.18 años, lo que determina su viabilidad. (Texto tomado de la fuente) | spa |
dc.description.abstract | For extensive coral reefs, seagrass beds, mangroves, beaches, the open sea, and tropical dry forests presence, which are home to points of high endemism, the Archipelago of San Andrés, Providencia, and Santa Catalina region was declared Seaflower Biosphere Reserve in the year 2000 by UNESCO (Seaflower Foundation, 2019). However, at present, adequate conservation of the key species and strategic ecosystems mentioned above is not carried out, due to factors among which is the generation of electricity that is carried out 100% from fossil fuels with an obsolete model that it is already over 60. With computational tools use like Neplan, Homer Pro and MATLAB, an optimization model is developed for the approach to the San Andrés energy matrix diversification, through the implementation of PVSS considering the technical restrictions of the current electrical network. It is found that PVSS penetration can be up to 28 MW. The savings of a single year in fuel and subsidies, added to carbon credits per tons of CO2 not emitted monetization, allow the full financing of departmental policies aimed at the entire vulnerable population of the Archipelago Department for the 2020-2023 period. The investment return with the optimization model proposed is 3.18 years, then its viability. | ita |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Eléctrica | spa |
dc.description.notes | For extensive coral reefs, seagrass beds, mangroves, beaches, the open sea, and tropical dry forests presence, which are home to points of high endemism, the Archipelago of San Andrés, Providencia, and Santa Catalina region was declared Seaflower Biosphere Reserve in the year 2000 by UNESCO (Seaflower Foundation, 2019). However, at present, adequate conservation of the key species and strategic ecosystems mentioned above is not carried out, due to factors among which is the generation of electricity that is carried out 100% from fossil fuels with an obsolete model that it is already over 60. With computational tools use like Neplan, Homer Pro and MATLAB, an optimization model is developed for the approach to the San Andrés energy matrix diversification, through the implementation of PVSS considering the technical restrictions of the current electrical network. It is found that PVSS penetration can be up to 28 MW. The savings of a single year in fuel and subsidies, added to carbon credits per tons of CO2 not emitted monetization, allow the full financing of departmental policies aimed at the entire vulnerable population of the Archipelago Department for the 2020-2023 period. The investment return with the optimization model proposed is 3.18 years, then its viability. | eng |
dc.description.researcharea | ENERGÍAS RENOVABLES | spa |
dc.format.extent | xv, 119 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83674 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá,Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | M. Usman, M. T. Khan, A. S. Rana, and S. Ali, “Techno-economic analysis of hybrid solar-diesel-grid connected power generation system,” J. Electr. Syst. Inf. Technol., vol. 5, no. 3, pp. 653–662, 2018, doi: 10.1016/j.jesit.2017.06.002 | spa |
dc.relation.references | T. Gonzáles, Documento Ejecutivo Integración de las Energías Renovables No Convencionales en Colombia. 2015 | spa |
dc.relation.references | Castillo-Forero, M. A. & Reyes-Hernández, A. M., (2017). Análisis de factibilidad para la implementación de fuentes alternas de generación de energía eléctrica en el archipiélago de San Andrés, Providencia y Santa Catalina. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Programa de Ingeniería Civil. Bogotá, Colombia | spa |
dc.relation.references | A. La, P. En, E. L. Sector, C. En, and L. A. Isla, “El costo de la energía, amenaza la productividad en el sector comercial en la isla de san andrés,” 2016 | spa |
dc.relation.references | C. Moreno, C. B. Milanes, W. Arguello, A. Fontalvo, and R. N. Alvarez, “Challenges and perspectives of the use of photovoltaic solar energy in Colombia,” Int. J. Electr. Comput. Eng., vol. 12, no. 5, pp. 4521–4528, 2022, doi: 10.11591/ijece.v12i5.pp4521-4528 | spa |
dc.relation.references | E. Duque Fernández, “Viabilidad de una Micro-red en la isla de San Andrés, Colombia,” Esc. Colomb. Ing. Julio Garavito, 2021, [Online]. Available: https://repositorio.escuelaing.edu.co/handle/001/1857 | spa |
dc.relation.references | C. Edward and R. Luque, “THE UNIVERSITY OF THE ANDES SAN ANDRÉS , AN APPROACH BASED ON RESILIENCE AND,” 2022 | spa |
dc.relation.references | NREL, “Energy Snapshot - San Andres and Providencia,” Energy Transit. Initiat., p. 4, 2015, [Online]. Available: http://www.researchgate.net/profile/Maria_Cusano2/ | spa |
dc.relation.references | J. D. Pulgarín García, “Potencial de generación eléctrica con sistemas híbridos fotovoltaico-eólico en zonas no interconectadas de Colombia,” Univ. Pontif. Boliv., pp. 1–97, 2014 | spa |
dc.relation.references | M. I. Cusano, Q. Li, A. Obisesan, J. R. Urrego-Blanco, and T. H. Wong, Coastal city and ocean renewable energy: pathway to an eco-San Andres. 2013 | spa |
dc.relation.references | C. Edward and R. Luque, “Renewable energy resources assessment in San Andres Island : An evaluation of wind , solar , biomass , tidal and wave resources , its reach , and future role in a more sustainable generation system . ii Table of content,” 2022 | spa |
dc.relation.references | Mohtasham, J. Review-Article—Renewable Energies. Energy Procedia 2015, 74, 1289–1297. [Google Scholar] [CrossRef][Green Version] | spa |
dc.relation.references | Jung, J.; Villaran, M. Optimal planning and design of hybrid renewable energy systems for microgrids. Renew. Sustain. Energy Rev. 2017, 75, 180–191. [Google Scholar] [CrossRef] | spa |
dc.relation.references | Al-Falahi, M.D.; Jayasinghe, S.; Enshaei, H. A review on recent size optimization methodologies for stand-alone solar and wind hybrid renewable energy system. Energy Convers. Manag. 2017, 143, 252–274. [Google Scholar] [CrossRef] | spa |
dc.relation.references | Erdinc, O.; Uzunoglu, M. Optimum design of hybrid renewable energy systems: Overview of different approaches. Renew. Sustain. Energy Rev. 2012, 16, 1412–1425. [Google Scholar] [CrossRef] | spa |
dc.relation.references | Bajpai, P.; Dash, V. Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renew. Sustain. Energy Rev. 2012, 16, 2926–2939. [Google Scholar] [CrossRef] | spa |
dc.relation.references | Sinha, S.; Chandel, S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205. [Google Scholar] [CrossRef] | spa |
dc.relation.references | Weinand, J.; Scheller, F.J.; McKenna, R. Reviewing Energy System Modelling of Decentralized Energy Autonomy. Energy 2020, 203, 117817. [Google Scholar] [CrossRef] | spa |
dc.relation.references | Maleki, A.; Askarzadeh, A. Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran. Sustain. Energy Technol. Assess. 2014, 7, 147–153. [Google Scholar] [CrossRef] | spa |
dc.relation.references | Dong, W.; Li, Y.; Xiang, J. Optimal sizing of a stand-alone hybrid power system based on battery/hydrogen with an improved ant colony optimization. Energies 2016, 9, 785. [Google Scholar] [CrossRef] | spa |
dc.relation.references | Sawle, Y.; Gupta, S.; Bohre, A.K. Optimal sizing of stand-alone PV/Wind/Biomass hybrid energy system using GA and PSO optimization technique. Energy Procedia 2017, 117, 690–698. [Google Scholar] [CrossRef] | spa |
dc.relation.references | Singh, S.; Singh, M.; Kaushik, S.C. Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energy Convers. Manag. 2016, 128, 178–190. [Google Scholar] [CrossRef] | spa |
dc.relation.references | Ma, T.; Yang, H.; Lu, L.; Peng, J. Technical feasibility study on a stand-alone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong. Renew. Energy 2014, 69, 7–15. [Google Scholar] [CrossRef] | spa |
dc.relation.references | Yimen, N.; Hamandjoda, O.; Meva’a, L.; Ndzana, B.; Nganhou, J. Analyzing of a photovoltaic/wind/biogas/pumped-hydro off-grid hybrid system for rural electrification in Sub-Saharan Africa—Case study of Djoundé in Northern Cameroon. Energies 2018, 11, 2644. [Google Scholar] [CrossRef][Green Version] | spa |
dc.relation.references | Kang, D.; Jung, T.Y. Renewable Energy Options for a Rural Village in North Korea. Sustainability 2020, 12, 2452. [Google Scholar] [CrossRef][Green Version] | spa |
dc.relation.references | Adaramola, M.S.; Agelin-Chaab, M.; Paul, S.S. Analysis of hybrid energy systems for application in southern Ghana. Energy Convers. Manag. 2014, 88, 284–295. [Google Scholar] [CrossRef] | spa |
dc.relation.references | Anastasopoulou, A.; Butala, S.; Patil, B.; Suberu, J.; Fregene, M.; Lang, J.; Wang, Q.; Hessel, V. Techno-economic feasibility study of renewable power systems for a small-scale plasma-assisted nitric acid plant in Africa. Processes 2016, 4, 54. [Google Scholar] [CrossRef][Green Version] | spa |
dc.relation.references | Rezk, H.; Alghassab, M.; Ziedan, H.A. An Optimal Sizing of Stand-Alone Hybrid PV-Fuel Cell-Battery to Desalinate Seawater at Saudi NEOM City. Processes 2020, 8, 382. [Google Scholar] [CrossRef][Green Version] | spa |
dc.relation.references | Ini, Luis, En la colombiana isla de Providencia instala Ecopetrol la primera planta solar, PV Magazine Latam, agosto de 2022 | spa |
dc.relation.references | Departamento Nacional de Planeación, CONPES 3855 - Concepto favorable a la nación para contratar una operación de crédito externo hasta por USD 10 millones, o su equivalente en otras monedas, destinados a financiar el programa de gestión eficiente de la demanda de energía en zonas no interconectadas: proyecto piloto Archipiélago de San Andrés, Providencia y Santa Catalina, 2016 | spa |
dc.relation.references | J. Zúñiga, Propuesta de esquema de negocio para fomentar la sustitución o complementariedad de la generación con diésel y reducir los costos de prestación del servicio de energía eléctrica en un caso de estudio de las Zonas No Interconectadas de Colombia, pp. 44 – 50, 2022 | spa |
dc.relation.references | A. Galindo, Análisis de la radiación solar en San Andrés, pp. 23 – 26, 2022 | spa |
dc.relation.references | Grupo de Investigación EM&D, Universidad Nacional de Colombia – Sede Bogotá, Introducción de energías solar fotovoltaica en el sistema de potencia de la isla de San Andrés, 2022 | spa |
dc.relation.references | RMI – CWR, Solar Resource Assesment San Andrés and Providencia, 2017 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 530 - Física::537 - Electricidad y electrónica | spa |
dc.subject.lemb | Colectores solares | spa |
dc.subject.lemb | Solar collectors | eng |
dc.subject.lemb | Industria energética | spa |
dc.subject.lemb | Energy industry | eng |
dc.subject.lemb | Células fotovoltaicas | spa |
dc.subject.lemb | Photovoltaic cells | eng |
dc.subject.proposal | SSFV | spa |
dc.subject.proposal | FNCER | spa |
dc.subject.proposal | PVSS | eng |
dc.subject.proposal | San Andrés Isla | spa |
dc.subject.proposal | Costo - beneficio | spa |
dc.subject.proposal | Optimización | spa |
dc.subject.proposal | Optimitation | eng |
dc.subject.proposal | San Andrés Island | eng |
dc.subject.proposal | Cost - benefit | eng |
dc.subject.proposal | Renewable energy | eng |
dc.title | Estudio de viabilidad técnico económica de generación de energía eléctrica a partir de energía solar fotovoltaica en la isla de San Andrés | spa |
dc.title.translated | Technical-economic feasibility study of electricity generation from photovoltaic solar energy on San Andrés island | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 80855008.2023.pdf.pdf
- Tamaño:
- 3.98 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: