Factores filogenéticos y biogeográficos que influyen en la diversidad morfofuncional de los peces cirujano (familia Acanthuridae) del pacífico y caribe colombianos

dc.contributor.advisorTavera, José Julián
dc.contributor.advisorAcero Pizarro, Arturo
dc.contributor.authorFranco León, Laura
dc.contributor.cvlacFranco León, Laura Catalina [0001716645]
dc.contributor.orcidFranco León, Laura Catalina [0000000280515535]
dc.contributor.researchgroupFauna Marina Colombiana: Biodiversidad y Usos
dc.date.accessioned2025-08-26T19:53:20Z
dc.date.available2025-08-26T19:53:20Z
dc.date.issued2024
dc.description.abstractEste estudio de maestría examina la diversidad morfológica y funcional de los peces cirujano (Acanthuridae) en aguas colombianas, enfocándose en cómo la historia evolutiva y biogeográfica han influenciado en sus rasgos morfofuncionales relacionados con la alimentación y locomoción. Para ello se analizaron 54 rasgos morfológicos relacionados con la alimentación y locomoción en 8 especies de peces cirujano colombianos (26 especímenes en total), comparando Pacífico y Caribe. Se utilizó análisis filogenético de componentes principales y técnicas de visualización del morfoespacio. Se encontró una influencia de ambos factores en la conformación del morfoespacio, tendencia a segregarse según sus estrategias alimentarias y uso de hábitat. El Pacífico mostró mayor diversidad morfofuncional que el Caribe. Esto útimo puede ser indicio de una mayor vulnerabilidad para esta función en el Caribe y un llamado a la conservación (Texto tomado de la fuente).spa
dc.description.abstractThis master's thesis study examines the morphological and functional diversity of surgeonfish (Acanthuridae) in Colombian waters, focusing on how evolutionary and biogeographic history have influenced their morphofunctional traits related to feeding and locomotion. For this purpose, 54 morphological traits related to feeding and locomotion were analyzed across 8 Colombian surgeonfish species (26 specimens total), comparing Pacific and Caribbean populations. Phylogenetic principal component analysis and morphospace visualization techniques were used. An influence of both factors on morphospace configuration was found, with a tendency to segregate according to their feeding strategies and habitat use. The Pacific showed greater morphofunctional diversity than the Caribbean. This latter finding may indicate greater vulnerability for this function in the Caribbean and a call for conservation.eng
dc.description.degreelevelMaestría
dc.description.degreenameMágister en Ciencias Biologia
dc.format.extent59 paginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88473
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Caribe
dc.publisher.departmentCentro de estudios en Ciencias del mar-CECIMARspa
dc.publisher.facultyFacultad Caribe
dc.publisher.programCaribe - Caribe - Maestría en Ciencias - Biología
dc.relation.referencesAdam, T. C., Duran, A., Fuchs, C., Roycroft, M. V., Rojas, M. C., Ruttenberg, B. I., & Burkepile, D. E. (2018). Comparative analysis of foraging behavior and bite mechanics reveals complex functional diversity among Caribbean parrotfishes. Marine Ecology Progress Series, 597, 207-220. https://doi.org/10.3354/meps12600
dc.relation.referencesAguilar-Medrano, R., & Arias-González, J. E. (2018). Functional reef fish groups of the Mexican Caribbean: Implications of habitat complexity. Revista Mexicana de Biodiversidad, 89(4), 1138-1153. https://doi.org/10.22201/ib.20078706e.2018.4.2398
dc.relation.referencesAguilar-Medrano, R., & Calderón-Aguilera, L. (2015). Redundancy and diversity of functional reef fish groups of the Mexican Eastern Pacific. Marine Ecology, 37, 119-133. https://doi.org/10.1111/maec.12253
dc.relation.referencesAlfaro, M. E., Bolnick, D. I., & Wainwright, P. C. (2005). Evolutionary consequences of many-to-one mapping of jaw morphology to mechanics in labrid fishes. The American Naturalist, 165(6). https://doi.org/10.1086/429564
dc.relation.referencesAlfaro, M. E., Santini, F., & Brock, C. (2007). Do reefs drive diversification in marine teleosts? Evidence from the pufferfishes and their allies (order Tetraodontiformes). Evolution, 61, 2104-2126
dc.relation.referencesAndrade, C., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research, 105, 26191-26202. https://doi.org/10.1029/2000JC000300
dc.relation.referencesAndrade, C., & Barton, E. D. (2005). The Guajira upwelling system. Continental Shelf Research, 25, 1003-1022. https://doi.org/10.1016/j.csr.2004.12.012
dc.relation.referencesAnthony, K., Kline, D., Díaz-Pulido, G., Dove, S., & Hoegh-Guldberg, O. (2008). Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America, 105, 17442- 17446. https://doi.org/10.1073/pnas.0804478105
dc.relation.referencesArbour, J., & López-Fernández, H. (2016). Continental cichlid radiations: Functional diversity reveals the role of changing ecological opportunity in the Neotropics. Proceedings of the Royal Society B: Biological Sciences, 283. https://doi.org/10.1098/rspb.2016.0556
dc.relation.referencesBejarano, S., Jouffray, J.-B., Chollett, I., Allen, R., Roff, G., Marshell, A., Steneck, R., Ferse, S., & Mumby, P. (2017). The shape of success in a turbulent world: Wave exposure filtering of coral reef herbivory. Functional Ecology, 31. https://doi.org/10.1111/1365-2435.12828
dc.relation.referencesBellwood, D. R. (1985). The functional morphology, systematics and behavioural ecology of parrotfishes (family Scaridae) [Ph.D.]. James Cook University. 24 p.
dc.relation.referencesBellwood, D. R. (1996). The Eocene fishes of Monte Bolca: The earliest coral reef fish assemblage. Coral Reefs, 15, 11-19. https://doi.org/10.1007/BF01626074
dc.relation.referencesBellwood, D. R. (2003). Origins and escalation of herbivory in fishes: A functional perspective. Paleobiology, 29(1), 71-83. https://doi.org/10.1666/0094-8373(2003)029<0071:oaeohi>2.0.co;2
dc.relation.referencesBellwood, D. R., & Choat, J. H. (1990). A functional analysis of grazing in parrotfishes (family Scaridae): The ecological implications. Environmental Biology of Fishes, 28(1), 189-214. https://doi.org/10.1007/978-94-009-2065-1_11
dc.relation.referencesBellwood, D. R., & Wainwright, P. C. (2001). Locomotion in labrid fishes: Implications for habitat use and cross-shelf biogeography on the Great Barrier Reef. Coral Reefs, 20(2), 139-150. https://doi.org/10.1007/s003380100156
dc.relation.referencesBellwood, D. R., & Wainwright, P. (2002). The History and Biogeography of Fishes on Coral Reefs. En Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem, (pp. 5-32). https://doi.org/10.1016/B978-012615185-5/50003-7
dc.relation.referencesBellwood, D. R., Hughes, T., Folke, C., & Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429, 827-833. https://doi.org/10.1038/nature02691
dc.relation.referencesBellwood, D. R., Wainwright, P. C., Fulton, C. J., & Hoey, A. S. (2006). Functional versatility supports coral reef biodiversity. Proceedings of The Royal Society B: Biological Sciences, 273(1582), 101-107. https://doi.org/10.1098/rspb.2005.3276
dc.relation.referencesBellwood, D. R., Klanten, O., Cowman, P., Pratchett, M. S., Konow, N., & Herwerden, L. (2010). Evolutionary history of the butterflyfishes (f: Chaetodontidae) and the rise of coral feeding fishes. Journal of Evolutionary Biology, 23, 335-349. https://doi.org/10.1111/j.1420-9101.2009.01904.x
dc.relation.referencesBellwood, D. R., Goatley, C. H. R., Brandl, S. J., & Bellwood, O. (2014a). Fifty million years of herbivory on coral reefs: Fossils, fish and functional innovations. Proceedings of The Royal Society B: Biological Sciences, 281(1781), 20133046-20133046. https://doi.org/10.1098/rspb.2013.3046
dc.relation.referencesBellwood, D. R., Hoey, A. S., Bellwood, O., & Goatley, C. H. R. (2014b). Evolution of long-toothed fishes and the changing nature of fish–benthos interactions on coral reefs. Nature Communications, 5(1), 3144-3144. https://doi.org/10.1038/ncomms4144
dc.relation.referencesBellwood, D. R., Goatley, C. H. R., Cowman, P. F., & Bellwood, O. (2015). The evolution of fishes on coral reefs: Fossils, phylogenies, and functions. 55-63. https://doi.org/10.1017/cbo9781316105412.008
dc.relation.referencesBellwood, D. R., Goatley, C. H. R., & Bellwood, O. (2017). The evolution of fishes and corals on reefs: Form, function and interdependence. Biological Reviews, 92(2), 878-901. https://doi.org/10.1111/brv.12259
dc.relation.referencesBellwood, D. R., Streit, R. P., Brandl, S. J., & Tebbett, S. B. (2018). The meaning of the term «function» in ecology: A coral reef perspective. Functional Ecology, 33(6), 948-961. https://doi.org/10.1111/1365-2435.13265
dc.relation.referencesBender, M. G., Pie, M. R., Rezende, E. L., Mouillot, D., & Floeter, S. R. (2013). Biogeographic, historical and environmental influences on the taxonomic and functional structure of Atlantic reef fish assemblages. Global Ecology and Biogeography, 22(11), 1173-1182. https://doi.org/10.1111/geb.12099
dc.relation.referencesBender, M. G., Leprieur, F., Mouillot, D., Kulbicki, M., Parravicini, V., Pie, M., Barneche, D., Oliveira-Santos, L., & Floeter, S. R. (2017). Isolation drives taxonomic and functional nestedness in tropical reef fish faunas. Ecography, 40, 425-435. https://doi.org/10.1111/ecog.02293
dc.relation.referencesBernal, M., & Rocha, L. (2011). Acanthurus tractus (Poey, 1860), a valid western Atlantic species of surgeonfish (Teleostei, Acanthuridae), distinct from Acanthurus bahianus (Castelnau, 1855). Zootaxa, 2905, 63-68. https://doi.org/10.11646/zootaxa.2905.1.5
dc.relation.referencesBinning, S. A., & Roche, D. G. (2015). Water flow and fin shape polymorphism in coral reef fishes. Ecology, 96(3), 828-839. https://doi.org/10.1890/14-0426.1
dc.relation.referencesBonaldo, R. M., Hoey, A. S., & Bellwood, D. R. (2014). The ecosystem roles of parrotfishes on tropical reefs. En Oceanography and Marine Biology. CRC Press.
dc.relation.referencesBorden, W. (1999). Comparative myology of the unicornfishes, Naso (Acanthuridae, Percomorpha), with implications for phylogenetic analysis. Journal of Morphology, 239, 191-224. https://doi.org/10.1002/(SICI)1097-4687(199902)239:2<191::AID- JMOR6>3.0.CO;2-2
dc.relation.referencesBrandl, S. J., & Bellwood, D. R. (2013). Morphology, sociality, and ecology: Can morphology predict pairing behavior in coral reef fishes? Coral Reefs, 32(3), 835-846. https://doi.org/10.1007/s00338-013-1042-0
dc.relation.referencesBrandl, S. J., Robbins, W. D., & Bellwood, D. R. (2015). Exploring the nature of ecological specialization in a coral reef fish community: Morphology, diet and foraging microhabitat use. Proceedings of The Royal Society B: Biological Sciences, 282(1815), 20151147. https://doi.org/10.1098/rspb.2015.1147
dc.relation.referencesBridge, T. C. L., Luiz, O. J., Coleman, R. R., Kane, C. N., & Kosaki, R. K. (2016). Ecological and morphological traits predict depthgeneralist fishes on coral reefs. Proceedings of the Royal Society B., 283, 20152332. https://doi.org/10.1098/rspb.2015.2332
dc.relation.referencesBriggs, J. C. (1974). Marine Zoogeography. McGraw-Hill
dc.relation.referencesBunting, P., Rosenqvist, A., Hilarides, L., Lucas, R., Thomas, N., Tadono, T., Worthington, T., Spalding, M., Murray, N., & Rebelo, L.- M. (2022). Global mangrove extent change 1996–2020: Global mangrove watch version 3.0. Remote Sensing, 14, 3657. https://doi.org/10.3390/rs14153657
dc.relation.referencesBurke, L., & Maidens, J. (2004). Reefs at Risk in the Caribbean. Washington, DC: World Resources Institute. https://bvearmb.do/handle/123456789/1526
dc.relation.referencesBurkepile, D. E., Adam, T. C., Allgeier, J. E., & Shantz, A. A. (2022). Functional diversity in herbivorous fishes on Caribbean reefs: The role of macroalgal traits in driving interspecific differences in feeding behavior. Food Webs, 33, e00255-e00255. https://doi.org/10.1016/j.fooweb.2022.e00255
dc.relation.referencesBurkepile, D. E., & Hay, M. E. (2010). Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PloS One, 5(1), e8963. https://doi.org/10.1371/journal.pone.0008963
dc.relation.referencesCarroll, A. M., Wainwright, P. C., Huskey, S. H., Collar, D. C., & Turingan, R. G. (2004). Morphology predicts suction feeding performance in centrarchid fishes. Journal of Experimental Biology, 207(22), 3873-3881. https://doi.org/10.1242/jeb.01227
dc.relation.referencesCarvajal-Gil, J. A., & Acero P., A. (2023). Abundancia en poblaciones de peces cirujanos (Acanthuridae) en un ambiente insular del Caribe colombiano. Biota Colombiana, 24(2). https://doi.org/10.21068/2539200x.1057
dc.relation.referencesChoat, J., Robbins, W., & Clements, K. (2004). The trophic status of herbivorous fishes on coral reefs: II. Food processing modes and trophodynamics. Marine Biology, 145, 445-454. https://doi.org/10.1007/s00227-004-1341-7
dc.relation.referencesClements, K. D., German, D. P., Piché, J., Tribollet, A., & Choat, J. H. (2016). Integrating ecological roles and trophic diversification on coral reefs: Multiple lines of evidence identify parrotfishes as microphages. Biological Journal of The Linnean Society, 120(4), 729-751. https://doi.org/10.1111/bij.12914
dc.relation.referencesCoates, A. G., & Obando, J. A. (1996). The geologic evolution of the Central American Isthmus (J. B. C. Jackson, Ed.; pp. 21-56). Chicago Univ. Press. https://oceanrep.geomar.de/id/eprint/46238/
dc.relation.referencesColeman, R. R., Kraft, D. W., Hoban, M. L., Toonen, R. J., & Bowen, B. W. (2023). Genomic assessment of larval odyssey: Selfrecruitment and biased settlement in the Hawaiian surgeonfish Acanthurus triostegus sandvicensis. Journal of Fish Biology, 102(3), 581-595. https://doi.org/10.1111/jfb.15294
dc.relation.referencesCorredor, J. E., Morell, J. M., López, J. M., Capella, J. E., & Armstrong, R. A. (2004). Cyclonic eddy entrains Orinoco river plume in eastern Caribbean. Eos, Transactions American Geophysical Union, 85(20), 197-202. https://doi.org/10.1029/2004EO200001
dc.relation.referencesCortés, J., Enochs, I. C., Sibaja-Cordero, J., Hernández, L., Alvarado, J. J., Breedy, O., Cruz-Barraza, J. A., Esquivel-Garrote, O., Fernández-García, C., Hermosillo, A., Kaiser, K. L., Medina-Rosas, P., Morales-Ramírez, Á., Pacheco, C., Pérez-Matus,A., Reyes-Bonilla, H., Riosmena-Rodríguez, R., Sánchez-Noguera, C., Wieters, E. A., & Zapata, F. A. (2017). Marine Biodiversity of Eastern Tropical Pacific Coral Reefs. En P. W. Glynn, D. P. Manzello, & I. C. Enochs (Eds.), Coral Reefs of the Eastern Tropical Pacific (Vol. 8, pp. 203-250). Springer Netherlands. https://doi.org/10.1007/978-94-017-7499-4_7
dc.relation.referencesCowman, P. F. (2014). Historical factors that have shaped the evolution of tropical reef fishes: A review of phylogenies, biogeography, and remaining questions. Frontiers in Genetics, 5, 394. https://doi.org/10.3389/fgene.2014.00394
dc.relation.referencesCowman, P. F., & Bellwood, D. R. (2013). The historical biogeography of coral reef fishes: Global patterns of origination and dispersal. Journal of Biogeography, 40(2), 209-224. https://doi.org/10.1111/jbi.12003
dc.relation.referencesDagua, C., Torres, R., & Monroy, J. (2018). Condiciones oceanográficas de la reserva de biosfera Seaflower 2014 – 2016. Boletín Científico CIOH, 37, 53-74. https://doi.org/10.26640/22159045.2018.449
dc.relation.referencesDatovo, A., & Bockmann, F. A. (2010). Dorsolateral head muscles of the catfish families Nematogenyidae and Trichomycteridae (Siluriformes: Loricarioidei): comparative anatomy and phylogenetic analysis. Neotropical Ichthyology, 8(2). https://doi.org/10.1590/s1679-62252010000200001
dc.relation.referencesDatovo, A., & Vari, R. (2014). The adductor mandibulae muscle complex in lower teleostean fishes (Osteichthyes: Actinopterygii): Comparative anatomy, synonymy, and phylogenetic implications. Zoological Journal of the Linnean Society, 171, 554-622. https://doi.org/10.1111/zoj.12142
dc.relation.referencesDavis, A. M., Unmack, P. J., Vari, R. P., & Betancur-R, R. (2016). Herbivory promotes dental disparification and macroevolutionary dynamics in grunters (Teleostei: Terapontidae), a freshwater adaptive radiation. The American Naturalist, 187(3), 320-333. https://doi.org/10.1086/684747
dc.relation.referencesDell, C. L. A., Longo, G. O., Burkepile, D. E., & Manfrino, C. (2020). Few herbivore species consume dominant macroalgae on a Caribbean coral reef. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00676
dc.relation.referencesDibattista, J., Wilcox, C., Craig, M., Rocha, L., & Bowen, B. (2011). Phylogeography of the Pacific blueline surgeonfish, Acanthurus nigroris, reveals high genetic connectivity and a cryptic endemic species in the Hawaiian Archipelago. Journal of Marine Biology, 2011, 17. https://doi.org/10.1155/2011/839134
dc.relation.referencesDoherty, P. J., Planes, S., & Mather, P. (1995). Gene flow and larval duration in seven species of fish from the Great Barrier Reef. Ecology, 76(8), 2373-2391. https://doi.org/10.2307/2265814
dc.relation.referencesDominici-Arosemena, A., & Wolff, M. (2006). Reef fish community structure in the Tropical Eastern Pacific (Panamá): Living on a relatively stable rocky reef environment. Helgoland Marine Research, 60(4), Article 4. https://doi.org/10.1007/s10152-006- 0045-4
dc.relation.referencesDromard, C., Bouchon-Navaro, Y., Harmelin, M., & Bouchon, C. (2014). Diversity of trophic niches among herbivorous fishes on a Caribbean reef (Guadeloupe, Lesser Antilles), evidenced by stable isotope and gut content analyses. Journal of Sea Research, 95, 124-131. https://doi.org/10.1016/j.seares.2014.07.014
dc.relation.referencesDuarte, S. A., & Acero P., A. (1988). Hábitos alimentarios de los peces del género Acanthurus (Perciformes: Acanthuridae) en la región de Santa Marta (Caribe colombiano). Revista de Biología Tropical, 36 (2B), 399-405
dc.relation.referencesDubuc, A., Quimbayo, J. P., Alvarado, J., Araya‐Arce, T., Arriaga, A., Ayala‐Bocos, A., Casas‐Maldonado, J., Chasqui, L., Cortés, J., Cupul-Magaña, A., Olivier, D., Olán-González, M., González, A., López-Pérez, A., Reyes-Bonilla, H., Smith, F., Rivera, F., Rodríguez Zaragoza, F., Rodríguez, J., & Bejarano, S. (2023). Patterns of reef fish taxonomic and functional diversity in the Eastern Tropical Pacific. Ecography, 2023, e06536. https://doi.org/10.1111/ecog.06536
dc.relation.referencesDuran, A., Adam, T., Palma, L., Moreno, S., Collado-Vides, L., & Burkepile, D. (2019). Feeding behavior in Caribbean surgeonfishes varies across fish size, algal abundance, and habitat characteristics. Marine Ecology, 40, e12561. https://doi.org/10.1111/maec.12561
dc.relation.referencesEble, J. A., Rocha, L. A., Craig, M. T., & Bowen, B. W. (2011). Not all larvae stay close to home: Insights into marine population connectivity with a focus on the brown surgeonfish (Acanthurus nigrofuscus). Journal of Marine Biology, 2011(1), 518516. https://doi.org/10.1155/2011/518516
dc.relation.referencesEkman, S. (1953). Zoogeography of the Sea. Annals and Magazine of Natural History, 6(63), 240. https://doi.org/10.1080/00222935308654417
dc.relation.referencesElliott, J., & Bellwood, D. R. (2003). Alimentary tract morphology and diet in three coral reef fish families. Journal of Fish Biology, 63, 1598-1609. https://doi.org/10.1111/j.1095-8649.2003.00272.x
dc.relation.referencesFerry-Graham, L. A., Bolnick, D. I., & Wainwright, P. C. (2002). Using functional morphology to examine the ecology and evolution of specialization. Integrative and Comparative Biology, 42(2), 265-277. https://doi.org/10.1093/icb/42.2.265
dc.relation.referencesFiedler, P. C., & Lavín, M. (2006). Introduction: A review of eastern tropical Pacific oceanography. Progress in Oceanography, 69, 94- 100. https://doi.org/10.1016/j.pocean.2006.03.006
dc.relation.referencesFiedler, P. C., & Talley, L. D. (2006). Hydrography of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2), 143- 180. https://doi.org/10.1016/j.pocean.2006.03.008
dc.relation.referencesFishelson, L., & Delarea, Y. (2014). Comparison of the oral cavity architecture in surgeonfishes (Acanthuridae, Teleostei), with emphasis on the taste buds and jaw “retention plates”. Environmental Biology of Fishes, 97. https://doi.org/10.1007/s10641- 013-0139-1
dc.relation.referencesFloeter, S. R., Rocha, L., Robertson, D. R., Joyeux, J.-C., Smith-Vaniz, W., Wirtz, P., Edwards, A., Barreiros, J., Ferreira, C., Gasparini, J., Brito, A., Falcón, J., Bowen, B., & Bernardi, G. (2008). Atlantic reef fish biogeography and evolution. Journal of Biogeography, 35, 22-47. https://doi.org/10.1111/j.1365-2699.2007.01790.x
dc.relation.referencesFloeter, S. R., Bender, M. G., Siqueira, A. C., & Cowman, P. F. (2018). Phylogenetic perspectives on reef fish functional traits. Biological Reviews, 93(1), 131-151. https://doi.org/10.1111/brv.12336
dc.relation.referencesFox, R. J., & Bellwood, D. R. (2013). Niche partitioning of feeding microhabitats produces a unique function for herbivorous rabbitfishes (Perciformes, Siganidae) on coral reefs. Coral Reefs, 32(1), 13-23. https://doi.org/10.1007/s00338-012-0945-5
dc.relation.referencesFrancini-Filho, R. B., Ferreira, C. M., Coni, E. O. C., De Moura, R. L., & Kaufman, L. (2010). Foraging activity of roving herbivorous reef fish (Acanthuridae and Scaridae) in eastern Brazil: Influence of resource availability and interference competition. Journal of the Marine Biological Association of the United Kingdom, 90(3), 481-492. https://doi.org/10.1017/S0025315409991147
dc.relation.referencesFranco-Herrera, A. (2005). Oceanografía de la ensenada de Gaira (1.a ed.). Universidad Jorge Tadeo Lozano. https://doi.org/10.2307/j.ctv2175hm0
dc.relation.referencesFrédérich, B., Sorenson, L., Santini, F., Slater, G. J., & Alfaro, M. E. (2013). Iterative ecological radiation and convergence during the evolutionary history of damselfishes (Pomacentridae). The American Naturalist, 181(1), 94-113. https://doi.org/10.1086/668599
dc.relation.referencesFricke, R., Eschmeyer, W. N. & Van der Laan, R. (eds) 2024. ESCHMEYER'S CATALOG OF FISHES: GENERA, SPECIES,REFERENCES.(http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp). Electroni c version accessed dd mmm 2024.
dc.relation.referencesFriedland, K. D., Ahrenholz, D. W., Smith, J. W., Manning, M., & Ryan, J. (2006). Sieving functional morphology of the gill raker feeding apparatus of Atlantic menhaden. Journal of Experimental Zoology, 305(12), 974-985
dc.relation.referencesFriedman, S. T., Price, S. A., Hoey, A. S., & Wainwright, P. C. (2016). Ecomorphological convergence in planktivorous surgeonfishes. Journal of Evolutionary Biology, 29(5), 965-978. https://doi.org/10.1111/jeb.12837
dc.relation.referencesFriedman, S. T., Price, S. A., & Wainwright, P. C. (2021). The effect of locomotion mode on body shape evolution in teleost fishes. Integrative Organismal Biology, 3(1), obab016. https://doi.org/10.1093/iob/obab016
dc.relation.referencesFriel, J. P., & Wainwright, P. C. (1999). Evolution of complexity in motor patterns and jaw musculature of tetraodontiform fishes. Journal of Experimental Biology, 202(7), 867-880. https://doi.org/10.1242/jeb.202.7.867
dc.relation.referencesFroese, R., & D. Pauly. Editors. 2024.FishBase. World Wide Web electronic publication. www.fishbase.org, (02/2024)
dc.relation.referencesFulton, C. J. (2007). Swimming speed performance in coral reef fishes: Field validations reveal distinct functional groups. Coral Reefs, 26(2), 217-228. https://doi.org/10.1007/s00338-007-0195-0
dc.relation.referencesFulton, C. J., & Bellwood, D. R. (2004). Wave exposure, swimming performance, and the structure of tropical and temperate reef fish assemblages. Marine Biology, 144(3), 429-437. https://doi.org/10.1007/s00227-003-1216-3
dc.relation.referencesFulton, C. J., Bellwood, D. R., & Wainwright, P. C. (2001). The relationship between swimming ability and habitat use in wrasses (Labridae). Marine Biology, 139(1), 25-33. https://doi.org/10.1007/s002270100565
dc.relation.referencesFulton, C. J., Bellwood, D. R., & Wainwright, P. C. (2005). Wave energy and swimming performance shape coral reef fish assemblages. Proceedings of The Royal Society B: Biological Sciences, 272(1565), 827-832. https://doi.org/10.1098/rspb.2004.3029
dc.relation.referencesGibson, S. Z. (2015). Evidence of a specialized feeding niche in a Late Triassic ray-finned fish: Evolution of multidenticulate teeth and benthic scraping in †Hemicalypterus. The Science of Nature, 102(3), 10. https://doi.org/10.1007/s00114-015-1262-y
dc.relation.referencesGilbes, F., & Armstrong, R. (2004). Phytoplankton in the eastern Caribbean Sea as detected with space remote sensing. International Journal of Remote Sensing, 25, 1449-1453. https://doi.org/10.1080/01431160310001592427
dc.relation.referencesGlynn, P., & Ault, J. S. (2000). A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs, 19(1), 1- 23. https://doi.org/10.1007/s003380050220
dc.relation.referencesGlynn, P., Feingold, J., Baker, A., Banks, S., Baums, I., Cole, J., Colgan, M., Fong, P., Glynn, P., Keith, I., Manzello, D., Riegl, B., Ruttenberg, B., Smith, T., & Vera-Zambrano, M. (2018). State of corals and coral reefs of the Galápagos Islands (Ecuador): Past, present and future. Marine Pollution Bulletin, 133. https://doi.org/10.1016/j.marpolbul.2018.06.002
dc.relation.referencesGómez Gaspar, A., & Acero P., A. (2020). Comparación de las surgencias de la Guajira colombiana y del oriente venezolano. Boletín de Investigaciones Marinas y Costeras, 49(2), 131-172. https://doi.org/10.25268/bimc.invemar.2020.49.2.943
dc.relation.referencesGrigg, R. W., & Hey, R. (1992). Paleoceanography of the Tropical Eastern Pacific Ocean. Science, 255(5041), 172-178
dc.relation.referencesGrubich, J., Huskey, S., Crofts, S., Orti, G., & Porto, J. (2012). Mega-Bites: Extreme jaw forces of living and extinct piranhas (Serrasalmidae). Scientific reports, 2, 1009. https://doi.org/10.1038/srep01009
dc.relation.referencesGuerra, A. S., Van Wert, J. C., Haupt, A. J., McCauley, D. J., Eliason, E. J., Young, H. S., Lecchini, D., White, T. D., & Caselle, J. E. (2023). Differences in the behavior and diet between shoaling and solitary surgeonfish (Acanthurus triostegus). Ecology and Evolution, 13(1), e9686. https://doi.org/10.1002/ece3.9686
dc.relation.referencesGuiasu, R. C., & Winterbottom, R. (1993). Osteological evidence for the phylogeny of recent genera of surgeonfishes (Percomorpha, Acanthuridae). Copeia, 1993(2), 300-312. https://doi.org/10.2307/1447130
dc.relation.referencesGuillemain, M., Martin, G., & Fritz, H. (2002). Feeding methods, visual fields and vigilance in dabbling ducks (Anatidae). Functional Ecology, 16, 522-529. https://doi.org/10.1046/j.1365-2435.2002.00652.x
dc.relation.referencesGuillerme, T. (2018). dispRity: A modular R package for measuring disparity. Methods in Ecology and Evolution, 9(7), 1755-1763. https://doi.org/10.1111/2041-210X.13022
dc.relation.referencesGuillerme, T., Cooper, N., Brusatte, S. L., Davis, K. E., Jackson, A. L., Gerber, S., Goswami, A., Healy, K., Hopkins, M. J., Jones, M. E. H., Lloyd, G. T., O’Reilly, J. E., Pate, A., Puttick, M. N., Rayfield, E. J., Saupe, E. E., Sherratt, E., Slater, G. J., Weisbecker, V., … Donoghue, P. C. J. (2020). Disparities in the analysis of morphological disparity. Biology Letters, 16(7), 20200199. https://doi.org/10.1098/rsbl.2020.0199
dc.relation.referencesHastings, P. (2008). Biogeography of the Tropical Eastern Pacific: Distribution and phylogeny of chaenopsid fishes. Zoological Journal of the Linnean Society, 128, 319-335. https://doi.org/10.1111/j.1096-3642.2000.tb00166.x
dc.relation.referencesHeck, K. L., & McCoy, E. D. (1978). Long-distance dispersal and the reef-building corals of the Eastern Pacific. Marine Biology, 48(4), 349-356. https://doi.org/10.1007/BF00391639
dc.relation.referencesHerrel, A., Adriaens, D., Verraes, W., & Aerts, P. (2002). Bite performance in clariid fishes with hypertrophied jaw adductors as deduced by bite modeling. Journal of morphology, 253, 196-205. https://doi.org/10.1002/jmor.1121
dc.relation.referencesHidalgo, H. G., Durán-Quesada, A. M., Amador, J. A., & Alfaro, E. J. (2015). The Caribbean low-level jet, the Inter-Tropical Convergence Zone and precipitation patterns in the Intra-Americas Sea: A proposed dynamical mechanism. Geografiska Annaler. Series A, Physical Geography, 97(1), 41-59
dc.relation.referencesHuertas, V., & Bellwood, D. R. (2018). Feeding innovations and the first coral-feeding fishes. Coral Reefs, 37(3), 649-658. https://doi.org/10.1007/s00338-018-1689-7
dc.relation.referencesHughes, T. P., Rodrigues, M. J., Bellwood, D. R., Ceccarelli, D. M., Hoegh-Guldberg, O., McCook, L. J., Moltschaniwskyj, N. A., Pratchett, M. S., Steneck, R. S., & Willis, B. L. (2007). Phase shifts, herbivory, and the resilience of coral reefs to climate change. Current Biology, 17(4), 360-365. https://doi.org/10.1016/j.cub.2006.12.049
dc.relation.referencesHuie, J., Summers, A., & Kolmann, M. (2019). Body shape separates guilds of rheophilic herbivores (Myleinae: Serrasalmidae) better than feeding morphology. Proceedings of the Academy of Natural Sciences of Philadelphia, 166, 1. https://doi.org/10.1635/053.166.0116
dc.relation.referencesHulsey, C. D., & Wainwright, P. C. (2002). Projecting mechanics into morphospace: Disparity in the feeding system of labrid fishes. Proceedings of The Royal Society B: Biological Sciences, 269(1488), 317-326. https://doi.org/10.1098/rspb.2001.1874
dc.relation.referencesJackson, J. (1997). Reefs since Columbus. Coral Reefs, 16, S23-S32. https://doi.org/10.1007/s003380050238
dc.relation.referencesJones, R. S. (1967). Ecological relationships in Hawaiian and Johnston Island Acanthuridae (surgeonfishes) with emphasis on food and feeding habits [Ph.D., University of Hawaii (Honolulu)]. http://hdl.handle.net/10125/11989
dc.relation.referencesJordan, D. S. (1908). The law of geminate species. The American Naturalist, 42(494), 73-80
dc.relation.referencesJuárez-Hernández, L. G., Tapia-García, M., & Ramírez-Gutiérrez, J. M. (2021). Ictiofauna de la bahía Maguey, Oaxaca, México, y su relación con la estructura del hábitat. Ciencias Marinas, 47(4), Article 4. https://doi.org/10.7773/cm.v47i4.3235
dc.relation.referencesJury, M. R. (2009). A quasi-decadal cycle in Caribbean climate. Journal of Geophysical Research: Atmospheres, 114(D13). https://doi.org/10.1029/2009JD011741
dc.relation.referencesKenaley, C. P., Stote, A., & Flammang, B. E. (2014). The morphological basis of labriform rowing in the deep-sea Bigscale Scopelogadus beanii (Percomorpha: Beryciformes). Journal of Experimental Marine Biology and Ecology, 461, 297-305. https://doi.org/10.1016/j.jembe.2014.07.024
dc.relation.referencesKiessling, A., Storebakken, T., Åsgård, T., & Kiessling, K.-H. (1991). Changes in the structure and function of the epaxial muscle of rainbow trout (Oncorhynchus mykiss) in relation to ration and age: I. Growth dynamics. Aquaculture, 93(4). https://doi.org/10.1016/0044-8486(91)90225-V
dc.relation.referencesKing, J. R., & Jackson, D. A. (1999). Variable selection in large environmental data sets using principal components analysis. Environmetrics, 10(1), 67-77. https://doi.org/10.1002/(SICI)1099-095X(199901/02)10:1<67::AID-ENV336>3.0.CO;2-0
dc.relation.referencesKlanten, S. O., Herwerden, L. V., Choat, J. H., & Blair, D. (2004). Patterns of lineage diversification in the genus Naso (Acanthuridae). Molecular Phylogenetics and Evolution, 32(1), 221-235. https://doi.org/10.1016/j.ympev.2003.11.008
dc.relation.referencesKonow, N., & Bellwood, D. R. (2005). Prey-capture in Pomacanthus semicirculatus (Teleostei, Pomacanthidae): Functional implications of intramandibular joints in marine angelfishes. The Journal of Experimental Biology, 208(Pt 8), 1421-1433. https://doi.org/10.1242/jeb.01552
dc.relation.referencesKonow, N., Bellwood, D. R., Wainwright, P. C., & Kerr, A. M. (2008). Evolution of novel jaw joints promote trophic diversity in coral reef fishes. Biological Journal of The Linnean Society, 93(3), 545-555. https://doi.org/10.1111/j.1095-8312.2007.00893.x
dc.relation.referencesKorsmeyer, K., Steffensen, J., & Herskin, J. (2002). Energetics of median and paired fin swimming, body and caudal fin swimming, and gait transition in parrotfish (Scarus schlegeli) and triggerfish (Rhinecanthus aculeatus). The Journal of Experimental Biology, 205, 1253-1263. https://doi.org/10.1242/jeb.205.9.1253
dc.relation.referencesKroeker, K., Kordas, R., Crim, R., Hendriks, I., Ramajo, L., Singh, G., Duarte, C., & Gattuso, J.-P. (2013). Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob Chang Biol. Global change biology, 19. https://doi.org/10.1111/gcb.12179
dc.relation.referencesKulbicki, M., Parravicini, V., Bellwood, D. R., Arias-González, E., Chabanet, P., Floeter, S. R., Friedlander, A. M., McPherson, J. M., Myers, R., Vigliola, L., & Mouillot, D. (2013). Global biogeography of reef fishes: A hierarchical quantitative delineation of regions. PLOS ONE, 8(12). https://doi.org/10.1371/journal.pone.0081847
dc.relation.referencesLangerhans, R. B., & Reznick, D. N. (2010). Ecology and evolution of swimming performance in fishes: Predicting evolution with biomechanics. En P. Domenici & B. G. Kapoor (Eds.), Fish Locomotion (1.a ed., pp. 200-248). CRC Press. https://doi.org/10.1201/b10190-7
dc.relation.referencesLarouche, O., Benton, B., Corn, K. A., Sarah T. Friedman, Friedman, S. T., Gross, D., Iwan, M., Kessler, B., Martinez, C. M., Rodriguez, S., Whelpley, H., Wainwright, P. C., & Price, S. A. (2020). Reef-associated fishes have more maneuverable body shapes at a macroevolutionary scale. Coral Reefs, 39(5), 1427-1439. https://doi.org/10.1007/s00338-020-01976-w
dc.relation.referencesLawson, G. L., Kramer, D. L., & Hunte, W. (1999). Size-related habitat use and schooling behavior in two species of surgeonfish (Acanthurus bahianus and A. coeruleus) on a fringing reef in Barbados, West Indies. Environmental Biology of Fishes, 54(1), 19-33. https://doi.org/10.1023/A:1007477527663
dc.relation.referencesLeigh, E. G., O’Dea, A., & Vermeij, G. J. (2014). Historical biogeography of the Isthmus of Panama. Biological Reviews, 89(1), 148- 172. https://doi.org/10.1111/brv.12048
dc.relation.referencesLessios, H., & Robertson, D. R. (2006). Crossing the impassable: Genetic connections in 20 reef fishes across the eastern Pacific barrier. Proceedings. Biological sciences / The Royal Society, 273, 2201-2208. https://doi.org/10.1098/rspb.2006.3543
dc.relation.referencesLindberg, D. R. (1991). Marine biotic interchange between the Northern and Southern Hemispheres. Paleobiology, 17(3), 308-324
dc.relation.referencesLobato, F., Barneche, D., Siqueira, A., Liedke, A., Lindner, A., Pie, M., Bellwood, D. R., & Floeter, S. R. (2014). Diet and diversification in the evolution of coral reef fishes. PloS One, 9(7), e102094. https://doi.org/10.1371/journal.pone.0102094
dc.relation.referencesLomolino, M. V. (1996). Investigating causality of nestedness of insular communities: Selective immigrations or extinctions? Journal of Biogeography, 23(5), 699-703
dc.relation.referencesLongo, G. O., Morais, R. A., Martins, C. D. L., Mendes, T. C., Aued, A. W., Cândido, D. V., Oliveira, J. C. de, Nunes, L. T., Fontoura, L., Sissini, M. N., Teschima, M. M., Silva, M. B., Ramlov, F., Gouvea, L. P., Ferreira, C. E. L., Segal, B., Horta, P. A., & Floeter, S. R. (2015). Between-habitat variation of benthic cover, reef fish assemblage and feeding pressure on the benthos at the only atoll in South Atlantic: Rocas Atoll, NE Brazil. PLOS ONE, 10(6), e0127176. https://doi.org/10.1371/journal.pone.0127176
dc.relation.referencesLópez-Pérez, A. (2017). Revisiting the Cenozoic history and the origin of the Eastern Pacific Coral Fauna. En P. W. Glynn, D. P. Manzello, & I. C. Enochs (Eds.), Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment (pp. 39-57). Springer Netherlands. https://doi.org/10.1007/978-94-017-7499-4_2
dc.relation.referencesLudt, W. B., Rocha, L., Erdmann, M. V., & Chakrabarty, P. (2015). Skipping across the tropics: The evolutionary history of sawtail surgeonfishes (Acanthuridae: Prionurus). Molecular Phylogenetics and Evolution, 84. https://doi.org/10.1016/j.ympev.2014.12.017
dc.relation.referencesLudt, W. B., Bernal, M. A., Kenworthy, E., Salas, E., & Chakrabarty, P. (2019). Genomic, ecological, and morphological approaches to investigating species limits: A case study in modern taxonomy from Tropical Eastern Pacific surgeonfishes. Ecology and Evolution, 9(7), 4001-4012. https://doi.org/10.1002/ece3.5029
dc.relation.referencesMatthews, J. E., & Holcombe, T. L. (1985). Venezuela Basin of the Caribbean Sea—Stratigraphy and sediment distribution. Benthic Ecology and Sedimentary Processes of the Venezuela Basin: Past and Present, 68(1), 1-23. https://doi.org/10.1016/0025- 3227(85)90003-9
dc.relation.referencesManzello, D. (2010). Coral growth with thermal stress and ocean acidification: Lessons from the eastern tropical Pacific. Coral Reefs, 29, 749-758. https://doi.org/10.1007/s00338-010-0623-4
dc.relation.referencesMihalitsis, M., & Wainwright, P. (2024). Feeding kinematics of a surgeonfish reveal novel functions and relationships to reef substrata. Communications Biology, 7(13). https://doi.org/10.1038/s42003-023-05696-z
dc.relation.referencesMiloslavich, P., Díaz, J. M., Klein, E., Alvarado, J. J., Díaz, C., Gobin, J., Escobar-Briones, E., Cruz-Motta, J. J., Weil, E., Cortés, J., Bastidas, A. C., Robertson, R., Zapata, F., Martín, A., Castillo, J., Kazandjian, A., & Ortiz, M. (2010). Marine biodiversity in the Caribbean: Regional estimates and distribution Patterns. PLOS ONE, 5(8), e11916. https://doi.org/10.1371/journal.pone.0011916
dc.relation.referencesMora, C., & Robertson, D. R. (2005). Factors shaping the ranges size frequency distribution of fishes in the Tropical Eastern Pacific. Journal of Biogeography, 32, 277-286. https://doi.org/10.1111/j.1365-2699.2004.01155.x
dc.relation.referencesMorgan, I., & Kramer, D. (2004). The social organization of adult blue tangs, Acanthurus coeruleus, on a fringing reef, Barbados, West Indies. Environmental Biology of Fishes, 71(3), 261-273. https://doi.org/10.1007/s10641-004-0299-0
dc.relation.referencesMouillot, D., Villéger, S., Parravicini, V., Kulbicki, M., Arias, E., Bender, M., Chabanet, P., Floeter, S. R., Friedlander, A., Vigliola, L., & Bellwood, D. (2014). Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences of the United States of America, 111. https://doi.org/10.1073/pnas.1317625111
dc.relation.referencesMousa, M., Azab, A., Khalaf-Allah, H., & Mohamed, M. (2016). Comparative studies on the gill rakers of some marine fishes with different feeding habits. International Journal of Development, 5, 91-108. https://doi.org/10.21608/idj.2016.146751
dc.relation.referencesNalley, E., Donahue, M., Heenan, A., & Toonen, R. (2021). Quantifying the diet diversity of herbivorous coral reef fishes using systematic review and DNA metabarcoding. Environmental DNA, 4. https://doi.org/10.1002/edn3.247
dc.relation.referencesOrtíz, J., Otero, L., Restrepo, J., Ruiz-Merchán, J., & Cadena, M. (2013). Cold fronts in the Colombian Caribbean Sea and their relationship to extreme wave events. Natural Hazards and Earth System Sciences, 13, 2797-2804. https://doi.org/10.5194/nhess-13-2797-2013
dc.relation.referencesPennington, J. T., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes, R., & Chavez, F. P. (2006). Primary production in the eastern tropical Pacific: A review. Progress in Oceanography, 69, 285-317. https://doi.org/10.1016/j.pocean.2006.03.012
dc.relation.referencesPeres-Neto, P. R. (2004). Patterns in the co-occurrence of fish species in streams: The role of site suitability, morphology and phylogeny versus species interactions. Oecologia, 140(2), 352-360. https://doi.org/10.1007/s00442-004-1578-3
dc.relation.referencesPindakiewicz, M., Talanda, M., Sulej, T., Niedzwiedzki, G., Sennikov, A. G., Bakaev, A. S., Bulanov, V. V., Golubev, V. K., & Minikh, A. (2020). Feeding convergence among ray-finned fishes: Teeth of the herbivorous actinopterygians from the latest Permian of East European Platform, Russia. Acta Palaeontologica Polonica, 65(1), 71-79.
dc.relation.referencesPolly, P. D., Lawing, A. M., Fabre, A.-C., & Goswami, A. (2013). Phylogenetic Principal Components Analysis and Geometric Morphometrics. Hystrix, the Italian Journal of Mammalogy, 24(1), 33-41. https://doi.org/10.4404/hystrix-24.1-6383
dc.relation.referencesPombo-Ayora, L., & Tavera, J. (2021). Are feeding modes concealing morphofunctional diversity? The case of the New World parrotfishes. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.634046
dc.relation.referencesPresti, P., Johnson, G. D., & Datovo, A. (2020). Anatomy and evolution of the pectoral filaments of threadfins (Polynemidae). Scientific Reports, 10(1), 17751. https://doi.org/10.1038/s41598-020-74896-y
dc.relation.referencesPrice, S. A., Holzman, R., Near, T. J., & Wainwright, P. C. (2011). Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. Ecology Letters, 14(5), 462-469. https://doi.org/10.1111/j.1461-0248.2011.01607.x
dc.relation.referencesPrice, S. A., Tavera, J., Near, T. J., & Wainwright, P. C. (2013). Elevated rates of morphological and functional diversification in reefdwelling haemulid fishes. Evolution, 67(2), 417-428. https://doi.org/10.1111/j.1558-5646.2012.01773.x
dc.relation.referencesPrice, S. A., Friedman, S., Corn, K., Martínez, C., Larouche, O., & Wainwright, P. (2019). Building a body shape morphospace of teleostean fishes. Integrative and comparative biology, 59. https://doi.org/10.1093/icb/icz115
dc.relation.referencesPrice, N., Chen, K.-S., Chen, C., & Wen, C. (2021). Scraping and grazing herbivorous/detritivorous fish display opposite feeding behaviours under different protection regulations. Marine Biology Research, 1-16. https://doi.org/10.21203/rs.3.rs- 230129/v1
dc.relation.referencesPujos, M., Monente, J., Latouche, C., & Maillet, N. (1997). Origine de la sédimentation dans le delta de l’Orénoque et le golfe de Paria (Venezuela): Impact du système dispersif amazonien. Oceanológica Acta, 20(6), 799-809.
dc.relation.referencesPurcell, S. W., & Bellwood, D. R. (1993). A functional analysis of food procurement in two surgeonfish species, Acanthurus nigrofuscus and Ctenochaetus striatus (Acanthuridae). Environmental Biology of Fishes, 37(2), 139-159. https://doi.org/10.1007/bf00000589
dc.relation.referencesQuitzau, M., Frelat, R., Bonhomme, V., Möllmann, C., Nagelkerke, L., & Bejarano, S. (2022). Traits, landmarks and outlines: Three congruent sides of a tale on coral reef fish morphology. Ecology and Evolution, 12(4), e8787. https://doi.org/10.1002/ece3.8787
dc.relation.referencesRamírez-Ortiz, G., Calderón-Aguilera, L., Reyes-Bonilla, H., Ayala-Bocos, A., Hernández, L., Fernández-Rivera Melo, F., LópezPérez, A., & Dominici‐Arosamena, A. (2017). Functional diversity of fish and invertebrates in coral and rocky reefs of the Eastern Tropical Pacific. Marine Ecology, 38, e12447. https://doi.org/10.1111/maec.12447
dc.relation.referencesRandall, J. E. (2001). Surgeonfishes of Hawaii and the world. Mutual Publishing and Bishop Museum Press
dc.relation.referencesRasband, W. (2011). ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA. https://api.semanticscholar.org/CorpusID:92427858
dc.relation.referencesRempel, H. S., Siebert, A. K., Van Wert, J. C., Bodwin, K. N., & Ruttenberg, B. I. (2022). Feces consumption by nominally herbivorous fishes in the Caribbean: An underappreciated source of nutrients? Coral Reefs, 41(2), 355-367. https://doi.org/10.1007/s00338-022-02228-9
dc.relation.referencesRevell, L. J. (2008). Phylogenetic signal, evolutionary process, and rate. Systematic Biology, 57(4), 591-601. https://doi.org/10.1080/10635150802302427
dc.relation.referencesRevell, L. J. (2009). Size-correction and principal components for interspecific comparative studies. Evolution; international journal of organic evolution, 63, 3258-3268. https://doi.org/10.1111/j.1558-5646.2009.00804.x
dc.relation.referencesRevell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217-223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
dc.relation.referencesRichardson, P. L. (2005). Caribbean Current and eddies as observed by surface drifters. Deep Sea Research Part II: Topical Studies in Oceanography, 52(3), 429-463. https://doi.org/10.1016/j.dsr2.2004.11.001
dc.relation.referencesRiosmena-Rodríguez, R., Moreno-Sánchez, X., & Abitia, A. (2014). Diet of the yellowtail surgeonfish Prionurus punctatus (Gill, 1862) on the rocky reef of Los Frailes, Baja California Sur, México. Cahiers de Biologie Marine, 55, 1-8
dc.relation.referencesRobertson, D. R. (1998). Do coral-reef fish faunas have a distinctive taxonomic structure? Coral Reefs, 17, 179-186. https://doi.org/10.1007/s003380050113
dc.relation.referencesRobertson, D. R., Grove, J. S., & McCosker, J. E. (2004). Tropical transpacific shore fishes. Pacific Science, 58(4), 507-565. https://doi.org/10.1353/psc.2004.0041
dc.relation.referencesRobertson, D. R, Allen, G.R, Peña, E., & Estape, C.A. 2024. Peces Costeros del Pacífico Oriental Tropical: sistema de Información en línea. Versión 3.0 Instituto Smithsonian de Investigaciones Tropicales, Balboa, República de Panamá. (24-07-2024)
dc.relation.referencesRocha, L., Bass, A., Robertson, D. R., & Bowen, B. (2002). Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae). Molecular ecology, 11, 243-252. https://doi.org/10.1046/j.0962-1083.2001.01431.x
dc.relation.referencesRoff, G., Clark, T., Reymond, C., Zhao, J., McCook, L., Done, T., & Pandolfi, J. (2013). Paleoecological evidence of a historical collapse of corals at Pelorus Island, inshore Great Barrier Reef, following European settelment. Proc. R. Soc. Lond., 280
dc.relation.referencesRüber, L., & Zardoya, R. (2005). Rapid cladogenesis in fish revisited. Evolution; international journal of organic evolution, 59, 1119- 1127. https://doi.org/10.1554/04-394
dc.relation.referencesScott, J. J., Adam, T. C., Duran, A., Burkepile, D. E., & Rasher, D. B. (2020). Intestinal microbes: An axis of functional diversity among large marine consumers. Proceedings of the Royal Society B: Biological Sciences, 287(1924), 20192367. https://doi.org/10.1098/rspb.2019.2367
dc.relation.referencesSiqueira, A. C., Bellwood, D. R., & Cowman, P. F. (2019a). Historical biogeography of herbivorous coral reef fishes: The formation of an Atlantic fauna. Journal of Biogeography, 46(7), 1611-1624. https://doi.org/10.1111/jbi.13631
dc.relation.referencesSiqueira, A. C., Bellwood, D. R., & Cowman, P. F. (2019b). The evolution of traits and functions in herbivorous coral reef fishes through space and time. Proceedings of The Royal Society B: Biological Sciences, 286(1897), 20182672. https://doi.org/10.1098/rspb.2018.2672
dc.relation.referencesSorenson, L., Santini, F., Carnevale, G., & Alfaro, M. (2013). A multi-locus timetree of surgeonfishes (Acanthuridae, Percomorpha), with revised family taxonomy. Molecular Phylogenetics and Evolution, 68(1), 150-160. https://doi.org/10.1016/j.ympev.2013.03.014
dc.relation.referencesSteneck, R. S. (1983). Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology, 9(1), 44-61. https://doi.org/10.1017/S0094837300007375
dc.relation.referencesSteneck, R. S., & Dethier, M. (1994). A functional group approach to the structure of algal-dominated communities. Oikos, 69. https://doi.org/10.2307/3545860
dc.relation.referencesStreelman, J. T., Alfaro, M. E., Westneat, M. W., Bellwood, D. R., & Karl, S. A. (2002). Evolutionary history of the parrotfishes: Biogeography, ecomorphology, and comparative diversity. Evolution, 56(5), 961-971. https://doi.org/10.1111/j.0014- 3820.2002.tb01408.x
dc.relation.referencesStreit, R. P., Hoey, A. S., & Bellwood, D. R. (2015). Feeding characteristics reveal functional distinctions among browsing herbivorous fishes on coral reefs. Coral Reefs, 34(4), 1037-1047. https://doi.org/10.1007/s00338-015-1322-y
dc.relation.referencesSweson, N. G., Enquist, B. J., Pither, J., Thompson, J., & Zimmerman, J. K. (2006). The problem and promise of scale dependency in community phylogenetics. Ecology, 87(10), 2418-2424
dc.relation.referencesTamura, T. (1957). A study of visual perception in fish, especially on resolving power and accommodation. Nippon Suisan Gakkaishi, 22, 536-557
dc.relation.referencesTebbett, S. B., Goatley, C. H. R., & Bellwood, D. R. (2017). Clarifying functional roles: Algal removal by the surgeonfishes Ctenochaetus striatus and Acanthurus nigrofuscus. Coral Reefs, 36(3), 803-813. https://doi.org/10.1007/s00338-017-1571- z
dc.relation.referencesTebbett, S. B., Siqueira, A., & Bellwood, D. R. (2022). The functional roles of surgeonfishes on coral reefs: Past, present and future. Reviews in Fish Biology and Fisheries, 32, 1-53. https://doi.org/10.1007/s11160-021-09692-6
dc.relation.referencesTheo, A. H., & Shanker, K. (2022). Composition and behavior of mixed-species foraging groups of reef fish in the Lakshadweep islands, India. Bulletin of Marine Science, 98(1), 53-72. https://doi.org/10.5343/bms.2020.0054
dc.relation.referencesThorsen, D. H., & Westneat, M. W. (2005). Diversity of pectoral fin structure and function in fishes with labriform propulsion. Journal of Morphology, 263(2), 133-150. https://doi.org/10.1002/jmor.10173
dc.relation.referencesTyler, J. C. (1970). Osteological aspects of interrelationships of surgeonfish genera (Acanthuridae). Proceedings of the Academy of Natural Sciences of Philadelphia, 122, 87-124
dc.relation.referencesTyler, J. C., & Bannikov, A. (1997). Relationships of the fossil and recent genera of rabbitfishes (Acanthuroidei: Siganidae). Smithsonian Contributions to Paleobiology, 84, 1-35. https://doi.org/10.5479/si.00810266.84.1
dc.relation.referencesVilléger, S., Novack-Gottshall, P., & Mouillot, D. (2011). The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters, 14, 561-568. https://doi.org/10.1111/j.1461- 0248.2011.01618.x
dc.relation.referencesWaechter, L. S., Luiz, O. J., Leprieur, F., & Bender, M. G. (2022). Functional biogeography of marine vertebrates in Atlantic Ocean reefs. Diversity and Distributions, 28(8), 1680-1693. https://doi.org/10.1111/ddi.13430
dc.relation.referencesWainwright, P. C. (2005). Functional morphology of the pharyngeal jaw apparatus. Fish Physiology, 23, 77-101. https://doi.org/10.1016/s1546-5098(05)23003-0
dc.relation.referencesWainwright, P. C. (2007). Functional versus morphological diversity in macroevolution. Annual Review of Ecology, Evolution, and Systematics, 38(1), 381-401. https://doi.org/10.1146/annurev.ecolsys.38.091206.095706
dc.relation.referencesWainwright, P. C., & Bellwood, D. R. (2002). Ecomorphology of feeding in coral reef fishes. En P. F. Sale (Ed.), Coral Reef Fishes (pp. 33-55). Academic Press. https://doi.org/10.1016/B978-012615185-5/50004-9
dc.relation.referencesWainwright, P. C., & Price, S. A. (2017). Innovation and diversity of the feeding mechanism in parrotfishes. En Biology of Parrotfishes. CRC Press.
dc.relation.referencesWainwright, P. C., Bellwood, D. R., & Westneat, M. W. (2002). Ecomorphology of locomotion in labrid fishes. Environmental Biology of Fishes, 65(1), 47-62. https://doi.org/10.1023/a:1019671131001
dc.relation.referencesWainwright, P. C., Bellwood, D. R., Westneat, M. W., Grubich, J. R., & Hoey, A. S. (2004). A Functional morphospace for the skull of labrid fishes: Patterns of diversity in a complex biomechanical system. Biological Journal of The Linnean Society, 82(1), 1- 25. https://doi.org/10.1111/j.1095-8312.2004.00313.x
dc.relation.referencesWainwright, P. C., Alfaro, M. E., Bolnick, D. I., & Hulsey, C. D. (2005). Many-to-one mapping of form to function: A general principle in organismal design? Integrative and Comparative Biology, 45(2), 256-262. https://doi.org/10.1093/icb/45.2.256
dc.relation.referencesWainwright, P. C., Carroll, A. M., Collar, D. C., Day, S. W., Higham, T. E., & Holzman, R. A. (2007). Suction feeding mechanics, performance, and diversity in fishes. Integrative and Comparative Biology, 47(1), 96-106. https://doi.org/10.1093/icb/icm032
dc.relation.referencesWainwright, P. C., Bellwood, D. R., Kazancıoğlu, E., Collar, D. C., Near, T. J., & Price, S. A. (2010). Functional innovations and morphological diversification in parrotfish. Evolution, 64(10), 3057-3068. https://doi.org/10.1111/j.1558-5646.2010.01036.x
dc.relation.referencesWassenbergh, S., Aerts, P., Adriaens, D., & Herrel, A. (2005). A dynamic model of mouth closing movements in clariid catfishes: The role of enlarged jaw adductors. Journal of theoretical biology, 234, 49-65. https://doi.org/10.1016/j.jtbi.2004.11.007
dc.relation.referencesWestneat, M. W. (1990). Feeding mechanics of teleost fishes (Labridae; Perciformes): A test of four-bar linkage models. Journal of Morphology, 205(3), 269-295. https://doi.org/10.1002/jmor.1052050304
dc.relation.referencesWestneat, M. W. (1994). Transmission of force and velocity in the feeding mechanisms of labrid fishes (Teleostei, Perciformes). Zoomorphology, 114(2), 103-118. https://doi.org/10.1007/bf00396643
dc.relation.referencesWestneat, M. W. (2003). A biomechanical model for analysis of muscle force, power output and lower jaw motion in fishes. Journal of Theoretical Biology, 223(3), 269-281. https://doi.org/10.1016/s0022-5193(03)00058-4
dc.relation.referencesWhittaker, R. J., Rigal, F., Borges, P. A. V., Cardoso, P., Terzopoulou, S., Casanoves, F., Pla, L., Guilhaumon, F., Ladle, R. J., & Triantis, K. A. (2014). Functional biogeography of oceanic islands and the scaling of functional diversity in the Azores. Proceedings of the National Academy of Sciences, 111(38), 13709-13714. https://doi.org/10.1073/pnas.1218036111
dc.relation.referencesWinterbottom, R. (1993). Myological evidence for the phylogeny of recent genera of surgeonfishes (Percomorpha, Acanthuridae), with comments on the Acanthuroidei. Copeia, 1993(1), 21-39. https://doi.org/10.2307/1446292
dc.relation.referencesWinterbottom, R., & McLennan, D. A. (1993). Cladogram versatility: Evolution and biogeography of acanthuroid fishes. Evolution, 47(5), 1557-1571. https://doi.org/10.1111/j.1558-5646.1993.tb02175.x
dc.relation.referencesWroe, S., McHenry, C., & Thomason, J. (2005). Bite club: Comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proceedings. Biological sciences / The Royal Society, 272, 619-625. https://doi.org/10.1098/rspb.2004.2986
dc.relation.referencesZapata, F. A., & Robertson, D. R. (2007). How many species of shore fishes are there in the Tropical Eastern Pacific? Journal of Biogeography, 34, 38-51.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc570 - Biología::576 - Genética y evolución
dc.subject.proposalmorfologíaspa
dc.subject.proposalAcanthuridae
dc.subject.proposalherbivoríaspa
dc.subject.proposalfilogenéticospa
dc.subject.proposalbiogeográficospa
dc.subject.proposalarrecifesspa
dc.subject.proposalpecesspa
dc.subject.proposalAcanthuridaespa
dc.subject.proposalherbivoryeng
dc.subject.proposalfunctionaleng
dc.subject.proposalphylogeneticeng
dc.subject.proposalbiogeographic
dc.subject.proposalphylomorphospaceeng
dc.subject.proposalreefseng
dc.subject.proposalmorphologyeng
dc.subject.proposalfish
dc.titleFactores filogenéticos y biogeográficos que influyen en la diversidad morfofuncional de los peces cirujano (familia Acanthuridae) del pacífico y caribe colombianosspa
dc.title.translatedPhylogenetic and biogeographic factors that influence the morphofunctional diversity of surgeonfish (family Acanthuridae) from the Colombian Caribbean and Pacificeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameUniversidad del Valle
oaire.fundernameUniversidad Nacional de Colombia
oaire.fundernameMinCiencias

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1072701549.2024.pdf
Tamaño:
2.09 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: