Bases metodológicas hacia la poliploidización de Urochloa decumbens

dc.contributor.advisorEscobar Pérez, Roosevelt Humberto
dc.contributor.advisorCastiblanco Vargas, Valheria
dc.contributor.authorCarcamo Medina, Lilian Yaritza
dc.contributor.educationalvalidatorGarcía Dávila, Mario Augusto
dc.date.accessioned2022-02-14T16:41:22Z
dc.date.available2022-02-14T16:41:22Z
dc.date.issued2021-12-07
dc.descriptionIlustraciones, tablasspa
dc.description.abstractLa duplicación de cromosomas es un fenómeno relevante para ampliar la base de la diversidad genética de las plantas, pues llega a tener efectos importantes tales como el aumento en el tamaño de las células, de los órganos, aumento de la biomasa, ayudando en la transferencia de genes o en el incremento de heterocigosidad. El programa de forrajes tropicales del CIAT (Centro Internacional de Agricultura Tropical, hoy Alianza Bioversity-CIAT) pretende optimizar el esquema de mejoramiento genético actual y para ello necesita obtener un genotipo tetraploide sexual de Urochloa decumbens. Por este motivo, en el presente estudio se planteó como objetivo explorar las bases metodológicas para iniciar un proceso de poliploidización de la especie mediante el uso de la colchicina. Se ajustó e implementó una metodología in vitro para la propagación de material vegetal y se inició el esquema de regeneración mediado por la de embriogénesis somática como una posible vía para la duplicación de cromosomas. Se realizaron dos ensayos de poliploidización, el primero bajo condiciones in vivo utilizando plántulas germinadas de cuatro días de edad como explante y en una segunda prueba bajo condiciones in vitro utilizando segmentos basales. Se utilizaron dos concentraciones de colchicina: 0,05 y 0,1% durante 2, 8, 12 y 24 h tanto en in vivo como in vitro. En la adecuación del material vegetal, para la fase in vitro la escarificación manual presenta mejores porcentajes de germinación en las 3 accesiones utilizadas y fue posible implementar la propagación en condiciones de medio sólido. Tanto la aclimatación de las plantas en invernadero, como la regeneración de plantas vía embriogénesis somática fue exitosa. En los ensayos de poliploidización, las plantas tratadas con colchicina se establecieron en invernadero y se determinó tasa de supervivencia, tamaño de estomas y densidad estomática. A nivel de tasa de supervivencia de explantes tratados con colchicina en alta dosis y tiempos largos hubo mayor mortalidad, a nivel de estomas (morfología, ancho, largo y densidad estomática) no se observaron cambios significativos que se puedan correlacionar con el nivel de ploidía en el ensayo in vivo, sin embargo, sería prudente dar una espera hasta obtener plantas maduras para analizar de nuevo estos parámetros. Se va a continuar con la verificación de ploidía mediante citometría de flujo y conteo de cromosomas. (Texto tomado de la fuente)spa
dc.description.abstractChromosome duplication is considered a broad and relevant phenomenon to expand the genetic diversity of plants, which allows having significant effects such as an increase in the size of cells, organs, biomass, gene transfer, or the increasing heterozygosity. Therefore, the tropical forages program of CIAT (International Center for Tropical Agriculture, now the Bioversity-CIAT Alliance) seeks to optimize the current breeding scheme to obtain a sexual tetraploid genotype of Urochloa decumbens to have more genetic diversity. Based on this, the present study explores the methodological bases to initiate a polyploidization process of this species using colchicine. This research started from developing an in vitro methodology for the propagation of plant material and somatic embryogenesis as a possible route of chromosome duplication. Two polyploidization assays were performed, the first under in vivo conditions using germinated four-day-old seedlings as explants and the second under in vitro conditions using basal segments. Two concentrations of colchicine were used: 0.05 and 0.1% for 2, 8, 12, and 24 h for both tests. The manual scarification presented better germination percentages in the three accessions using the in vitro methodology. Moreover, It helped to propagate the plants in a solid medium. The acclimatization of the plants in the greenhouse and the regeneration using somatic embryogenesis were effective. In the polyploidization tests, the plants treated with colchicine were established in the greenhouse, and the survival rate, stomata size, and stomatal density variables were determined. There was higher mortality at the higher concentrations and longer exposure times when assessing the survival rate. No significant changes related to the ploidy level were found at the stomatal level for the in vivo test. However, to corroborate the results, it is suggested to continue with the ploidy analysis using flow cytometry and chromosome counting.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Biológicasspa
dc.description.methodsPara todos los ensayos se utilizaron semillas de tres accesiones sexuales diploides de Urochloa decumbens (Cuadro 4-1) facilitadas por el Banco de Germoplasma de CIAT. Se siguió el protocolo establecido en el Laboratorio de Viabilidad de Semillas del CIAT. A un pequeño lote de 10 semillas por genotipo se les realizó prueba de viabilidad con cloruro de tetrazolio (TTC) al 0,5%. A las semillas se les retiró la gluma y se sumergieron en agua destilada en un tubo de ensayo # 16 durante 16 h a temperatura ambiente. Transcurrido este tiempo se les realizó un corte longitudinal a través del embrión con una cuchilla # 10 y con ayuda de una lupa 3X con luz. La mitad de cada semilla se descartó y la otra mitad se colocó en un tubo de ensayo con 10 ml de la solución de TTC. Para la tinción los tubos con las muestras a evaluar se llevaron a un horno a 40°C por 2,5 h bajo condiciones de oscuridad. Posteriormente las semillas se lavaron varias veces con agua destilada para eliminar el exceso de colorante y se realiza la lectura usando un estereoscopio Leica MS5 con cámara fotográfica Leica. A cada semilla se le examinó y se le consideró como viable o no viable sobre la base de los patrones de tinción y la solidez de la coloración del tejido siguiendo la norma del ISTA. Con el fin de comparar dos tipos de escarificación, un segundo lote de semillas fue escarificado química y manualmente. En la escarificación química se utilizó ácido sulfúrico (H2SO4) al 96% durante 14 min, seguido de un lavado con abundante agua, luego las semillas se secaron y almacenaron hasta su uso. Para la escarificación manual se procedió a eliminar las cubiertas, primero la gluma, luego con la ayuda de un bisturí se realizó un pequeño corte vertical entre lema y palea para descubrir las cariópsides. Semillas escarificadas manualmente fueron utilizadas para realizar ensayos de desinfección. La desinfección se realizó con etanol al 70% durante 3 min (Figura 4-3 A), se retira y se adiciona una solución de fungicida que contiene Zellus/Benomyl 1g/L y Maxíl 6 ml/L respectivamente (Figura 4-3 B). el tratamiento con fungicidas se mantiene durante 35 min en constante agitación, seguidamente se pasa a hipoclorito de sodio al 1,5% más dos gotas de Tween 20 durante 40 min (Figura 4-3 C). Al final del proceso se realizan 5 lavados con agua desionizada estéril. Todo este proceso se lleva a cabo con uso de EPP y en cámara de flujo. La siembra se realizó en tubos de ensayo #16 (Figura 4-4) que contenían medio MS (Murashige & Skoog, 1962) y 4E en estado líquido y sólido (sales de MS completo, Sacarosa 2%, Tiamina 1 mg/L, m-inositol 100 mg/L, BAP 0,04 mg/L, GA3 0,05 mg/L y ANA 0,02 mg/L, pH 5,7, agar 0,46% reportado por Roca (1984). Las semillas se implantan (siembran) en el medio con la parte donde emerge el epicótilo hacia arriba y posteriormente cada frasco se sella con papel vinipel plástico y son llevados a un cuarto de crecimiento a 27°C y fotoperiodo de 12 h luz /12 h oscuridad. El material contaminado se descartó a partir de los tres días y se enviaron tubos contaminados al Laboratorio de Sanidad de Germoplasma del Programa de Conservación de germoplasma del CIAT para su respectiva identificación. (Texto tomado de la fuente)spa
dc.description.researchareaBiotecnología Vegetalspa
dc.description.sponsorshipPrograma de mejoramiento de forrajes del Centro Internacional de Agricultura Tropical (CIAT)spa
dc.format.extentxviii, 75páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80975
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicasspa
dc.relation.referencesAcquaviva, C., & Pines, J. (2006). The anaphase-promoting complex/cyclosome: APC/C. Journal of Cell Science, 119(Pt 12), 2401–2404. https://doi.org/10.1242/JCS.02937spa
dc.relation.referencesAkiyoshi, B., Sarangapani, K. K., Powers, A. F., Nelson, C. R., Reichow, S. L., Arellano-Santoyo, H., … Biggins, S. (2010). Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature, 468(7323), 576–579. https://doi.org/10.1038/nature09594spa
dc.relation.referencesAllum, J. F., Bringloe, D. H., & Roberts, A. V. (2007). Chromosome doubling in a Rosa rugosa Thunb. hybrid by exposure of in vitro nodes to oryzalin: The effects of node length, oryzalin concentration and exposure time. Plant Cell Reports, 26(11), 1977–1984. https://doi.org/10.1007/s00299-007-0411-yspa
dc.relation.referencesAnderson, J. A., Mousset-Déclas, C., Williams, E. G., & Taylor, N. L. (1991). An in vitro chromosome doubling method for clovers (Trifolium spp.). Genome, 34(1), 1–5. https://doi.org/10.1139/G91-001spa
dc.relation.referencesArdabili, G. S., Asghari, R., & Zare, N. (2015). In Vitro Induction of Polyploidy in Sorghum bicolor L . In Vitro Induction of Polyploidy in Sorghum bicolor L . The Japan Mendel Society, 80(4), 495–503. https://doi.org/10.1508/cytologia.80.495spa
dc.relation.referencesAwoleye, F., van Duren, M., Dolezel, J., & Novak, F. J. (1994). Nuclear DNA content and in vitro induced somatic polyploidization cassava (Manihot esculenta Crantz) breeding. Euphytica , 76(3), 195–202. https://doi.org/10.1007/BF00022164spa
dc.relation.referencesBajer, A. S., & Molè-Bajer, J. (1986). Drugs with colchicine-like effects that specifically disassemble plant but not animal microtubules. Annals of the New York Academy of Sciences, 466(1), 767–784. https://doi.org/10.1111/J.17496632.1986.TB38458.Xspa
dc.relation.referencesBarbosa, S., Davide, L. C., Pereira, A. Vander, & De Abreu, J. C. (2007). Duplicação cromossômica de híbridos triplóides de capim-elefante e milheto. Bragantia, 66(3), 365–372. https://doi.org/10.1590/s0006-87052007000300001spa
dc.relation.referencesBarow, M., & Jovtchev, G. (2007). Endopolyploidy in Plants and its Analysis by Flow Cytometry. In J. Dolezel, J. Greilhuber, & j Suda (Eds.), Flow Cytometry with Plant Cells (pp. 349–372). https://doi.org/10.1002/9783527610921.CH15spa
dc.relation.referencesBennett, M. (2000). Nuclear DNA Amounts in Angiosperms and their Modern Uses—807 New Estimates. Annals of Botany, 86(4), 859–909. https://doi.org/10.1006/anbo.2000.1253spa
dc.relation.referencesBlakeslee, A F, & Avery, A. G. (1937). Methods of inducing doubling of chromosomes in plants by treatment with colchicine. Journal of Heredity, 28(12), 393–411. https://doi.org/10.1093/OXFORDJOURNALS.JHERED.A104294spa
dc.relation.referencesBlakeslee, Albert F. (1939). The present and potential service of chemistry to plant breeding . American Journal of Botany, 26(3), 163–172. https://doi.org/10.1002/J.1537-2197.1939.TB12885.Xspa
dc.relation.referencesBohanec, B. (2003). Ploidy determination using flow cytometry. In Doubled Haploid Production in Crop Plants (pp. 397–403). https://doi.org/10.1007/978-94-017-1293-4_52spa
dc.relation.referencesBornhoff, B., & Harst, M. (2000). Establishment of embryo suspension cultures of grapevines (Vitis L.). 39(1), 27–29.spa
dc.relation.referencesBreitling, F., & Little, M. (1986). Carboxy-terminal regions on the surface of tubulin and microtubules. Epitope locations of YOL1/34, DM1A and DM1B. Journal of Molecular Biology, 189(2), 367–370. https://doi.org/10.1016/0022-2836(86)90517-6spa
dc.relation.referencesBrummer, E. C., Cazcarro, P. M., & Luth, D. (1999). Ploidy Determination of Alfalfa Germplasm Accessions Using Flow Cytometry. Crop Science, 39(4), 1202–1207. https://doi.org/10.2135/CROPSCI1999.0011183X003900040041Xspa
dc.relation.referencesCamacho, M. F. (1994). Dormición de semillas: causas y tratamientos.spa
dc.relation.referencesCamarena, F., Chura, J., & Blas, R. . (2012). Mejoramiento genético y biotecnológico de plantas.spa
dc.relation.referencesCampos, J. M. S., Davide, L. C., Salgado, C. C., Santos, F. C., Costa, P. N., Silva, P. S., … Pereira, A. V. (2009). In vitro induction of hexaploid plants from triploid hybrids of Pennisetum purpureum and Pennisetum glaucum. Plant Breeding, 128(1), 101–104. https://doi.org/10.1111/j.1439-0523.2008.01546.xspa
dc.relation.referencesCarneiro, J. W. P., & Marques, F. V. (1985). Influencia de la remoción de la cubierta protectora en el rendimiento de dos lotes de semillas de pasto señal. Brasilia.spa
dc.relation.referencesCasaya, T. A. (2004). Establecimiento del protocolo de multiplicación in vitro para pasto Toledo (Brachiaria brizantha CIAT 26110) : fase I. Universidad EARTH.spa
dc.relation.referencesChakraborti, S. P., Vijayan, K., Roy, B. N., & Qadri, S. M. H. (1998). In vitro induction of tetraploidy in mulberry (Morus alba L.). Plant Cell Reports , 17(10), 799–803. https://doi.org/10.1007/S002990050486spa
dc.relation.referencesChauvin, J. E., Label, A., & Kermarrec, M. P. (2005). In vitro chromosome-doubling in tulip (Tulipa gesneriana L.). The Journal of Horticultural Science and Biotechnology, 80(6), 693–698. https://doi.org/10.1080/14620316.2005.11512000spa
dc.relation.referencesChen, L. L., & Gao, S. L. (2007). In vitro tetraploid induction and generation of tetraploids from mixoploids in Astragalus membranaceus. Scientia Horticulturae, 112(3), 339–344. https://doi.org/10.1016/J.SCIENTA.2006.12.045spa
dc.relation.referencesChen, W. H., Tang, C. Y., & Kao, Y. L. (2009). Ploidy doubling by in vitro culture of excised protocorms or protocorm-like bodies in Phalaenopsis species. Plant Cell, Tissue and Organ Culture, 98(2), 229–238. https://doi.org/10.1007/S11240-009-9557-3spa
dc.relation.referencesChen, Z. J. (2010). Molecular mechanisms of polyploidy and hybrid vigor. Trends in Plant Science, 15(2), 57–71. https://doi.org/10.1016/J.TPLANTS.2009.12.003spa
dc.relation.referencesCohen, D., & Yao, J. (1996). In vitro chromosome doubling of nineZantedeschia cultivars. Plant Cell, Tissue and Organ Culture , 47(1), 43–49. https://doi.org/10.1007/BF02318964spa
dc.relation.referencesComstock, R. E., Robinson, H. F., & Harvey, P. H. (1949). A Breeding Procedure Designed To Make Maximum Use of Both General and Specific Combining Ability1. Agronomy Journal, 41(8), 360. https://doi.org/10.2134/agronj1949.00021962004100080006xspa
dc.relation.referencesCopeland, L., & McDonald, M. (1995). Principles of Seed Science and Technology (3a edition). Retrieved from https://www.springer.com/gp/book/9780792373223spa
dc.relation.referencesDas, D., Reddy, M., Upadhyaya, K., & Sopory, S. (2002). An efficient leaf-disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Reports, 20(11), 999–1005. https://doi.org/10.1007/S00299-002-0441-4spa
dc.relation.referencesDe Oliveira, A. L., De Costa, P., Pereira, R. C., Nunes, J. D., Brasil, J. E., De Souza, F., & Davide, L. (2014). Obtaining tetraploid plants of ruzigrass (Brachiaria ruziziensis). Revista Brasileira de Zootecnia, 43(3), 127–131. https://doi.org/10.1590/S1516-35982014000300004spa
dc.relation.referencesDewey, D. R. (1980). Some Applications and Misapplications of Induced Polyploidy to Plant Breeding. Basic Life Sciences, 13, 445–470. https://doi.org/10.1007/978-1-4613-3069-1_23spa
dc.relation.referencesDewitte, A., Eeckhaut, T., Van Huylenbroeck, J., & Van Bockstaele, E. (2009). Occurrence of viable unreduced pollen in a Begonia collection. Euphytica, 168(1), 81–94. https://doi.org/10.1007/S10681-009-9891-Xspa
dc.relation.referencesDewitte, W., & Murray, J. A. H. (2003). The plant cell cycle. Annu. Rev. Plant Biol, 54, 235–264. https://doi.org/10.1146/annurev.arplant.54.031902.134836spa
dc.relation.referencesDhooghe, E., Van Laere, K., Eeckhaut, T., Leus, L., & Van Huylenbroeck, J. (2010). Mitotic chromosome doubling of plant tissues in vitro. Plant Cell, Tissue and Organ Culture, 104(3), 359–373. https://doi.org/10.1007/S11240-010-9786-5spa
dc.relation.referencesDoležel, J., Greilhuber, J., & Suda, J. (2007). Flow cytometry with plant cells: analysis. Wiley-VCH, Weinheim.spa
dc.relation.referencesDorsey, E. (1936). Induced polyploidy in wheat and rye: Chromosome Doubling in Triticum, Secale and Triticum-Secale Hybrids Produced by Temperature Changes. Journal of Heredity, 27(4), 155–160. https://doi.org/10.1093/OXFORDJOURNALS.JHERED.A104195spa
dc.relation.referencesDunn, B. L., & Lindstrom, J. T. (2007). Oryzalin-induced chromosome doubling in Buddleja to facilitate interspecific hybridization. HortScience, 42(6), 1326–1328. https://doi.org/10.21273/HORTSCI.42.6.1326spa
dc.relation.referencesDutt, M., Vasconcellos, M., Song, K. J., Gmitter, F. G., & Grosser, J. W. (2009). In vitro production of autotetraploid Ponkan mandarin (Citrus reticulata Blanco) using cell suspension cultures. Euphytica, 173(2), 235–242. https://doi.org/10.1007/S10681-009-0098-Yspa
dc.relation.referencesEeckhaut, T., Samyn, G., & Van Bockstaele, E. (2003). In vitro polyploidy induction in rhododendron simsii hybrids. Acta Horticulturae, 572, 43–49. https://doi.org/10.17660/ACTAHORTIC.2002.572.4spa
dc.relation.referencesElyazid, D. M. A., & El-Shereif, A. R. (2014). In Vitro Induction of Polyploidy in Citrus reticulata Blanco. American Journal of Plant Sciences, 5(11), 1679–1685. https://doi.org/10.4236/AJPS.2014.511182spa
dc.relation.referencesEngelmann, F., Dambier, D., & Ollitrauit, P. (1994). Cryopreservation of cell suspensions and embryogenic calluses of Citrus using a simplified freezing process. Cryo Letters, 15(1).spa
dc.relation.referencesEuclides, V., & Euclides, K. (1998). Uso de animais na avaliação de forrageiras em Campo Grande. In Empresa Brasileira de Pesquisa Agropecuária (Embrapa-CNPGL). Documento no. 74. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesEvans, A. M. (1955). The Production and Identification of Polyploids in Red Clover, White Clover and Lucerne on JSTOR. New Phytologist, 54, 149–162. Retrieved from https://www.jstor.org/stable/2429625spa
dc.relation.referencesFaría, J., Aguilar, L. G., & González, B. (1996). Efecto de métodos químicos de escarificación sobre la germinación de seis gramíneas forrajeras tropicales. Revista de La Facultad de Agronomía de La Universidad Del Zulia, 13(4). Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/26073spa
dc.relation.referencesFawcett, J. A., Maere, S., & Van de Peer, Y. (2009). Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proceedings of the National Academy of Sciences, 106(14), 5737–5742. https://doi.org/10.1073/PNAS.0900906106spa
dc.relation.referencesFiore, S., De Pasquale, F., Carimi, F., & Sajeva, M. (2002). Effect of 2,4-D and 4-CPPU on somatic embryogenesis from stigma and style transverse thin cell layers of Citrus. Plant Cell, Tissue and Organ Culture , 68(1), 57–63. https://doi.org/10.1023/A:1012944100210spa
dc.relation.referencesFisher, M. J., & Kerridge, C. P. (2002). Agronomía y Fisiología de las Especies Brachiaria. In J.W Miles, B. L. Maass, C. . do Valle, & V. Kumble (Eds.), Brachiaria: Biología, Agronomía y Mejoramiento (pp. 46–57).spa
dc.relation.referencesGanga, M., & Chezhiyan, N. (2002). Influence of the antimitotic agents colchicine and oryzalin on in vitro regeneration and chromosome doubling of diploid bananas (Musa spp.). The Journal of Horticultural Science and Biotechnology, 77(5), 572–575. https://doi.org/10.1080/14620316.2002.11511540spa
dc.relation.referencesGarcía, M., Guzmán, R., & Vargas, A. (2010). Técnica de biospeckle para estudiar la dependencia de la viabilidad de semillas de lupino con la temperatura. Rev. Cub. Física, 27(1), 13–17.spa
dc.relation.referencesGobbe, J., Swenne, A., & Louant, R. . (1981). Diploides naturels et autotétraploides induits chez RracJuaria ruziziensis Germain et Evraru: criteres d’identification. Agronomy Tropical, 36, 339·346.spa
dc.relation.referencesGorodner, O. Z. (2013). Histología: Métodos e instrumentos de estudio de la histología parte I: Técnica histológica.spa
dc.relation.referencesGreplová, M., Polzerová, H., & Domkářová, J. (2009). Intra- and inter-specific crosses of Solanum materials after mitotic polyploidization in vitro. Plant Breeding, 128(6), 651–657. https://doi.org/10.1111/j.1439-0523.2009.01632.xspa
dc.relation.referencesGriga, M. (2000). Morphological alterations in sterile mutant of Pisum sativum obtained via somatic embryogenesis. Biologia Plantarum, 43(2), 161–165. https://doi.org/10.1023/A:1002751903877spa
dc.relation.referencesHacker, J. B. (1988). Sexuality and hibrization in signal grass Brachiaria decumbens. Tropical Grasslands, 22, 139–144.spa
dc.relation.referencesHamill, S. D., Smith, M. K., & Dodd, W. A. (1992). In vitro Induction of Banana Autotetraploids by Colchicine Treatment of Micropropagated Diploids. Australian Journal of Botany, 40, 887–896.spa
dc.relation.referencesHenny, R. J., Holm, J. R., Chen, J., & Scheiber, M. (2009). In vitro induction of tetraploids in Dieffenbachia × “Star bright M-1” by colchicine. HortScience, 44(3), 646–650. https://doi.org/10.21273/HORTSCI.44.3.646spa
dc.relation.referencesHermsen, J. (1984). Nature, evolution and breeding of polyploids. Iowa State Journal of Research, 58, 411–420. Retrieved from https://research.wur.nl/en/publications/nature-evolution-and-breeding-of-polyploidsspa
dc.relation.referencesHernández, E., Quero, A. R., Joaquín, B. M., Hernández, A., & Hernández, F. J. (2016). Métodos de escarificación y germinación en Brachiaria brizantha cv. Insurgente. Revista Mexicana de Ciencias Agrícolas, 7(1), 173–184.spa
dc.relation.referencesHirano, T. (2006). At the heart of the chromosome: SMC proteins in action. Nature Reviews Molecular Cell Biology , 7(5), 311–322. https://doi.org/10.1038/nrm1909spa
dc.relation.referencesHoffman, R. A. (2008). Flow Cytometry: Instrumentation, Applications, Future Trends and Limitations. In Standardization and Quality Assurance in Fluorescence Measurements II (pp. 307–342). https://doi.org/10.1007/4243_2008_037spa
dc.relation.referencesHopkinson, J. M., De Souza, F. H. D., Diulgheroff, S., Ortiz, A., & Sánchez, M. (2000). Fisiologia reproductiva, produccion de semilla y calidad de la semilla en el genero Brachiaria. In J.W. Miles, B. L. Maass, & C. . Valle (Eds.), Brachiaria: Biología , Agronomía y Mejoramiento (pp. 136–155). Cali, Colombia.spa
dc.relation.referencesHopkinson, J. M., Souza, F. H. D. de, Diulgheroff, S., Ortiz, A., & Sanchez, M. (1996). Reproductive physiology, seed production, and seed quality of Brachiaria. In J.W Miles, B. . Maase, C. . do Vallee, & V. with the collaboration of Kumble (Eds.), Brachiaria: Biology, Agronomy and Improvement (pp. 124–140). Retrieved from https://cgspace.cgiar.org/handle/10568/82030spa
dc.relation.referencesHugdahl, J. D., & Morejohn, L. C. (1993). Rapid and Reversible High-Affinity Binding of the Dinitroaniline Herbicide Oryzalin to Tubulin from Zea mays L. Plant Physiology, 102(3), 725–740. https://doi.org/10.1104/PP.102.3.725spa
dc.relation.referencesHull, F. H. (1945). Recurrent Selection for Specific Combining Ability in Corn1. Agronomy Journal, 37(2), 134–145. https://doi.org/10.2134/AGRONJ1945.00021962003700020006Xspa
dc.relation.referencesIshigaki, G., Gondo, T., Suenaga, K., & Akashi, R. (2009a). Induction of tetraploid ruzigrass (Brachiaria ruziziensis) plants by colchicine treatment of in vitro multiple-shoot clumps and seedlings. Grassland Science, 55(3), 164–170. https://doi.org/10.1111/j.1744-697X.2009.00153.xspa
dc.relation.referencesIshigaki, G., Gondo, T., Suenaga, K., & Akashi, R. (2009b). Multiple shoot formation, somatic embryogenesis and plant regeneration from seed-derived shoot apical meristems in ruzigrass (Brachiaria ruziziensis). Grassland Science, 55(1), 46–51. https://doi.org/10.1111/J.1744-697X.2009.00137.Xspa
dc.relation.referencesISTA. (2016). International rules for seed testing. 12. ISTA (1993) International Rules for Seed Testing. Zurich, Switzerland., 12. ISTA ((12. ISTA Int. rules seed testing. Zurich, Switzerland.), 345. https://doi.org/10.15258/istarules.2015.Fspa
dc.relation.referencesJank, L., Resende, R. M. S., Valle, C. B., & Simioni, C. (2008). Polyploidization of Sexual Diploid Brachiaria decumbens for Intraspecific Hybridization. Multifunctional Grasslands in a ChangingWorld, p. 395.spa
dc.relation.referencesJark Filho, W. (1976). Estudio sobre la latencia en semillas de Brachiaria decumbens Stapf. - Buscar con Google. Universidad de São Paulo, Piracicaba.spa
dc.relation.referencesJelenic, S., Berljak, J., Papes, D., & Jelaska, S. (2001). Jelenic: Mixoploidy and chimeric structures in somaclones. Food Technology and Biotechnology, 39, 13–17.spa
dc.relation.referencesJesus-Gonzalez, D., & Weathers, P. (2003). Tetraploid Artemisia annua hairy roots produce more artemisinin than diploids. Plant Cell Reports, 21, 809–813. https://doi.org/10.1007/s00299-003-0587-8spa
dc.relation.referencesKadota, M., & Niimi, Y. (2002). In vitro induction of tetraploid plants from a diploid Japanese pear cultivar (Pyrus pyrifolia N. cv. Hosui). Plant Cell Reports , 21(3), 282–286. https://doi.org/10.1007/S00299-002-0509-1spa
dc.relation.referencesKehr, A. E. (1996). Woody plant polyploidy . Am Nurseryman , 183, 38–47.spa
dc.relation.referencesKeller-Grein, G., Meass, B., & Hanson, J. (2002). Variación Natural en Brachiaria y Bancos de Germoplasma Existentes. In J.W Miles, B. L. Maass, C. . do Valle, & V. Kumble (Eds.), Brachiaria: Biología, Agronomía y Mejoramiento (pp. 18–45).spa
dc.relation.referencesKermani, M. J., Sarasan, V., Roberts, A. V., Yokoya, K., Wentworth, J., & Sieber, V. K. (2003). Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theoretical and Applied Genetics , 107(7), 1195–1200. https://doi.org/10.1007/S00122-003-1374-1spa
dc.relation.referencesKhosravi, P., Kermani, M. J., Nematzadeh, G. A., Bihamta, M. R., & Yokoya, K. (2007). Role of mitotic inhibitors and genotype on chromosome doubling of Rosa. Euphytica , 160(2), 267–275. https://doi.org/10.1007/S10681-007-9571-7spa
dc.relation.referencesKoefoed Petersen, K., Hagberg, P., & Kristiansen, K. (2003). Colchicine and oryzalin mediated chromosome doubling in different genotypes of Miscanthus sinensis. Plant Cell, Tissue and Organ Culture , 73(2), 137–146. https://doi.org/10.1023/A:1022854303371spa
dc.relation.referencesLampert, F., & Westermann, S. (2011). A blueprint for kinetochores — new insights into the molecular mechanics of cell division. Nature Reviews Molecular Cell Biology, 12(7), 407–412. https://doi.org/10.1038/nrm3133spa
dc.relation.referencesLeblanc, O., Dueñas, M., Hernández, M., Bello, S., García, V., & Savidan, Y. (1995). Chromosome doubling in Tripsacum: the production of artificial, sexual tetraploid ! plants. Plant Breeding, 114, 226–230.spa
dc.relation.referencesLenis-Manzano, S. J., Araujo, A. C. G., Do Valle, C. B., Santana, E. F., & Carneiro, V. T. C. (2010). Histology of somatic embryogenesis induced in embryos of mature seeds of the apomictic urochloa brizantha. Pesquisa Agropecuaria Brasileira, 45(5), 435–441. https://doi.org/10.1590/S0100-204X2010000500001spa
dc.relation.referencesLevin, D. A. (2002). The Role of Chromosomal Change in Plant Evolution - Donald A. Levin - Google Books. Oxford University Press, New York, New York, USA.spa
dc.relation.referencesLópez, S. J. (2009). Replicación del ácido desoxirribonucleico (DNA). In C. Beas, D. Ortuño, & J. . Almendáriz (Eds.), Biología Molecular Fundamentos y Aplicaciones (pp. 33–45). https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesMartins, L., & Silva, W. R. da. (2003). Efeitos imediatos e latentes de tratamentos térmico e químico em sementes de Brachiaria brizantha cultivar Marandu. Bragantia, 62(1), 81–88. https://doi.org/10.1590/S0006-87052003000100011spa
dc.relation.referencesMerola, R., & Díaz, S. S. (2012). Métodos, técnicas y tratamientos para inhibir dormancia en semillas de plantas forrajeras. Facultad de Ciencias Agrarias. Trabajo Postgrado., Montevideo, Uruguay.spa
dc.relation.referencesMeschede, D. K., Sales, C. J. G., Braccini, D. L. A., Scapim, C. A., & Schuab, R. S. (2004). Tratamentos para superação da dormência das sementes de capim-braquiária cultivar Marandu. Revista Brasileira de Sementes, 26(2), 76–81. https://doi.org/10.1590/S0101-31222004000200011spa
dc.relation.referencesMeyer, E. M., Touchell, D. H., & Ranney, T. G. (2009). In vitro shoot regeneration and polyploid induction from leaves of Hypericum species. Hortscience, 44(7), 1957–1961. Retrieved from https://journals.ashs.org/hortsci/view/journals/hortsci/44/7/article-p1957.xmlspa
dc.relation.referencesMijani, S., Eskandari, S., Zarghani, H., & GHIAS, M. (2013). Seed Germination and Early Growth Responses of Hyssop, Sweet Basil and Oregano to Temperature Levels. Notulae Scientia Biologicae, 5(4), 462–467. https://doi.org/10.15835/nsb549164spa
dc.relation.referencesMiles, John W. (2007). Apomixis for cultivar development in tropical forage grasses. Crop Science, 47(SUPPL. DEC.). https://doi.org/10.2135/cropsci2007.04.0016IPBSspa
dc.relation.referencesMolero, T., Viloria, M., & Viloria, E. (2018). Inducción de poliploidía con clochicina en vitroplantas de Aloe vera (L.). Revista Colombiana de Biotecnología, 20(1), 97–105. https://doi.org/10.15446/rev.colomb.biote.v20n1.73762spa
dc.relation.referencesMorejohn, L. C., Bureau, T. E., Molè-Bajer, J., Bajer, A. S., & Fosket, D. E. (1987). Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Plant, 172(2), 252–264. https://doi.org/10.1007/BF00394595spa
dc.relation.referencesMorejohn, Louis C, Bureau, T. E., Tocchi, L. P., & Fosket, D. E. (1984). Tubulins from different higher plant species are immunologically nonidentical and bind colchicine differentially. Proceedings of the National Academy of Sciences, 81(5), 1440–1444. https://doi.org/10.1073/PNAS.81.5.1440spa
dc.relation.referencesMurashige, T., & Nakano, R. (1966). Tissue Culture as a Potential Tool in Obtaining Polyploid Plants. Journal of Heredity, 57(4), 115–118. https://doi.org/10.1093/OXFORDJOURNALS.JHERED.A107486spa
dc.relation.referencesMurashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 473–497.spa
dc.relation.referencesNair, R. (2004). (14) Desarrollo de poblaciones de centeno perenne tetraploide (Lolium perenne L.). New Zealand Journal of Agricultural Research, 47(1), 45/49.spa
dc.relation.referencesNakagawa, H., & Hanna, W. W. (1992). Induced Sexual Tetraploids for Breeding Gumeagrass (Panicum maximun J ACQ.). Japanese Society of Grassland Science, 38(2), 152–159.spa
dc.relation.referencesNiazi, I. A. K., Rauf, S., Silva, J. A. T. da, Iqbal, Z., & Munir, H. (2015). Induced polyploidy in inter-subspecific maize hybrids to reduce heterosis breakdown and restore reproductive fertility. Grass and Forage Science, 70(4), 682–694. https://doi.org/10.1111/GFS.12142spa
dc.relation.referencesNorden, C., Mendoza, M., Dobbelaere, J., Kotwaliwale, C., Biggins, S., & Barral, Y. (2006). The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell, 125(1), 85–98. https://doi.org/10.1016/J.CELL.2006.01.045spa
dc.relation.referencesOdake, Y., Udagawa, A., Saga, H., & Mii, M. (1993). Somatic embryogenesis of tetraploid plants from internodal segments of a diploid cultivar of Asparagus officinalis L. grown in liquid culture. Plant Science, 94(1–2), 173–177. https://doi.org/10.1016/0168-9452(93)90018-Uspa
dc.relation.referencesOllitrault-Sammarcelli, F., Legave, J. M., Michaux-Ferriere, N., & Hirsch, A. M. (1994). Use of flow cytometry for rapid determination of ploidy level in the genus Actinidia. Scientia Horticulturae, 57(4), 303–313. https://doi.org/10.1016/S0304-4238(94)90113-9spa
dc.relation.referencesOlmos, S. E., Luciani, G., & Galdeano, E. (2009). Micropropagación. In G. Levitus, V. Echenique, C. Rubinstein, E. Hopp, & L. Mroginski (Eds.), Biotecnología y Mejoramiento Vegetal II (pp. 353–362).spa
dc.relation.referencesOmran, S., Guerra-Sanz, J. M., Cárdenas, J., & Pitrat, M. (2008). Methodology of tetraploid induction and expression of microsatellite alleles in triploid watermelon. Biology.spa
dc.relation.referencesOpenStax College. (2013). Biology. Retrieved from http://openstaxcollege.org.spa
dc.relation.referencesOtto, S. P., & Whitton, J. (2003). Polyploid incidence and evolution. Annual Review of Genetics, 34, 401–437. https://doi.org/10.1146/ANNUREV.GENET.34.1.401spa
dc.relation.referencesPasakinskiene, I. (2000). Culture of embryos and shoot tips for chromosome doubling in Lolium perenne and sterile hybrids between Lolium and Festuca. Plant Breeding, 119(2), 185–187. https://doi.org/10.1046/j.1439-0523.2000.00484.xspa
dc.relation.referencesPereira, R. C., Davide, L. C., Techio, V. H., & Timbó, A. L. (2012). Duplicação cromossômica de gramíneas forrageiras: Uma alternativa para programas de melhoramento genético. Ciencia Rural, 42(7), 1278–1285. https://doi.org/10.1590/S0103-84782012000700023spa
dc.relation.referencesPerrin, M., Martin, D., Joly, D., Demangeat, G., This, P., & Masson, J. E. (2001). Medium-dependent response of grapevine somatic embryogenic cells. Plant Science, 161(1), 107–116. https://doi.org/10.1016/S0168-9452(01)00385-5spa
dc.relation.referencesPeters, M., Franco, T., Schmidt, A., & Hincapié, B. (2011). Especies Forrajeras Multipropósito Opciones para Productores del Trópico Americano. Cali, CO.spa
dc.relation.referencesPines, J. (2006). Mitosis: a matter of getting rid of the right protein at the right time. Trends in Cell Biology, 16(1), 55–63. https://doi.org/10.1016/J.TCB.2005.11.006spa
dc.relation.referencesPinheiro, A. A., Pozzobon, M. T., Do Valle, C. B., Penteado, M. I. O., & Carneiro, V. T. C. (2000). Duplication of the chromosome number of diploid Brachiaria brizantha plants using colchicine. Plant Cell Reports, 19(3), 274–278. https://doi.org/10.1007/s002990050011spa
dc.relation.referencesPintos, B., Martín, L., & Gómez, A. (2014). Agentes antimitóticos en la obtención de plantas doble-haploides | Pintos | REDUCA (Biología). Reduca (Biología), 7 (2), 12–18.spa
dc.relation.referencesPlanchais, S., Glab, N., Inzë, D., & Bergounioux, C. (2000). Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett, 476, 78–83.spa
dc.relation.referencesPontaroli, A. C., & Biology, E. L. (2005). Somaclonal variation in Asparagus officinalis plants regenerated by organogenesis from long-term callus cultures. Genetics and Molecular Biology, 28, 423–430. Retrieved from https://www.scielo.br/scielo.php?pid=S1415-47572005000300015&script=sci_abstract&tlng=ptspa
dc.relation.referencesPredieri, S. (2001). Mutation induction and tissue culture in improving fruits. Plant Cell, Tissue and Organ Culture, 64, 185–210.spa
dc.relation.referencesQuero, A. R., Enríquez, J. F., & Miranda, L. (2007). Evaluación de especies forrajeras en América tropical, avances o status quo. Interciencia, 32(8), 556–571. Retrieved from https://www.redalyc.org/pdf/339/33932812.pdfspa
dc.relation.referencesQuesenberry, K. H., Dampier, J. M., Lee, Y. Y., Smith, R. L., & Acuña, C. A. (2010). Doubling the chromosome number of bahiagrass via tissue culture. Euphytica, 175(1), 43–50. https://doi.org/10.1007/s10681-010-0165-4spa
dc.relation.referencesRaimondi, J. P., Masuelli, R. W., & Camadro, E. L. (2001). Assessment of somaclonal variation in asparagus by RAPD fingerprinting and cytogenetic analyses. Scientia Horticulturae, 90(1–2), 19–29. https://doi.org/10.1016/S0304-4238(00)00250-8spa
dc.relation.referencesRamanna, M. S., & Jacobsen, E. (2003). Relevance of sexual polyploidization for crop improvement – A review. Euphytica , 133(1), 3–8. https://doi.org/10.1023/A:1025600824483spa
dc.relation.referencesRamírez, H., Guevara, M. E., & Escobar, R. H. (2012). Cultivo de Tejidos Vegetales Conceptos y Prácticas.spa
dc.relation.referencesRamos, N. A. (1975). Factores que influyen en la germinación del pasto (Brachiaria decumbens Stapf). Universidad Nacional-Instituto Colombiano Agropecuario (UN-ICA), Bogotá, Colombia.spa
dc.relation.referencesRamsey, J., & Schemske, D. W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics, 29, 467–501. https://doi.org/10.1146/ANNUREV.ECOLSYS.29.1.467spa
dc.relation.referencesRandhawa, M. S., Singh, R. P., Dreisigacker, S., Bhavani, S., Huerta-Espino, J., Rouse, M. N., … Sandoval-Sanchez, M. (2018). Identification and Validation of a Common Stem Rust Resistance Locus in Two Bi-parental Populations. Frontiers in Plant Science, 1788. https://doi.org/10.3389/FPLS.2018.01788spa
dc.relation.referencesRandolph, L. F. (1932). Some Effects of High Temperature on Polyploidy and Other Variations in Maize. Proceedings of the National Academy of Sciences of the United States of America, 18(3), 222. https://doi.org/10.1073/PNAS.18.3.222spa
dc.relation.referencesRao, S., Tian, Y., Xia, X., Li, Y., & Chen, J. (2020). Chromosome doubling mediates superior drought tolerance in Lycium ruthenicum via abscisic acid signaling. Horticulture Research, 7(1), 1–18. https://doi.org/10.1038/s41438-020-0260-1spa
dc.relation.referencesRauf, S., Ortiz, R., Malinowski, D. P., Clarindo, W. R., Kainat, W., Shehzad, M., … Hassan, S. W. (2021). Induced polyploidy: A tool for forage species improvement. Agriculture (Switzerland), 11(3), 1–16. https://doi.org/10.3390/agriculture11030210spa
dc.relation.referencesReinert, J. (1959). Untersuchungen uber die morphogenese in gewebekulturen. Ver. Dtsch. Bot. Ges, 71, 15–24. https://doi.org/10.1007/BF01881795spa
dc.relation.referencesRengifo, L. (2013). Poliploidización in vitro por mutagénesis química en guglupa (Passiflora edulis Sims) y su monitoreo mediante técnicas citogenéticas.spa
dc.relation.referencesRenvoize, S. A., Clayton, W. D., & Kabuye, C. H. (1998). Morfología, taxonomía y distribución natural de Brachiaria (Trin.) Griseb. In J. W Miles, B. L. Maass, & C. B. Do Valle (Eds.), Brachiaria: Biología , Agronomía y Mejoramiento (pp. 1–17). CIAT. Cali, Colombia; EMBRAPA/CNPGC. Campo Grande, Brasil.spa
dc.relation.referencesRivero, L., & Espinosa, M. (1988). Duracion de la latencia en semillas de Brachiaria decumbens. Pasturas Tropicales, 10(1), 20–23.spa
dc.relation.referencesRoca, W. . (1984). Cassava. In W. . Sharp, D. . Evans, R. . Ammirato, & Y. Yamada (Eds.), Handbook of plant cell culture: crop species vol 2: Vol. MacMillan (pp. 269–301). MacMillan Publishers, New York.spa
dc.relation.referencesRoca, W. M., & Mroginski, L. A. (1991). Cultivo de Tejidos en la Agricultura. Fundamentos y Aplicaciones. Cali, Colombia.spa
dc.relation.referencesRodrigues-Otubo, B. M., Penteado, M. I. D. O., & Do Valle, C. B. (2000). Embryo rescue of interspecific hybrids of Brachiaria spp. Plant Cell, Tissue and Organ Culture, 61(3), 175–182. https://doi.org/10.1023/A:1006478407814spa
dc.relation.referencesRodríguez-Gómez, A. D. J., & Frias-Vázquez, S. (2014). La mitosis y su regulación. Acta Pediátrica de Mexico, 35(1), 55–86. Retrieved from www.actapediatricademexico.orgspa
dc.relation.referencesRodríguez, N. C., & Bueno, M. L. (2006). Estudio de la diversidad citogenética de Physalis peruviana L. (Solanaceae). Acta Biológica Colombiana, 11(2), 75–85. Retrieved from https://revistas.unal.edu.co/index.php/actabiol/article/view/63322/pdfspa
dc.relation.referencesRose, J. B., Kubba, J., & Tobutt, K. R. (2000). Induction of tetraploidy in Buddleia globosa. Plant Cell, Tissue and Organ Culture , 63(2), 121–125. https://doi.org/10.1023/A:1006434803003spa
dc.relation.referencesRubuluza, T., Nikolova, R. V., Smith, M. T., & Hannweg, K. (2007). In vitro induction of tetraploids in Colophospermum mopane by colchicine. South African Journal of Botany, 73(2), 259–261. https://doi.org/10.1016/J.SAJB.2006.12.001spa
dc.relation.referencesRuíz, M. (2020). Ciclo celular . Retrieved June 7, 2020, from Fundación cK-12 website: https://www.ck12.org/na/Ciclo-celular-1/lesson/Ciclo-celular/spa
dc.relation.referencesSakai, A., Kobayashi, S., & Oiyama, I. (1990). Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports , 9(1), 30–33. https://doi.org/10.1007/BF00232130spa
dc.relation.referencesSalon, P. R., & Earle, E. D. (1998). Chromosome doubling and mode of reproduction of induced tetraploids of eastern gamagrass (Tripsacum dactyloides L.). Plant Cell Reports, 17, 881–885. https://doi.org/10.1007/s002990050502spa
dc.relation.referencesSattler, M. C., Carvalho, C. R., & Clarindo, W. R. (2015). The polyploidy and its key role in plant breeding. Planta 2015 243:2, 243(2), 281–296. https://doi.org/10.1007/S00425-015-2450-Xspa
dc.relation.referencesScagliusi, S. M., Grosselli, D., Ruppenthal, T. E., & Deon, A. Z. (2009). Estudos preliminares sobre o efeito da cafeína na duplicação cromossômica em plantas haplóides de cevada (Hordeum vulgare L.). - Portal Embrapa.spa
dc.relation.referencesSeijo, M. F. (2003). Aspectos básicos de la embriogénesis somática. Biotecnología Vegetal , 3(4), 195–209.spa
dc.relation.referencesShapiro, H. M. (2003). Practical flow cytometry. In Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/mrd.1080410419spa
dc.relation.referencesSharp, D. J., Rogers, G. C., & Scholey, J. M. (2000). Microtubule motors in mitosis. Nature, 407(6800), 41–47. https://doi.org/10.1038/35024000spa
dc.relation.referencesSilva, P., Callegari-Jacques, S., & Bodanese-Zanettini, M. H. (2000). Induction and identification of polyploids in Cattleya intermedia Lindl.(Orchidaceae) by in vitro techniques. Ciênc Rural, 30, 105–111. Retrieved from https://www.scielo.br/scielo.php?pid=S0103-84782000000100017&script=sci_arttextspa
dc.relation.referencesSimione, C., & Borges, C. (2009). Chromosome duplication in Brachiaria (A. Rich.) Stapf allows intraspecific crosses. Crop Breeding and Applied Biotechnology, 9, 238–334. https://doi.org/10.12702/1984-7033.v09n04a07spa
dc.relation.referencesSimmonds, N. W. (1980). Polyploidy in plant breeding. SPAN, 23, 73–75.spa
dc.relation.referencesSingh, R. J. (2003). Plant cytogenetics. CRC Press.spa
dc.relation.referencesSoltis, D. E., Albert, V. A., Leebens-Mack, J., Bell, C. D., Paterson, A. H., Zheng, C., … Soltis, P. S. (2009). Polyploidy and angiosperm diversification. American Journal of Botany, 96(1), 336–348. https://doi.org/10.3732/AJB.0800079spa
dc.relation.referencesSong, P., Kang, W., & Peffley, E. B. (1997). Chromosome doubling of Allium fistulosum x A. cepa interspecific F1 hybrids through colchicine treatment of regenerating callus. Euphytica, 93(3), 257–262. https://doi.org/10.1023/A:1002957800957spa
dc.relation.referencesSpeckmann, G. J., Post, J., & Dijkstra, H. (1965). The length of stomata as an indicator for polyploidy in rye-grasses. Euphytica, 14(3), 225–230. https://doi.org/10.1007/BF00149503spa
dc.relation.referencesStanys, V., Weckman, A., Staniene, G., & Duchovskis, P. (2006). In vitro induction of polyploidy in japanese quince (Chaenomeles japonica). Plant Cell, Tissue and Organ Culture 2006 84:3, 84(3), 263–268. https://doi.org/10.1007/S11240-005-9029-3spa
dc.relation.referencesStebbins, G. L. (1950). Variation and Evolution in Plants. Variation and Evolution in Plants. https://doi.org/10.7312/STEB94536/HTMLspa
dc.relation.referencesStebbins, G. L. (1971). Chromosomal evolution in higher plants. In Chromosomal evolution in higher plants. Addison-Wesley, London.spa
dc.relation.referencesSteward, F. C., Mapes, M. O., & Mears, K. (1958). Growth and Organized Development of Cultured Cells. II. Organization in Cultures Grown from Freely Suspended Cells. American Journal of Botany, 45(10), 708. https://doi.org/10.2307/2439728spa
dc.relation.referencesSubrahmanyam, N. C., & Kasha, K. J. (1975). Chromosome doubling of barley haploids by nitrous oxide and colchicine treatments. Canadian Journal of Genetics and Cytology, 17(4), 573–583. https://doi.org/10.1139/g75-071spa
dc.relation.referencesSullivan, M., & Morgan, D. (2007). Finishing mitosis, one step at a time. Nature Reviews. Molecular Cell Biology, 8(11), 894–903. https://doi.org/10.1038/NRM2276spa
dc.relation.referencesSwenne, A., Louant, B. P., & Dujardin, M. (1981). Induction par la colchicine de formes autotetraploides chez Brachiaria ruziziensis Germain et Evrard (Graminee). Agronomie Tropicale., 36(2), 134–141.spa
dc.relation.referencesTalledo, D., & Escobar, C. (1995). El ciclo celular en vegetales. Su estudio, importancia y aplicaciones. Biotempo, 2, 13–31.spa
dc.relation.referencesTalledo, D., Escobar, C., & Alleman, V. (1993). El ciclo celular en vegetales. Su estudio, importancia y aplicaciones. Retrieved from http://revistas.urp.edu.pe/index.php/Biotempo/article/view/1531/1418spa
dc.relation.referencesTayyab, M., Tahseen, R., Ashraf, A., Mahmood, A., Najam-ul-haq, M., Arslan, M., & Afzal, M. (2019). Efective plant‑endophyte interplay can improve the cadmium hyperaccumulation in Brachiaria mutica. World Journal of Microbiology and Biotechnology , 35(188). Retrieved from https://sci-hub.se/10.1007/s11274-019-2757-zspa
dc.relation.referencesThomas, H. (1993). Chromosome manipulation and polyploidy. Plant Breeding, 79–92. https://doi.org/10.1007/978-94-011-1524-7_7spa
dc.relation.referencesTimbó, A. L. d O., Souza, P. N. d. C., Pereira, R. C., Nunes, J. D., Pereira, J. E. B., Sobrinho, F. d. S., & Davide, L. C. (2014). Obtaining tetraploid plants of ruzigrass (Brachiaria ruziziensis). Revista Brasileira de Zootecnia, 43(3), 127–131. https://doi.org/10.1590/S1516-35982014000300004spa
dc.relation.referencesTouchell, D. H., Palmer, I. E., & Ranney, T. G. (2020). In vitro Ploidy Manipulation for Crop Improvement. Frontiers in Plant Science, 11. https://doi.org/10.3389/FPLS.2020.00722/FULLspa
dc.relation.referencesUsberti, R., & Martins, L. (2007). Sulphuric acid scarification effects on Brachiaria brizantha, B. humidicola and Panicum maximum seed dormancy release. Revista Brasileira de Sementes, 29(2), 143–147. https://doi.org/10.1590/S0101-31222007000200020spa
dc.relation.referencesVäinölä, A. (2000). Polyploidization and early screening of Rhododendron hybrids. Euphytica , 112(3), 239–244. https://doi.org/10.1023/A:1003994800440spa
dc.relation.referencesValencia, J. C., & Rodríguez, N. (2012). Estimación de la duración del ciclo celular y estandarización del protocolo citogenético en Guadua angustifolia Kunth var. angustifolia (Bambusoideae, Poaceae). Revista de Investigaciones - Universidad Del Quindío, 81–91.spa
dc.relation.referencesValladolid, A., Blas, R., & Gonzáles, R. (2004). Introducción al recuento de cromosomas somáticos en raíces andinas. Seminario J. (Ed.) Raíces Andinas. Contribuciones Al Conocimiento y La Capacitación. Serie: Conservación y Uso de La Biodiversidad de Raíces y Tubérculos Andinos: Una Década de Investigaciones Para El Desarrollo (1993-2003). No6. C.I.P. Agencia Suiza Para, 96–99. Lima, Perú.spa
dc.relation.referencesValle, C. (1990). Coleção de germoplasma de espécies de Brachiaria no CIAT: Estudos básicos visando ao melhoramento genético. Retrieved from https://www.embrapa.br/busca-de-publicacoes/-/publicacao/321524/colecao-de-germoplasma-de-especies-de-brachiaria-no-ciat-estudos-basicos-visando-ao-melhoramento-geneticospa
dc.relation.referencesVenial, L. R., Mendonça, M. A. C., Amaral-Silva, P. M., Canal, G. B., Passos, A. B. R. de J., Ferreira, A., … Clarindo, W. R. (2020). Autotetraploid Coffea canephora and Auto-Alloctaploid Coffea arabica From In Vitro Chromosome Set Doubling: New Germplasms for Coffea. Frontiers in Plant Science, 0, 154. https://doi.org/10.3389/FPLS.2020.00154spa
dc.relation.referencesVieira, H., Da Silva, F., & Barros, R. (1998). Superacao da dormencia de sementes de Brachiaria brizanta (Hochst.ex a. Rich) Stapf cv Marandú submetidas ao nitrato de potasio, hipoclorito de sodio, tioureia e etanol. Revista Brasileira de Sementes, 20(2), 44–47.spa
dc.relation.referencesVon Arnold, S., Sabala, I., Bozhkov, P., Dyachok, J., & Filonova, L. (2002). Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 69(3), 233–249. https://doi.org/10.1023/A:1015673200621spa
dc.relation.referencesWalczak, C. E., Cai, S., & Khodjakov, A. (2010). Mechanisms of chromosome behaviour during mitosis. Nature Reviews. Molecular Cell Biology, 11(2), 91. https://doi.org/10.1038/NRM2832spa
dc.relation.referencesWeiler, R. L., Krycki, K. C., Guerra, D., Simioni, C., & Dall’Agnol, M. (2015). Chromosome doubling in Paspalum notatum var. saure (cultivar Pensacola). Crop Breeding and Applied Biotechnology, 15(2), 106–111. https://doi.org/10.1590/1984-70332015V15N2N19spa
dc.relation.referencesWittmann, T., Hyman, A., & Desai, A. (2001). The spindle: a dynamic assembly of microtubules and motors. Nature Cell Biology , 3(1), E28–E34. https://doi.org/10.1038/35050669spa
dc.relation.referencesWorthington, M. L., & Miles, J. W. (2015). Reciprocal Full-sib Recurrent Selection and Tools for Accelerating Genetic Gain in Apomictic Brachiaria. In H. Budak & G. Spangenberg (Eds.), Molecular Breeding of Forage and Turf (pp. 19–30). https://doi.org/10.1007/978-3-319-08714-6_3spa
dc.relation.referencesYang, X. M., Cao, Z. Y., An, L. Z., Wang, Y. M., & Fang, X. W. (2006). In vitro tetraploid induction via colchicine treatment from diploid somatic embryos in grapevine (Vitis vinifera L.). Euphytica, 152(2), 217–224. https://doi.org/10.1007/s10681-006-9203-7spa
dc.relation.referencesYun, L., Yun, J., Li, J., Zheng, L., Zhao, W., & Qi, L. (2010). Callus polyploidy induction and identification of Russian wild ryegrass. Acta Prataculturae Sinica, 19, 126–131. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20113030612spa
dc.relation.referencesZhang, J., Zhang, M., & Deng, X. (2007). Obtaining autotetraploids in vitro at a high frequency in Citrus sinensis. Plant Cell, Tissue and Organ Culture , 89(2), 211–216. https://doi.org/10.1007/S11240-007-9240-5spa
dc.relation.referencesZielinski, Q. (1948). The use of colchicine in plant breeding. Retrieved from https://ir.library.oregonstate.edu/downloads/cr56n1338spa
dc.relation.referencesZlesak, D. C., Thill, C. A., & Anderson, N. O. (2005). Trifluralin-mediated polyploidization of Rosa chinensis minima (Sims) Voss seedlings. Euphytica , 141(3), 281–290. https://doi.org/10.1007/S10681-005-7512-Xspa
dc.relation.referencesZulay, F. V., Montes, J., & Manzano, M. (1998). Efecto de almacenamiento y tratamiento con ácido sulfúrico en semillas de Brachiaria dictyoneura. Zootecnia Tropical, 16(2), 277–286.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionadosspa
dc.subject.ddc580 - Plantas::584 - Monocotiledóneas, angiospermas basales, clorantales, magnoliasspa
dc.subject.proposalcolchicinaspa
dc.subject.proposalforrajesspa
dc.subject.proposalin vitrospa
dc.subject.proposalduplicación de cromosomasspa
dc.subject.proposalmejoramiento de plantasspa
dc.subject.proposalcolchicineeng
dc.subject.proposalforageseng
dc.subject.proposalin vitroeng
dc.subject.proposalchromosomes duplicationeng
dc.subject.proposalplant breedingeng
dc.titleBases metodológicas hacia la poliploidización de Urochloa decumbensspa
dc.title.translatedMethodological bases for the polyploidization of Urochloa decumbenseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBases metodológicas hacia la poliploidización de Urochloa decumbensspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
F105169.2021.pdf
Tamaño:
2.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: