Influencia de cloruros y metales traza presentes en las MSWI FA sobre el desarrollo de fases cementantes durante la clinkerización de CSA

dc.contributor.advisorTobón, Jorge Iván
dc.contributor.advisorRestrepo Baena, Oscar Jaime
dc.contributor.authorBedoya Henao, Carlos Andrés
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=7TeSjZgAAAAJ&hl=esspa
dc.contributor.orcidBedoya Henao, Carlos Andrés [0009-0006-8219-6714]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Carlos-Bedoya-Henao?ev=hdr_xprfspa
dc.contributor.researchgroupGrupo del Cemento y Materiales de Construcciónspa
dc.date.accessioned2025-04-22T14:06:56Z
dc.date.available2025-04-22T14:06:56Z
dc.date.issued2025-04
dc.descriptionIlustraciones, gráficos, tablasspa
dc.description.abstractLa incineración de residuos sólidos urbanos (MSW) es una práctica habitual y cada vez más adoptada al momento de gestionar la disposición de MSW en todo el mundo. Derivado del proceso de incineración se generan algunos subproductos como cenizas volantes (MSWI FA) y cenizas de fondo (MSWI BA). Contribuyendo con la economía circular, sostenibilidad y el desarrollo de nuevos materiales, las MSWI FA han cobrado un gran interés en el sector de la construcción al poderse incorporar como material de relleno en mezclas de mortero y concreto, e incluso como materia prima en la producción de diferentes tipos de cementos. Los cementos base sulfoaluminato de cálcico (CSA) han demostrado ser una alternativa al cemento portland ordinario (OPC) debido principalmente a sus bajas emisiones de CO₂, menores consumos energéticos para su producción, y sobresalientes desempeños mecánicos y de durabilidad. La posibilidad de usar las MSWI FA como materia prima para producir cemento CSA ha sido demostrada, sin embargo, los estudios realizados hasta el momento en torno al tema exponen una gran oportunidad de profundizar temas que aún no han sido abordados, tal como el rol del cloro y metales traza en el sistema CaO–SiO₂–Al₂O₃–SO₃ durante la elaboración de cementos CSA. La presente investigación pretende evaluar la influencia de los cloruros y metales traza presentes en las MSWI FA sobre el desarrollo de fases cementantes durante la clinkerización de CSA mediante la formulación de módulos de cloruros y de metales traza que permitan proponer una solución general al problema de investigación. (Tomado de la fuente)spa
dc.description.abstractThe incineration of municipal solid waste (MSW) is a common and increasingly adopted practice for MSW disposal worldwide. As a result of the incineration process, by-products such as fly ash (MSWI FA) and bottom ash (MSWI BA) are generated. Contributing to the circular economy, sustainability, and the development of new materials, MSWI FA has gained significant interest in the construction sector due to its potential use as a filler material in mortar and concrete mixtures, and even as a raw material in the production of different types of cement. Calcium sulfoaluminate (CSA) cements have proven to be a viable alternative to ordinary Portland cement (OPC), mainly due to their lower CO₂ emissions, reduced energy consumption during production, and outstanding mechanical performance and durability. The possibility of using MSWI FA as a raw material for producing CSA cement has been demonstrated; however, studies conducted to date reveal a major opportunity to delve into aspects that remain unexplored, such as the role of chlorine and trace metals in the CaO-SiO₂-Al₂O₃-SO₃ system during the production of CSA cement. This research aims to evaluate the influence of chlorides and trace metals present in MSWI FA on the development of cementitious phases during CSA clinkering, by formulating chloride and trace metal modules that could lead to a general solution to the research problem.eng
dc.description.curricularareaMateriales Y Nanotecnología.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Materiales y Procesosspa
dc.description.sponsorshipPrograma de Becas Bicentenario de la Universidad Nacional de Colombia por el departamento de San Andrés Islas. Convocatoria número 15.spa
dc.format.extent84 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88034
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesS. Sondh, D. S. Upadhyay, S. Patel, and R. N. Patel, “A strategic review on Municipal Solid Waste (living solid waste) management system focusing on policies, selection criteria and techniques for waste-to-value,” J Clean Prod, vol. 356, p. 131908, 2022, doi: 10.1016/j.jclepro.2022.131908.spa
dc.relation.referencesS. C. Pal, A. Mukherjee, and S. R. Pathak, “Investigation of hydraulic activity of ground granulated blast furnace slag in concrete,” 2003. doi: 10.1016/S0008-8846(03)00062-0.spa
dc.relation.referencesO. K. M. Ouda, H. M. Cekirge, and S. A. R. Raza, “An assessment of the potential contribution from waste-to-energy facilities to electricity demand in Saudi Arabia,” Energy Convers Manag, vol. 75, pp. 402–406, 2013, doi: 10.1016/j.enconman.2013.06.056.spa
dc.relation.referencesL. Yang, Y. Zhao, X. Niu, Z. Song, Q. Gao, and J. Wu, “Municipal Solid Waste Forecasting in China Based on Machine Learning Models,” Front Energy Res, vol. 9, Nov. 2021, doi: 10.3389/fenrg.2021.763977.spa
dc.relation.referencesS. Wu et al., “Dioxin distribution characteristics and health risk assessment in different size particles of fly ash from MSWIs in China,” 2016, doi: 10.1016/j.wasman.2016.01.038.spa
dc.relation.referencesB. H. Cho, B. H. Nam, J. An, and H. Youn, “Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials—A Review,” Materials 2020, Vol. 13, Page 3143, vol. 13, no. 14, p. 3143, Jul. 2020, doi: 10.3390/MA13143143.spa
dc.relation.referencesC. Ferreira, A. Ribeiro, and L. Ottosen, “Possible applications for municipal solid waste fly ash,” J Hazard Mater, vol. 96, no. 2–3, pp. 201–216, Jan. 2003, doi: 10.1016/S0304-3894(02)00201-7.spa
dc.relation.referencesA. Singh, Y. Zhou, V. Gupta, and R. Sharma, “Sustainable use of different size fractions of municipal solid waste incinerator bottom ash and recycled fine aggregates in cement mortar,” Case Studies in Construction Materials, vol. 17, p. e01434, Dec. 2022, doi: 10.1016/J.CSCM.2022.E01434.spa
dc.relation.referencesY. Xue and X. Liu, “Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review,” Chemical Engineering Journal, vol. 420, pp. 1385–8947, 2021, doi: 10.1016/j.cej.2021.130349.spa
dc.relation.referencesY. Zhang et al., “Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives,” J Hazard Mater, vol. 411, p. 125132, Jun. 2021, doi: 10.1016/J.JHAZMAT.2021.125132.spa
dc.relation.referencesS. Rémond, P. Pimienta, and D. P. Bentz, “Effects of the incorporation of Municipal Solid Waste Incineration fly ash in cement pastes and mortars: I. Experimental study,” Cem Concr Res, vol. 32, no. 2, pp. 303–311, Feb. 2002, doi: 10.1016/S0008-8846(01)00674-3.spa
dc.relation.referencesR. Siddique, “Utilization of municipal solid waste (MSW) ash in cement and mortar,” Resour Conserv Recycl, vol. 54, no. 12, pp. 1037–1047, Oct. 2010, doi: 10.1016/J.RESCONREC.2010.05.002.spa
dc.relation.referencesT. Lan et al., “Synthesis and application of geopolymers from municipal waste incineration fly ash (MSWI FA) as raw ingredient - A review,” Resour Conserv Recycl, vol. 182, p. 106308, Jul. 2022, doi: 10.1016/J.RESCONREC.2022.106308.spa
dc.relation.referencesM. Niu, P. Zhang, J. Guo, and J. Wang, “Effect of Municipal Solid Waste Incineration Fly Ash on the Mechanical Properties and Microstructure of Geopolymer Concrete,” Gels 2022, Vol. 8, Page 341, vol. 8, no. 6, p. 341, May 2022, doi: 10.3390/GELS8060341.spa
dc.relation.referencesE. Romeo, L. Mantovani, M. Tribaudino, and A. Montepara, “Reuse of Stabilized Municipal Solid Waste Incinerator Fly Ash in Asphalt Mixtures,” Journal of Materials in Civil Engineering, vol. 30, Aug. 2018, doi: 10.1061/(ASCE)MT.1943-5533.0002347.spa
dc.relation.referencesJ. R. Pan, C. Huang, J. J. Kuo, and S. H. Lin, “Recycling MSWI bottom and fly ash as raw materials for Portland cement,” Waste Management, vol. 28, no. 7, pp. 1113–1118, Jan. 2008, doi: 10.1016/J.WASMAN.2007.04.009.spa
dc.relation.referencesN. Saikia, S. Kato, and T. Kojima, “Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash,” Waste Management, vol. 27, no. 9, pp. 1178–1189, Jan. 2007, doi: 10.1016/J.WASMAN.2006.06.004.spa
dc.relation.referencesM. Carmen Martín-Sedeño et al., “Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration,” 2009, doi: 10.1016/j.cemconres.2009.11.003.spa
dc.relation.referencesFTM, “Global Use of Bauxite and Bauxite Reserves Left to Human,” https://www.ftmmachinery.com/blog/global-use-of-bauxite-and-bauxite-reserves-left-to-human.html.spa
dc.relation.referencesS. Nie et al., “Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application,” J Clean Prod, vol. 334, p. 130270, Feb. 2022, doi: 10.1016/J.JCLEPRO.2021.130270.spa
dc.relation.referencesT. Hanein, J. L. Galvez-Martos, and M. N. Bannerman, “Carbon footprint of calcium sulfoaluminate clinker production,” J Clean Prod, vol. 172, pp. 2278–2287, Jan. 2018, doi: 10.1016/J.JCLEPRO.2017.11.183.spa
dc.relation.referencesA. Mobili, A. Telesca, M. Marroccoli, and F. Tittarelli, “Calcium sulfoaluminate and alkali-activated fly ash cements as alternative to Portland cement: study on chemical, physical-mechanical, and durability properties of mortars with the same strength class,” 2020, doi: 10.1016/j.conbuildmat.2020.118436.spa
dc.relation.referencesK. Wu, H. Shi, and X. Guo, “Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production,” Waste Management, vol. 31, no. 9–10, pp. 2001–2008, Sep. 2011, doi: 10.1016/J.WASMAN.2011.04.022.spa
dc.relation.referencesY. Mao, H. Wu, W. Wang, M. Jia, and X. Che, “Pretreatment of municipal solid waste incineration fly ash and preparation of solid waste source sulphoaluminate cementitious material,” J Hazard Mater, vol. 385, Mar. 2020, doi: 10.1016/J.JHAZMAT.2019.121580.spa
dc.relation.referencesL. Wang, I. A. Jamro, Q. Chen, S. Li, J. Luan, and T. Yang, “Immobilization of trace elements in municipal solid waste incinerator (MSWI) fly ash by producing calcium sulphoaluminate cement after carbonation and washing,” Waste Management and Research, vol. 34, no. 3, pp. 184–194, Mar. 2016, doi: 10.1177/0734242X15617846/ASSET/IMAGES/LARGE/10.1177_0734242X15617846-FIG2.JPEG.spa
dc.relation.referencesM. Simoni, T. Hanein, T. Y. Duvallet, R. B. Jewell, J. L. Provis, and H. Kinoshita, “Producing cement clinker assemblages in the system: CaO-SiO2-Al2O3-SO3-CaCl2-MgO,” Cem Concr Res, vol. 144, Jun. 2021, doi: 10.1016/j.cemconres.2021.106418.spa
dc.relation.referencesE. N. Nedkvitne, Ø. Borgan, D. Ø. Eriksen, and H. Rui, “Variation in chemical composition of MSWI fly ash and dry scrubber residues,” Waste Management, vol. 126, pp. 623–631, May 2021, doi: 10.1016/J.WASMAN.2021.04.007.spa
dc.relation.referencesK. Kolovos, S. Tsivilis, and G. Kakali, “The effect of foreign ions on the reactivity of the CaO–SiO2–Al2O3–Fe2O3 system: Part II: Cations,” Cem Concr Res, vol. 32, no. 3, pp. 463–469, Mar. 2002, doi: 10.1016/S0008-8846(01)00705-0.spa
dc.relation.referencesH. Justnes Harald Justnes, T. Arne Hammer, and C. Manager, “SINTEF REPORT COIN P1 Advanced cementing materials SP 1.1 F Reduced CO 2-emissions Effect of mineralizers in cement production State of the art SINTEF Building and Infrastructure COIN-Concrete Innovation Centre,” 2007, Accessed: Nov. 29, 2022. [Online]. Available: www.sintef.no/coinspa
dc.relation.referencesI. Lancellotti, E. Kamseu, M. Michelazzi, L. Barbieri, A. Corradi, and C. Leonelli, “Chemical stability of geopolymers containing municipal solid waste incinerator fly ash,” Waste Management, vol. 30, no. 4, pp. 673–679, Apr. 2010, doi: 10.1016/J.WASMAN.2009.09.032.spa
dc.relation.referencesF. Bullerjahn, M. Zajac, and M. Ben Haha, “CSA raw mix design: effect on clinker formation and reactivity,” Mater Struct, vol. 48, no. 12, pp. 3895–3911, 2015, doi: 10.1617/s11527-014-0451-z.spa
dc.relation.referencesM. Montes, E. Pato, P. M. Carmona-Quiroga, and M. T. Blanco-Varela, “Can calcium aluminates activate ternesite hydration?,” Cem Concr Res, vol. 103, pp. 204–215, 2018, doi: https://doi.org/10.1016/j.cemconres.2017.10.017.spa
dc.relation.referencesK. Garbev, A. Ullrich, G. Beuchle, B. Bergfeldt, and P. Stemmermann, “Chlorellestadite (Synth): Formation, Structure, and Carbonate Substitution during Synthesis of Belite Clinker from Wastes in the Presence of CaCl2 and CO2,” Minerals, vol. 12, no. 9, 2022, doi: 10.3390/min12091179.spa
dc.relation.referencesC. W. Hargis, J. Moon, B. Lothenbach, F. Winnefeld, H.-R. Wenk, and P. J. M. Monteiro, “Calcium Sulfoaluminate Sodalite () Crystal Structure Evaluation and Bulk Modulus Determination,” Journal of the American Ceramic Society, vol. 97, no. 3, pp. 892–898, 2014, doi: https://doi.org/10.1111/jace.12700.spa
dc.relation.referencesY. Xie, M. Bu, and G. Lu, “Insights into CaCl2-NaCl-KCl molten salt: A machine learning approach to unraveling structure and properties,” J Energy Storage, vol. 102, p. 114156, 2024, doi: https://doi.org/10.1016/j.est.2024.114156.spa
dc.relation.referencesM. Singh, P. C. Kapur, and Pradip, “Preparation of alinite based cement from incinerator ash,” Waste Management, vol. 28, no. 8, pp. 1310–1316, 2008, doi: 10.1016/j.wasman.2007.08.025.spa
dc.relation.referencesD. Środek et al., “Chlorellestadite, Ca5(SiO4)1.5(SO4)1.5Cl, a new ellestadite- group mineral from the Shadil-Khokh volcano, South Ossetia,” Mineral Petrol, vol. 112, no. 5, pp. 743–752, 2018, doi: 10.1007/s00710-018-0571-1.spa
dc.relation.referencesA. Ullrich, K. Garbev, U. Schweike, M. Köhler, B. Bergfeldt, and P. Stemmermann, “CaCl2 as a Mineralizing Agent in Low-Temperature Recycling of Autoclaved Aerated Concrete: Cl-Immobilization by Formation of Chlorellestadite,” Minerals, vol. 12, no. 9, 2022, doi: 10.3390/min12091142.spa
dc.relation.referencesM. Simoni, T. Hanein, T. Y. Duvallet, R. B. Jewell, J. L. Provis, and H. Kinoshita, “Producing cement clinker assemblages in the system: CaO-SiO2-Al2O3-SO3-CaCl2-MgO,” Cem Concr Res, vol. 144, Jun. 2021, doi: 10.1016/j.cemconres.2021.106418.spa
dc.relation.referencesK. Kolovos, S. Barafaka, G. Kakali, and S. Tsivilis, “CuO and ZnO addition in the cement raw mix: Effect on clinkering process and cement hydration and properties,” Ceramics Silikaty, vol. 49, pp. 205–212, Mar. 2005.spa
dc.relation.referencesM. Boháč et al., “The role of Li2O, MgO and CuO on SO3 activated clinkers,” Cem Concr Res, vol. 152, Feb. 2022, doi: 10.1016/j.cemconres.2021.106672.spa
dc.relation.referencesT. Staněk, M. Dzurov, I. Khongová, and M. Boháč, “The incorporation of Cu into the clinker phases,” J Microsc, vol. 286, no. 2, pp. 108–113, 2022, doi: https://doi.org/10.1111/jmi.13075.spa
dc.relation.referencesX. Ma, H. Chen, and P. Wang, “Effect of TiO2 on the Formation of Clinker with High C3S,” Journal of Wuhan University of Technology-Mater Sci Ed, vol. 24, pp. 830–833, Oct. 2009, doi: 10.1007/s11595-009-5830-x.spa
dc.relation.referencesX. Liu, B. Li, T. Qi, X. Liu, and Y. Li, “Effect of TiO 2 on mineral formation and properties of alite-sulphoaluminate cement,” Materials Research Innovations - MATER RES INNOV, vol. 13, pp. 92–97, Jun. 2009, doi: 10.1179/143307509X435178.spa
dc.relation.referencesJ. H. Potgieter, K. A. Horne, S. S. Potgieter, and W. Wirth, “An evaluation of the incorporation of a titanium dioxide producer’s waste material in Portland cement clinker,” Mater Lett, vol. 57, no. 1, pp. 157–163, 2002, doi: https://doi.org/10.1016/S0167-577X(02)00723-1.spa
dc.relation.referencesD. Bordoloi, A. C. H. Baruah, P. Barkakati, and P. C. H. Borthakur, “Influence of ZnO on Clinkerization and Properties of VSK Cement 11Communicated by A.J. Majundar.,” Cem Concr Res, vol. 28, no. 3, pp. 329–333, 1998, doi: https://doi.org/10.1016/S0008-8846(97)00266-4.spa
dc.relation.referencesH. Bolio-Arceo and F. P. Glasser, “Zinc oxide in cement clinkering : Part 1. Systems CaO-ZnO-Al2O3 and CaO-ZnO-Fe2O3,” Advances in Cement Research, vol. 10, pp. 25–32, 1998, [Online]. Available: https://api.semanticscholar.org/CorpusID:135778423spa
dc.relation.referencesA. Berrio, C. Rodriguez, and J. I. Tobón, “Effect of Al2O3/SiO2 ratio on ye’elimite production on CSA cement,” Constr Build Mater, vol. 168, pp. 512–521, Apr. 2018, doi: 10.1016/j.conbuildmat.2018.02.153.spa
dc.relation.referencesF. V Lampe, W. Hilmer, and K. H. Jost, “SYr,WHESIS, STRUCTURE AND THERMAL DECOMPOS!TIO~[ OF ALINiTE,” 1986.spa
dc.relation.referencesM. El Hazzat, A. Sifou, S. Arsalane, and A. El Hamidi, “Novel approach to thermal degradation kinetics of gypsum: application of peak deconvolution and Model-Free isoconversional method,” J Therm Anal Calorim, vol. 140, no. 2, pp. 657–671, 2020, doi: 10.1007/s10973-019-08885-3.spa
dc.relation.referencesM. Broström, S. Enestam, R. Backman, and K. Mäkelä, “Condensation in the KCl–NaCl system,” Fuel Processing Technology, vol. 105, pp. 142–148, Jan. 2011, doi: 10.1016/j.fuproc.2011.08.006.spa
dc.relation.referencesA. Berrio, J. I. Tobón, and A. G. De la Torre, “Kinetic model for ye’elimite polymorphs formation during clinkering production of CSA cement,” Constr Build Mater, vol. 321, Feb. 2022, doi: 10.1016/j.conbuildmat.2022.126336.spa
dc.relation.referencesJ. Zhao, J. Huang, C. Yu, C. Cui, and J. Chang, “Phosphorus Substitution Preference in Ye’elimite: Experiments and Density Functional Theory Simulations,” Materials (Basel), vol. 14, Oct. 2021, doi: 10.3390/ma14195874.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.lembTransformación de residuos
dc.subject.lembResiduos sólidos
dc.subject.lembDisposición de residuos
dc.subject.lembResiduos de la combustión
dc.subject.lembCemento - Producción
dc.subject.lembMateriales de construcción - Aprovechamiento de residuos
dc.subject.proposalCenizas de Incineración de RSUspa
dc.subject.proposalEconomía Circularspa
dc.subject.proposalCementos CSAspa
dc.subject.proposalClinkerización
dc.subject.proposalMunicipal Solid Waste Incineration Fly Asheng
dc.subject.proposalCircular Economyeng
dc.subject.proposalCSA Cementseng
dc.subject.proposalClinkeringeng
dc.titleInfluencia de cloruros y metales traza presentes en las MSWI FA sobre el desarrollo de fases cementantes durante la clinkerización de CSAspa
dc.title.translatedInfluence of chlorides and trace metals in MSWI FA on the development of cementitious phases during CSA clinkeringeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036952709.2025.pdf
Tamaño:
21.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: