Non-Nuclei Tissue Characterization of Histopathological Images: A Processing Step to Improve Nuclei Segmentation Methods

dc.contributor.advisorRomero Castro, Edgar Eduardo
dc.contributor.authorArias Vesga, Christian Leonardo
dc.contributor.educationalvalidatorMoncayo Martinez Ricardo Alexander
dc.contributor.researchgroupCim@Labspa
dc.date.accessioned2023-01-13T20:00:00Z
dc.date.available2023-01-13T20:00:00Z
dc.date.issued2022
dc.descriptionIlustraciones, fotografías a color, imágenes, gráficasspa
dc.description.abstractEste estudio presenta una novedosa estrategia para caracterizar y eliminar la señal no nuclear (ruido) en las imágenes histopatológicas teñidas con hematoxilina y eosina (H&E), un paso de preprocesamiento para mejorar los métodos tradicionales de segmentación de núcleos. Cualquier estructura no nuclear es mapeada a un espacio de Noiselet a diferentes niveles de resolución, donde un clasificador es entrenado para reconocer los coeficientes de Noiselet de esta proyección. El enfoque propuesto se evaluó con dos conjuntos de datos de múltiples órganos anotados manualmente, comparando la segmentación de los núcleos obtenida por un algoritmo de Watershed más el enfoque presentado con el método de Watershed solamente. (Texto tomado de la fuente)spa
dc.description.abstractThis study presents a novel strategy to characterize and remove non-nuclei signal (noise) in histopathological images stained with hematoxylin and eosin (H&E), a preprocessing step to improve traditional nuclei segmentation methods. Any non nuclei structure is mapped to a Noiselet space at different resolution levels, where a classic classifier is trained to recognize the Noiselet coefficients of this projection. The proposed approach was evaluated with two multi-organ datasets manually annotated, comparing the nuclei segmentation obtained by a Watershed algorithm plus the presented approach against the watershed method alone.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaDigital Pathologyspa
dc.format.extentxi. 37 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82925
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.referencesJ. Arevalo, A. Cruz-Roa, et al., “Histopathology image representation for automatic analysis: A state-of-the-art review,” Revista Med, vol. 22, no. 2, pp. 79–91, 2014.spa
dc.relation.referencesA. Heindl, S. Nawaz, and Y. Yuan, “Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology,” Laboratory investigation, vol. 95, no. 4, pp. 377–384, 2015.spa
dc.relation.referencesM. Veta, J. P. Pluim, P. J. Van Diest, and M. A. Viergever, “Breast cancer histopathology image analysis: A review,” IEEE transactions on biomedical engineering, vol. 61, no. 5, pp. 1400–1411, 2014.spa
dc.relation.referencesH. Irshad, A. Veillard, L. Roux, and D. Racoceanu, “Methods for nuclei detection, segmentation, and classification in digital histopathology: a review—current status and future potential,” IEEE reviews in biomedical engineering, vol. 7, pp. 97–114, 2013.spa
dc.relation.referencesS. Salsabili, A. Mukherjee, E. Ukwatta, A. D. Chan, S. Bainbridge, and D. Grynspan, “Automated segmentation of villi in histopathology images of placenta,” Computers in Biology and Medicine, vol. 113, p. 103420, 2019.spa
dc.relation.referencesA. B. Hamida, M. Devanne, J. Weber, C. Truntzer, V. Derangère, F. Ghiringhelli, G. Forestier, and C. Wemmert, “Deep learning for colon cancer histopathological images analysis,” Computers in Biology and Medicine, vol. 136, p. 104730, 2021.spa
dc.relation.referencesA. J. Carrigan, A. Charlton, E. Foucar, M. W. Wiggins, A. Georgiou, T. J. Palmeri, and K. M. Curby, “The role of cue-based strategies in skilled diagnosis among pathologists,” Human Factors, p. 0018720821990160, 2021.spa
dc.relation.referencesP. Naylor, M. Laé, F. Reyal, and T. Walter, “Segmentation of nuclei in histopathology images by deep regression of the distance map,” IEEE transactions on medical imaging, vol. 38, no. 2, pp. 448–459, 2018.spa
dc.relation.referencesX. Zhou and S. T. Wong, “Informatics challenges of high-throughput microscopy,” IEEE Signal Processing Magazine, vol. 23, no. 3, pp. 63–72, 2006.spa
dc.relation.referencesM. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot, and B. Yener, “Histopathological image analysis: A review,” IEEE reviews in biomedical engineering, vol. 2, pp. 147–171, 2009.spa
dc.relation.referencesM. Salvi and F. Molinari, “Multi-tissue and multi-scale approach for nuclei segmentation in h&e stained images,” Biomedical engineering online, vol. 17, no. 1, pp. 1–13, 2018.spa
dc.relation.referencesS. Naik, S. Doyle, S. Agner, A. Madabhushi, M. Feldman, and J. Tomaszewski, “Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology,” in 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 284–287, IEEE, 2008.spa
dc.relation.referencesH. Hiary, R. S. Alomari, M. Saadah, and V. Chaudhary, “Automated segmentation of stromal tissue in histology images using a voting bayesian model,” Signal, Image and Video Processing, vol. 7, no. 6, pp. 1229–1237, 2013.spa
dc.relation.referencesT. Hayakawa, V. Prasath, H. Kawanaka, B. J. Aronow, and S. Tsuruoka, “Computational nuclei segmentation methods in digital pathology: a survey,” Archives of Computational Methods in Engineering, vol. 28, no. 1, pp. 1–13, 2021.spa
dc.relation.referencesX. Li, Y. Wang, Q. Tang, Z. Fan, and J. Yu, “Dual u-net for the segmentation of overlapping glioma nuclei,” Ieee Access, vol. 7, pp. 84040–84052, 2019.spa
dc.relation.referencesM. Veta, J. P. Pluim, P. J. Van Diest, and M. A. Viergever, “Corrections to “breast cancer histopathology image analysis: A review”[may 14 1400-1411],” IEEE Transactions on Biomedical Engineering, vol. 61, no. 11, pp. 2819–2819, 2014.spa
dc.relation.referencesC. Jung, C. Kim, S. W. Chae, and S. Oh, “Unsupervised segmentation of overlapped nuclei using bayesian classification,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 12, pp. 2825–2832, 2010.spa
dc.relation.referencesS. Sornapudi, R. J. Stanley, W. V. Stoecker, H. Almubarak, R. Long, S. Antani, G. Thoma, R. Zuna, and S. R. Frazier, “Deep learning nuclei detection in digitized histology images by superpixels,” Journal of pathology informatics, vol. 9, 2018.spa
dc.relation.referencesP. Wang, X. Hu, Y. Li, Q. Liu, and X. Zhu, “Automatic cell nuclei segmentation and classification of breast cancer histopathology images,” Signal Processing, vol. 122, pp. 1– 13, 2016.spa
dc.relation.referencesF. R. Hirsch, A. Spreafico, S. Novello, M. D. Wood, L. Simms, and M. Papotti, “The prognostic and predictive role of histology in advanced non-small cell lung cancer: a literature review,” Journal of Thoracic Oncology, vol. 3, no. 12, pp. 1468–1481, 2008.spa
dc.relation.referencesK. Dimitropoulos, P. Barmpoutis, T. Koletsa, I. Kostopoulos, and N. Grammalidis, “Automated detection and classification of nuclei in pax5 and h&e-stained tissue sections of follicular lymphoma,” Signal, Image and Video Processing, vol. 11, no. 1, pp. 145–153, 2017.spa
dc.relation.referencesJ. S. Meyer, C. Alvarez, C. Milikowski, N. Olson, I. Russo, J. Russo, A. Glass, B. A. Zehnbauer, K. Lister, and R. Parwaresch, “Breast carcinoma malignancy grading by bloom–richardson system vs proliferation index: reproducibility of grade and advantages of proliferation index,” Modern pathology, vol. 18, no. 8, p. 1067, 2005.spa
dc.relation.referencesS. Akbar, L. Jordan, A. M. Thompson, and S. J. McKenna, “Tumor localization in tissue microarrays using rotation invariant superpixel pyramids,” in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 1292–1295, IEEE, 2015.spa
dc.relation.referencesJ. S. Thomas, D. Lamb, T. Ashcroft, B. Corrin, C. Edwards, A. Gibbs, W. Kenyon, R. Stephens, and W. Whimster, “How reliable is the diagnosis of lung cancer using small biopsy specimens? report of a ukcccr lung cancer working party.,” Thorax, vol. 48, no. 11, pp. 1135–1139, 1993.spa
dc.relation.referencesE. A. Perez, V. J. Suman, N. E. Davidson, S. Martino, P. A. Kaufman, W. L. Lingle, P. J. Flynn, J. N. Ingle, D. Visscher, and R. B. Jenkins, “Her2 testing by local, central, and reference laboratories in specimens from the north central cancer treatment group n9831 intergroup adjuvant trial,” Journal of Clinical Oncology, vol. 24, no. 19, pp. 3032– 3038, 2006.spa
dc.relation.referencesJ. M. Userpater, M. D. Ferder, P. Inserta, I. Y. Stella, L. F. Ferder, and F. Inserra, “Aplicación del análisis de imágenes computarizado en la histopatología renal,” Rev. Nefrol. Diál. y Transp, vol. 23, no. 4, pp. 139–144, 2003.spa
dc.relation.referencesP. Robbins, S. Pinder, N. De Klerk, H. Dawkins, J. Harvey, G. Sterrett, I. Ellis, and C. Elston, “Histological grading of breast carcinomas: a study of interobserver agreement,” Human pathology, vol. 26, no. 8, pp. 873–879, 1995.spa
dc.relation.referencesA. Belsare and M. Mushrif, “Histopathological image analysis using image processing techniques: An overview,” Signal & Image Processing, vol. 3, no. 4, p. 23, 2012.spa
dc.relation.referencesG. Meijer, J. Beliën, P. Van Diest, and J. Baak, “Origins of... image analysis in clinical pathology.,” Journal of clinical pathology, vol. 50, no. 5, p. 365, 1997.spa
dc.relation.referencesL. Romano, M. Ferder, I. Stella, F. Inserra, and L. Ferder, “High correlation in renal tissue between computed image analysis and classical morphometric analysis,” Journal of histotechnology, vol. 19, no. 2, pp. 121–123, 1996.spa
dc.relation.referencesP. Lambin, R. T. Leijenaar, T. M. Deist, J. Peerlings, E. E. De Jong, J. Van Timmeren, S. Sanduleanu, R. T. Larue, A. J. Even, A. Jochems, et al., “Radiomics: the bridge between medical imaging and personalized medicine,” Nature reviews Clinical oncology, vol. 14, no. 12, pp. 749–762, 2017.spa
dc.relation.referencesL. Oakden-Rayner, “The rebirth of cad: how is modern ai different from the cad we know?,” 2019.spa
dc.relation.referencesJ.-M. Chen, Y. Li, J. Xu, L. Gong, L.-W. Wang, W.-L. Liu, and J. Liu, “Computeraided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review,” Tumor Biology, vol. 39, no. 3, p. 1010428317694550, 2017.spa
dc.relation.referencesR. Dapson and R. Horobin, “Dyes from a twenty-first century perspective,” Biotechnic & Histochemistry, vol. 84, no. 4, pp. 135–137, 2009.spa
dc.relation.referencesJ. K. Chan, “The wonderful colors of the hematoxylin–eosin stain in diagnostic surgical pathology,” International journal of surgical pathology, vol. 22, no. 1, pp. 12–32, 2014.spa
dc.relation.referencesD. Wittekind, “Traditional staining for routine diagnostic pathology including the role of tannic acid. 1. value and limitations of the hematoxylin-eosin stain,” Biotechnic & histochemistry, vol. 78, no. 5, pp. 261–270, 2003.spa
dc.relation.referencesH. Fox, “Is h&e morphology coming to an end?,” Journal of clinical pathology, vol. 53, no. 1, pp. 38–40, 2000.spa
dc.relation.referencesK. Larson, H. H. Ho, P. L. Anumolu, and T. M. Chen, “Hematoxylin and eosin tissue stain in mohs micrographic surgery: a review,” Dermatologic surgery, vol. 37, no. 8, pp. 1089–1099, 2011.spa
dc.relation.referencesM. H. Ross and W. Pawlina, Histology. Lippincott Williams & Wilkins, 2006.spa
dc.relation.referencesM. Titford, “Progress in the development of microscopical techniques for diagnostic pathology,” Journal of histotechnology, vol. 32, no. 1, pp. 9–19, 2009.spa
dc.relation.referencesD. Onder, S. Zengin, and S. Sarioglu, “A review on color normalization and color deconvolution methods in histopathology,” Applied Immunohistochemistry & Molecular Morphology, vol. 22, no. 10, pp. 713–719, 2014.spa
dc.relation.referencesD. Grube, “Constants and variables in immunohistochemistry,” Archives of histology and cytology, vol. 67, no. 2, pp. 115–134, 2004.spa
dc.relation.referencesS. Rashid, M. Fraz, and S. Javed, “Multiscale dilated unet for segmentation of multiorgan nuclei in digital histology images,” in 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), pp. 68–72, IEEE, 2020.spa
dc.relation.referencesC. Le Bozec, M.-C. Jaulent, E. Zapletal, D. Heudes, and P. Degoulet, “A visual coding system in histopathology and its consensual acquisition.,” in Proceedings of the AMIA Symposium, p. 306, American Medical Informatics Association, 1999.spa
dc.relation.referencesA. M. Khan, H. ElDaly, and N. M. Rajpoot, “A gamma-gaussian mixture model for detection of mitotic cells in breast cancer histopathology images,” Journal of pathology informatics, vol. 4, no. 1, p. 11, 2013.spa
dc.relation.referencesM. K. K. Niazi, G. Beamer, and M. N. Gurcan, “Detecting and characterizing cellular responses to mycobacterium tuberculosis from histology slides,” Cytometry Part A, vol. 85, no. 2, pp. 151–161, 2014.spa
dc.relation.referencesA. M. Khan, N. Rajpoot, D. Treanor, and D. Magee, “A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1729–1738, 2014.spa
dc.relation.referencesL. He, L. R. Long, S. Antani, and G. R. Thoma, “Histology image analysis for carcinoma detection and grading,” Computer methods and programs in biomedicine, vol. 107, no. 3, pp. 538–556, 2012.spa
dc.relation.referencesM. Paramanandam, M. O’Byrne, B. Ghosh, J. J. Mammen, M. T. Manipadam, R. Thamburaj, and V. Pakrashi, “Automated segmentation of nuclei in breast cancer histopathology images,” PloS one, vol. 11, no. 9, p. e0162053, 2016.spa
dc.relation.referencesJ. D. Bancroft and M. Gamble, Theory and practice of histological techniques. Elsevier health sciences, 2008.spa
dc.relation.referencesD. Komura and S. Ishikawa, “Machine learning methods for histopathological image analysis,” Computational and structural biotechnology journal, vol. 16, pp. 34–42, 2018.spa
dc.relation.referencesS. Cascianelli, R. Bello-Cerezo, F. Bianconi, M. L. Fravolini, M. Belal, B. Palumbo, and J. N. Kather, “Dimensionality reduction strategies for cnn-based classification of histopathological images,” in International conference on intelligent interactive multimedia systems and services, pp. 21–30, Springer, 2018.spa
dc.relation.referencesP.-Y. Tsang, “Multi-resolution image segmentation using geometric active contours,” Master’s thesis, University of Waterloo, 2004.spa
dc.relation.referencesH. Irshad, S. Jalali, L. Roux, D. Racoceanu, L. J. Hwee, G. Le Naour, and F. Capron, “Automated mitosis detection using texture, sift features and hmax biologically inspired approach,” Journal of pathology informatics, vol. 4, no. Suppl, 2013.spa
dc.relation.referencesH. Fujita, “Ai-based computer-aided diagnosis (ai-cad): the latest review to read first,” Radiological physics and technology, vol. 13, no. 1, pp. 6–19, 2020.spa
dc.relation.referencesN. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, and A. Sethi, “A dataset and a technique for generalized nuclear segmentation for computational pathology,” IEEE transactions on medical imaging, vol. 36, no. 7, pp. 1550–1560, 2017.spa
dc.relation.referencesH. Qu, P. Wu, Q. Huang, J. Yi, Z. Yan, K. Li, G. M. Riedlinger, S. De, S. Zhang, and D. N. Metaxas, “Weakly supervised deep nuclei segmentation using partial points annotation in histopathology images,” IEEE transactions on medical imaging, vol. 39, no. 11, pp. 3655–3666, 2020.spa
dc.relation.referencesH. Sajid and S.-C. S. Cheung, “Background subtraction for static & moving camera,” in 2015 IEEE International Conference on Image Processing (ICIP), pp. 4530–4534, IEEE, 2015.spa
dc.relation.referencesR. Wang and S.-i. Kamata, “Stain-refinement and boundary-enhancement weight maps for multi-organ nuclei segmentation,” in 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 1–7, IEEE, 2020.spa
dc.relation.referencesS. J. Keenan, J. Diamond, W. Glenn McCluggage, H. Bharucha, D. Thompson, P. H. Bartels, and P. W. Hamilton, “An automated machine vision system for the histological grading of cervical intraepithelial neoplasia (cin),” The Journal of pathology, vol. 192, no. 3, pp. 351–362, 2000.spa
dc.relation.referencesS. Baheerathan, F. Albregtsen, and H. E. Danielsen, “New texture features based on the complexity curve,” Pattern Recognition, vol. 32, no. 4, pp. 605–618, 1999.spa
dc.relation.referencesP. W. Hamilton, P. H. Bartels, D. Thompson, N. H. Anderson, R. Montironi, and J. M. Sloan, “Automated location of dysplastic fields in colorectal histology using image texture analysis,” The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, vol. 182, no. 1, pp. 68–75, 1997.spa
dc.relation.referencesR. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB. Pearson Education India, 2004.spa
dc.relation.referencesJ.-R. Dalle, H. Li, C.-H. Huang, W. K. Leow, D. Racoceanu, and T. C. Putti, “Nuclear pleomorphism scoring by selective cell nuclei detection.,” in WACV, 2009.spa
dc.relation.referencesO. Sertel, U. V. Catalyurek, H. Shimada, and M. N. Gurcan, “Computer-aided prognosis of neuroblastoma: Detection of mitosis and karyorrhexis cells in digitized histological images,” in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1433–1436, IEEE, 2009.spa
dc.relation.referencesA. M. Khan, H. El-Daly, E. Simmons, and N. M. Rajpoot, “Hymap: A hybrid magnitudephase approach to unsupervised segmentation of tumor areas in breast cancer histology images,” Journal of pathology informatics, vol. 4, no. Suppl, 2013.spa
dc.relation.referencesP.-W. Huang and Y.-H. Lai, “Effective segmentation and classification for hcc biopsy images,” Pattern Recognition, vol. 43, no. 4, pp. 1550–1563, 2010.spa
dc.relation.referencesC. Jung and C. Kim, “Segmenting clustered nuclei using h-minima transform-based marker extraction and contour parameterization,” IEEE transactions on biomedical engineering, vol. 57, no. 10, pp. 2600–2604, 2010.spa
dc.relation.referencesM. Veta, A. Huisman, M. A. Viergever, P. J. van Diest, and J. P. Pluim, “Markercontrolled watershed segmentation of nuclei in h&e stained breast cancer biopsy images,” in 2011 IEEE international symposium on biomedical imaging: from nano to macro, pp. 618–621, IEEE, 2011.spa
dc.relation.referencesZ. Peng, S. Qu, and Q. Li, “Interactive image segmentation using geodesic appearance overlap graph cut,” Signal Processing: Image Communication, vol. 78, pp. 159–170, 2019.spa
dc.relation.referencesM. Teena, A. Manickavasagan, A. Mothershaw, S. El Hadi, and D. Jayas, “Potential of machine vision techniques for detecting fecal and microbial contamination of food products: a review,” Food and Bioprocess Technology, vol. 6, no. 7, pp. 1621–1634, 2013.spa
dc.relation.referencesR. Coifman, F. Geshwind, and Y. Meyer, “Noiselets,” Applied and Computational Harmonic Analysis, vol. 10, no. 1, pp. 27–44, 2001.spa
dc.relation.referencesJ. Xu, X. Luo, G. Wang, H. Gilmore, and A. Madabhushi, “A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images,” Neurocomputing, vol. 191, pp. 214–223, 2016.spa
dc.relation.referencesE. M. de Kruijf, J. G. van Nes, C. J. van de Velde, H. Putter, V. T. Smit, G. J. Liefers, P. J. Kuppen, R. A. Tollenaar, and W. E. Mesker, “Tumor–stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple negative carcinoma patients,” Breast cancer research and treatment, vol. 125, no. 3, pp. 687–696, 2011.spa
dc.relation.referencesY. Chen, L. Zhang, W. Liu, and X. Liu, “Prognostic significance of the tumor-stroma ratio in epithelial ovarian cancer,” BioMed research international, vol. 2015, 2015.spa
dc.relation.referencesM. Peikari, S. Salama, S. Nofech-Mozes, and A. L. Martel, “A cluster-then-label semisupervised learning approach for pathology image classification,” Scientific reports, vol. 8, no. 1, pp. 1–13, 2018.spa
dc.relation.referencesL. Hou, V. Nguyen, A. B. Kanevsky, D. Samaras, T. M. Kurc, T. Zhao, R. R. Gupta, Y. Gao, W. Chen, D. Foran, et al., “Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images,” Pattern recognition, vol. 86, pp. 188–200, 2019.spa
dc.relation.referencesO. Sertel, J. Kong, U. V. Catalyurek, G. Lozanski, J. H. Saltz, and M. N. Gurcan, “Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading,” Journal of Signal Processing Systems, vol. 55, no. 1-3, p. 169, 2009.spa
dc.relation.referencesB. Vandana and P. Antony, “Automated segmentation using histopathology images as a diagnostic confirmatory tool in detection of bone cancer,” International Journal of Computer Applications, vol. 57, no. 11, 2012.spa
dc.relation.referencesB. van Ginneken, S. Kerkstra, and J. Meakin, “Grand challenges in biomedical image analysis,” 2018.spa
dc.relation.referencesK. Tomczak, P. Czerwinska, and M. Wiznerowicz, “The cancer genome atlas (tcga): an immeasurable source of knowledge,” Contemporary oncology, vol. 19, no. 1A, p. A68, 2015.spa
dc.relation.referencesK. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle, et al., “The cancer imaging archive (tcia): maintaining and operating a public information repository,” Journal of digital imaging, vol. 26, no. 6, pp. 1045–1057, 2013.spa
dc.relation.referencesM. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T.Woosley, X. Guan, C. Schmitt, and N. E. Thomas, “A method for normalizing histology slides for quantitative analysis,” in 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107–1110, IEEE, 2009.spa
dc.relation.referencesT. Howley, M. G. Madden, M.-L. O’Connell, and A. G. Ryder, “The effect of principal component analysis on machine learning accuracy with high dimensional spectral data,” in International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 209–222, Springer, 2005.spa
dc.relation.referencesM. Veta, P. J. Van Diest, R. Kornegoor, A. Huisman, M. A. Viergever, and J. P. Pluim, “Automatic nuclei segmentation in h&e stained breast cancer histopathology images,” PloS one, vol. 8, no. 7, p. e70221, 2013.spa
dc.relation.referencesP. Tadrous, “Digital stain separation for histological images,” Journal of microscopy, vol. 240, no. 2, pp. 164–172, 2010.spa
dc.relation.referencesN. Kumar, R. Verma, D. Anand, Y. Zhou, O. F. Onder, E. Tsougenis, H. Chen, P. A. Heng, J. Li, Z. Hu, et al., “A multi-organ nucleus segmentation challenge,” IEEE transactions on medical imaging, 2019.spa
dc.relation.referencesW. Hu, H. Sheng, J. Wu, Y. Li, T. Liu, Y. Wang, and Y. Wen, “Generative adversarial training for weakly supervised nuclei instance segmentation,” in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3649–3654, IEEE, 2020.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.lembCélulas - patologíaspa
dc.subject.lembCells - pathologyeng
dc.subject.meshPatologíaspa
dc.subject.meshPathologyeng
dc.subject.proposalEnfermedad del cáncerspa
dc.subject.proposalhistopatologíaspa
dc.subject.proposaleliminación de señal de ruidospa
dc.subject.proposaltransformación Noiseletspa
dc.subject.proposalseñal de núcleosspa
dc.subject.proposalcancer diseaseeng
dc.subject.proposalhistopathologyeng
dc.subject.proposalnoise signal removaleng
dc.subject.proposalNoiselet transformation
dc.subject.proposalnuclei signaleng
dc.titleNon-Nuclei Tissue Characterization of Histopathological Images: A Processing Step to Improve Nuclei Segmentation Methodseng
dc.title.translatedCaracterización de tejidos no nucleares de imágenes histopatológicas: un paso de procesamiento para mejorar los métodos de segmentación de núcleosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80853178.2022.pdf
Tamaño:
11.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Ingeniería Biomédica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: