Secado de granos de cacao (variedad TCS01) y su efecto sobre la concentración de compuestos fenólicos, azúcares y ácidos orgánicos

dc.contributor.advisorEscobar Parra, Sebastian
dc.contributor.authorChica Barco, Vanessa
dc.contributor.educationalvalidatorMartínez Correa, Hugo Alexander
dc.contributor.orcidhttps://orcid.org/0000-0003-3250-5516spa
dc.contributor.refereeLiliana Serna Cock
dc.contributor.refereeJuan Carlos Gómez
dc.date.accessioned2023-02-08T14:21:22Z
dc.date.available2023-02-08T14:21:22Z
dc.date.issued2022
dc.descriptionIlustraciones, fotografías, gráficas, tablasspa
dc.description.abstractLa operación de secado del cacao es de gran importancia para su valorización poscosecha, porque en esta etapa se logra estabilizar microbiológicamente el producto al disminuir su actividad de agua. Además, es posible influir en su calidad, especialmente mediante la retención de compuestos fenólicos los cuales poseen propiedades funcionales, la disminución de ácidos orgánicos y el alto contenido de azúcares como precursores del flavor, lo cual permite obtener granos de cacao finos y de aroma (especiales) representativos en el mercado, con múltiples beneficios para el productor. Los cacaocultores realizan el secado en sistemas artesanales que dependen de las condiciones climáticas, exponiendo los granos al ambiente bajo el contacto con la radiación solar como única fuente de energía térmica para favorecer el proceso. Bajo este contexto, con esta investigación se buscó evaluar las condiciones de secado para granos de cacao, variedad TCS01, bajo condiciones de operación controladas (tipo de secado y temperatura), que permitan potenciar la calidad de los granos. Para ello, se evaluaron dos tipos de metodologías secado: 1.- denominado estacionario, en el que las granos de cacao están en contacto permanente con el flujo de aire, y 2. -denominado transitorio, en el cual se definen tiempos de reposo bajo los cuales las granos de cacao no están en contacto con el flujo de aire caliente. Para el secado transitorio se empleó un periodo de reposo de 2 h. Para ambos tipos de secado se empleó aire caliente a tres temperaturas: 50°C, 60°C ,70°C, y un flujo de aire constante de 1 L/min. Evaluando como variables independientes el tipo de secado: estacionario y transitorio, y la temperatura. Como variables respuesta se evaluaron: la concentración de compuestos fenólicos totales usando un método espectrofotométrico, catequina, epicatequina y epigalocatequina, ácidos orgánicos (láctico, cítrico y acético) mediante métodos cromatográficos, y el potencial de capacidad antioxidante con el ensayo DPPH. Se realizaron las cinéticas de deshidratación y de degradación para cada temperatura y se usaron modelos matemáticos empíricos y un modelo teórico. Con la investigación se encontró que las condiciones para secado estacionario de los granos de cacao TCS01 en general presentaron mayor calidad, dado que retuvieron mayor cantidad de compuestos fenólicos y azúcares, y menor contenido de ácidos orgánicos, destacando el tratamiento SE60 con mayores resultados. Los granos sometidos a secado transitorio se secaron en menor tiempo y con mayores tasas de remoción de agua en comparación con el secado estacionario, esto genera potencial para disminuir costos energéticos durante el proceso de secado. Por lo anterior, se concluyó que el secado estacionario permite valorizar los granos secos de cacao con potencial a mercados de cacao especial. Esto potencia los usos en la industria con beneficios para el sector productor, manufacturero y la salud de los consumidores. (Texto tomado de la fuente)spa
dc.description.abstractThe cocoa drying operation is of great importance for its post-harvest recovery, because in this stage the product is microbiologically stabilized by reducing its water activity. In addition, it is possible to influence its quality, especially through the retention of phenolic compounds which have functional properties, the reduction of organic acids and the high content of sugars as flavor precursors, which allows obtaining fine aroma cocoa beans (special) representative in the market, with multiple benefits for the producer. The cocoa farmers carry out the drying in artisanal systems that depend on the climatic conditions, exposing the beans to the environment under contact with solar radiation as the only source of thermal energy to favor the process. In this context, this research sought to evaluate the drying conditions for cocoa beans, variety TCS01, under controlled operating conditions (type of drying and temperature), which allow enhancing the quality of the beans. For this, two types of drying methodologies were evaluated: 1. - called stationary, in which the cocoa beans are in permanent contact with the air flow, and 2. -called transitory, in which rest times are defined under which the cocoa beans are not in contact with the flow of hot air. For temporary drying, a rest period of 2 h was used. For both types of drying, hot air at three temperatures was used: 50°C, 60°C, 70°C, and a constant air flow of 1 L/min. Evaluating as independent variables the type of drying: stationary and transient, and temperature. As response variables, the following were evaluated: the concentration of total phenolic compounds using a spectrophotometric method, catechin, epicatechin and epigallocatechin, organic acids (lactic, citric and acetic) using chromatographic methods, and the potential antioxidant capacity with the DPPH assay. Dehydration and degradation kinetics were performed for each temperature and empirical mathematical models and a theoretical model were used. With the investigation, it was found that the conditions for stationary drying of the TCS01 cocoa beans in general presented higher quality, since they retained a greater amount of phenolic compounds and sugars, and lower content of organic acids, highlighting the SE60 treatment with better results. Grains subjected to transitory drying dried in less time and with higher rates of water removal compared to stationary drying, this generates the potential to reduce energy costs during the drying process. Due to the above, it was concluded that stationary drying allows the valorization of dry cocoa beans with potential for special cocoa markets. This enhances the uses in the industry with benefits for the production and manufacturing sectors and the health of consumers.eng
dc.description.curricularareaIngeniería.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Agroindustrialspa
dc.description.methodsLugar: El desarrollo de la investigación se llevó a cabo en el laboratorio de poscosecha y química analítica del Centro de Investigación Tibaitata (Mosquera, Bogotá) de la Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) y en las instalaciones de la Universidad Nacional de Colombia sede Palmira. Material: Se trabajó con granos de cacao TCS01 fermentados homogéneamente (eliminar frase repetida). La masa de granos de cacao fermentadas tenía un pH promedio de 4.56±0.01 y un rendimiento de 65.8% masa de cacao fermentado/ masa de cacao en fresco. Desarrollo: La metodología se abordo por cada objetivo específico relacionados a continuación: 1. Determinar qué tipo de secado convectivo: estacionario o transitorio, a tres temperaturas: 50°C, 60°C y 70°C, que permite una mayor tasa de deshidratación y menor tiempo de proceso de granos de cacao de la variedad TCS01 2. Seleccionar un modelo que simule de manera óptima las cinéticas de deshidratación de los granos de cacao de la variedad TCS01, durante el secado convectivo estacionario y transitorio a tres temperaturas (50°C, 60°C y 70°C). 3.  Determinar las condiciones de temperatura (50°C, 60°C y 70°C) y tipo de secado (convectivo estacionario y transitorio) que favorezcan en mayor medida la retención de compuestos fenólicos, la capacidad antioxidante potencial, la concentración de azúcares y el menor contenido de ácidos orgánicos como parámetros de calidad de los granos de cacao de la variedad TCS01spa
dc.description.researchareaAgroindustria alimentariaspa
dc.format.extentxv, 115 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83378
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ingeniería y Administraciónspa
dc.publisher.placePalmira Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrialspa
dc.relation.referencesAbhay, S. M., Hii, C. L., Law, C. L., Suzannah, S., & Djaeni, M. (2016). Effect of hot-air drying temperature on the polyphenol content and the sensory properties of cocoa beans. International Food Research Journal, 23(4), 1479–1484.spa
dc.relation.referencesAdeyemi, S. A., Obayopo, S. O., & Akharume, F. (2020). Evaluation of Intermittent Solar Drying with Seasonal Variation on the Quality of Dried Cocoa Beans. SDRP Journal of Food Science & Technology, 5(1), 27–39. https://doi.org/10.25177/jfst.5.1.ra.10612spa
dc.relation.referencesAfoakwa, E. O., Kongor, J., Budu, A., Mensah-Brown, H., & Takrama, J. (2015). Changes in Biochemical and Physico-chemical Qualities during Drying of Pulp Preconditioned and Fermented Cocoa (Theobroma cacao) Beans. African Journal of Food, Agriculture, Nutrition and Development, 15(1), 9651–9670. https://doi.org/10.15226/jnhfs.2014.00121spa
dc.relation.referencesAfoakwa, E. O., Kongor, J. E., Takrama, J., & Budu, A. S. (2013). Changes in nib acidification and biochemical composition during fermentation of pulp pre-conditioned cocoa (theobroma cacao) beans. International Food Research Journal, 20(4), 1843–1853.spa
dc.relation.referencesAfoakwa, E., Paterson, A., Fowler, M., & Ryan, A. (2008). Flavor formation and character in cocoa and chocolate: A critical review. Critical Reviews in Food Science and Nutrition, 48(9), 840–857. https://doi.org/10.1080/10408390701719272spa
dc.relation.referencesAhmed, S., Ahmed, N., Rungatscher, A., Linardi, D., Kulsoom, B., Innamorati, G., … Faggian, G. (2020). Cocoa flavonoids reduce inflammation and oxidative stress in a myocardial ischemia-reperfusion experimental model. Antioxidants, 9(2), 1–13. https://doi.org/10.3390/antiox9020167spa
dc.relation.referencesAkhilesh, S., Jahar, S., & Rashmi Rekha, S. (2022). Experimentation and Performance Analysis of Solar- Assisted Heat Pump Dryer for Intermittent Drying of Food Chips. Journal of Solar Energy Engineering, 144(2). https://doi.org/10.1115/1.4052549spa
dc.relation.referencesAlbertini, B., Schoubben, A., Guarnaccia, D., Pinelli, F., Della Vecchia, M., Ricci, M., … Blasi, P. (2015). Effect of Fermentation and Drying on Cocoa Polyphenols. Journal of Agricultural and Food Chemistry, 63(45), 9948–9953. https://doi.org/10.1021/acs.jafc.5b01062spa
dc.relation.referencesAlean, J., Chejne, F., Ramírez, S., Rincón, E., Alzate-, A. F., Rojano, B., … Ram, S. (2020). Proposal of a method to evaluate the in-situ oxidation of polyphenolic during the cocoa drying. Drying Technology, 0(0), 1–12. https://doi.org/10.1080/07373937.2020.1817933spa
dc.relation.referencesAlean, J., Chejne, F., & Rojano, B. (2016). Degradation of polyphenols during the cocoa drying process. Journal of Food Engineering, 189, 99–105. https://doi.org/10.1016/j.jfoodeng.2016.05.026spa
dc.relation.referencesAprotosoaie, A. C., Luca, S. V., & Miron, A. (2016). Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, 15(1), 73–91. https://doi.org/10.1111/1541-4337.12180spa
dc.relation.referencesAraujo, Q. R. De, Gattward, J. N., Almoosawi, S., Parada Costa Silva, M. das G. C., Dantas, P. A. D. S., & Araujo Júnior, Q. R. De. (2016). Cocoa and Human Health: From Head to Foot—A Review. Critical Reviews in Food Science and Nutrition, 56(1), 1–12. https://doi.org/10.1080/10408398.2012.657921spa
dc.relation.referencesArvelo Sánchez, M. A., González León, D., Maroto Arce, S., Delgado López, T., & Montoya López, P. (2017). Manual técnico del cultivo de cacao-Prácticas Latinoamericanas. Instituto Interamericano de Cooperación para la Agricultura (IICA).spa
dc.relation.referencesBadrie, N., Bekele, F., Sikora, E., & Sikora, M. (2015). Cocoa Agronomy, Quality, Nutritional, and Health Aspects. Critical Reviews in Food Science and Nutrition, 55(5), 620–659. https://doi.org/10.1080/10408398.2012.669428spa
dc.relation.referencesBaini, R., & Langrish, T. A. G. (2007). Choosing an appropriate drying model for intermittent and continuous drying of bananas. Journal of Food Engineering, 79(1), 330–343. https://doi.org/10.1016/j.jfoodeng.2006.01.068spa
dc.relation.referencesBarbosa de Lima, A. G., Delgado, J. M. P. Q., Neto, S. R. ., & C.M.R, F. (2016). Intermittent Drying: Fundamentals, Modeling and Applications. Drying and Energy Technologies, 1, 1–228. https://doi.org/10.1007/978-3-319-19767-8spa
dc.relation.referencesBatista, N. N., de Andrade, D. P., Ramos, C. L., Dias, D. R., & Schwan, R. F. (2016). Antioxidant capacity of cocoa beans and chocolate assessed by FTIR. Food Research International, 90, 313–319. https://doi.org/10.1016/j.foodres.2016.10.028spa
dc.relation.referencesBeaudry, C., Raghavan, G. S. V., & Rennie, T. J. (2003). Microwave finish drying of osmotically dehydrated cranberries. Drying Technology, 21(9), 1797–1810. https://doi.org/10.1081/DRT-120025509spa
dc.relation.referencesBesnier, M. (2019). Determinación De Difusividad Efectiva En La Impregnación De Pino Radiata Con Silicato De Sodio, 1–66.spa
dc.relation.referencesBorrero, F., & Hernandez, J. (2006). Determinacion de parametres y airnulacion matematlca del proceso de secado del cacao ( Theobroma cacao ), 12.spa
dc.relation.referencesCamu, N., De Winter, T., Verbrugghe, K., Cleenwerck, I., Vandamme, P., Takrama, J. S., … De Vuyst, L. (2007). Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Applied and Environmental Microbiology, 73(6), 1809–1824. https://doi.org/10.1128/AEM.02189-06spa
dc.relation.referencesCao, X., Chen, J., Islam, M. N., Xu, W., & Zhong, S. (2019). Effect of Intermittent Microwave Volumetric Heating on Dehydration, Energy Consumption, Antioxidant Substances, and Sensory Qualities of Litchi Fruit during Vacuum Drying. Molecules (Basel, Switzerland), 24(23). https://doi.org/10.3390/molecules24234291spa
dc.relation.referencesChaisu, K., & Chiu, C. H. (2019). Antioxidant (flavonoid) in thai cocoa bean. PIM 9th National and 2nd International Conference 2019 and 2nd Smart Logistics Conferenc, (July), 1–44.spa
dc.relation.referencesChinè-polito, B. (2015). Modelación del proceso de secado de productos agroindustriales. Tecnologia En Marcha, 29(506), 62–73.spa
dc.relation.referencesChinenye, N. M. (2009). Effect of Drying Temperature and Drying Air Velocity on the Drying Rate and Drying Constant of Cocoa Bean. Agricultural Engineering International: CIGR Journal, 0(0).spa
dc.relation.referencesChou, S. K., Chua, K. J., Mujumdar, A. S., Hawlader, M. N. A., & Ho, J. C. (2000). On the intermittent drying of an agricultural product. Food and Bioproducts Processing: Transactions of the Institution of of Chemical Engineers, Part C, 78(4), 193–203. https://doi.org/10.1205/09603080051065296spa
dc.relation.referencesChua, K. J., Chou, S. K., Ho, J. C., Mujumdar, A. S., & Hawlader, M. N. A. (2000). Cyclic air temperature drying of guava pieces: Effects on moisture and ascorbic acid contents. Food and Bioproducts Processing: Transactions of the Institution of of Chemical Engineers, Part C, 78(2), 72–78. https://doi.org/10.1205/096030800532761spa
dc.relation.referencesChua, K. J., Mujumdar, A. S., Chou, S. K., Ho, J. C., & Crescent, K. R. (2000). CONVECTIVE DRYING OF BANANA , GUAVA AND POTATO PIECES : EFFECT OF CYCLICAL VARIATIONS OF AIR TEMPERATURE ON DRYING KINETICS AND COLOR CHANGE. Drying Technology, 18(4–5), 907–936.spa
dc.relation.referencesChua, K. J., Mujumdar, A. S., Chou, S. K., Ho, J. C., & Crescent, K. R. (2000). CONVECTIVE DRYING OF BANANA , GUAVA AND POTATO PIECES : EFFECT OF CYCLICAL VARIATIONS OF AIR TEMPERATURE ON DRYING KINETICS AND COLOR CHANGE. Drying Technology, 18(4–5), 907–936.spa
dc.relation.referencesCoșarcă, S., Tanase, C., & Muntean, D. L. (2019). Therapeutic Aspects of Catechin and Its Derivatives – An Update. Acta Biologica Marisiensis, 2(1), 21–29. https://doi.org/10.2478/abmj-2019-0003spa
dc.relation.referencesDai, J. W., Xiao, H. W., Zhang, L. H., Chu, M. Y., Qin, W., Wu, Z. J., … Yin, P. F. (2019). Drying characteristics and modeling of apple slices during microwave intermittent drying. Journal of Food Process Engineering, 42(6), 1–10. https://doi.org/10.1111/jfpe.13212spa
dc.relation.referencesDaud, W. R. W., Talib, M. Z. M., & Ibrahim, M. H. (1996). Characteristic drying curves of cocoa beans. Drying Technology, 14(10), 2387–2396. https://doi.org/10.1080/07373939608917211spa
dc.relation.referencesDaud, W. R. W., Talib, M. Z. M., & Kyi, T. M. (2007). Drying with chemical reaction in cocoa beans. Drying Technology, 25(5), 867–875. https://doi.org/10.1080/07373930701370241spa
dc.relation.referencesDe Brito, E. S., García, N. H. P., Gallão, M. I., Cortelazzo, A. L., Fevereiro, P. S., & Braga, M. R. (2001). Structural and chemical changes in cocoa (Theobroma cacao L) during fermentation, drying and roasting. Journal of the Science of Food and Agriculture, 81(2), 281–288. https://doi.org/10.1002/1097-0010(20010115)81:2<281::AID-JSFA808>3.0.CO;2-Bspa
dc.relation.referencesde Melo Pereira, G. V., Magalhães, K. T., de Almeida, E. G., da Silva Coelho, I., & Schwan, R. F. (2013). Spontaneous cocoa bean fermentation carried out in a novel-design stainless steel tank: Influence on the dynamics of microbial populations and physical-chemical properties. International Journal of Food Microbiology, 161(2), 121–133. https://doi.org/10.1016/j.ijfoodmicro.2012.11.018spa
dc.relation.referencesDelgado-Ospina, J., Di Mattia, C. D., Paparella, A., Mastrocola, D., Martuscelli, M., & Chaves-Lopez, C. (2020). Effect of fermentation, drying and roasting on biogenic amines and other biocompounds in Colombian criollo cocoa beans and shells. Foods, 9(4). https://doi.org/10.3390/foods9040520spa
dc.relation.referencesDelgado, J. M. P. Q., & Barbosa de Lima, A. G. (2015). Drying and energy technologies. Drying and Energy Technologies, 1–228. https://doi.org/10.1007/978-3-319-19767-8spa
dc.relation.referencesDeus, V. L., de Cerqueira E Silva, M. B., Maciel, L. F., Miranda, L. C. R., Hirooka, E. Y., Soares, S. E., … da Silva Bispo, E. (2018). Influence of drying methods on cocoa (Theobroma cacao L.): Antioxidant activity and presence of ochratoxin A. Food Science and Technology, 38, 278–285. https://doi.org/10.1590/fst.09917spa
dc.relation.referencesDzelagha, B. F., Ngwa, N. M., & Bup, D. N. (2020). A Review of Cocoa Drying Technologies and the Effect on Bean Quality Parameters. International Journal of Food Science, 2020, 11. https://doi.org/10.1155/2020/8830127spa
dc.relation.referencesEfraim, P., Pezoa-garcía, N. H., Calil, D., Jardim, P., Nishikawa, A., Haddad, R., & Eberlin, M. N. (2010). Influência da fermentação e secagem de amêndoas de cacau no teor de compostos fenólicos e na aceitação sensorial Influence of cocoa beans fermentation and drying on the polyphenol content and sensory acceptance. Ciencia E Tecnologia De Alimentos, 30, 142–150.spa
dc.relation.referencesEscobar, S., Santander, M., Useche, P., Contreras, C., & Rodríguez, J. (2020). Aligning Strategic Objectives with Research and Development Activities in a Soft Commodity Sector: A Technological Plan for Colombian Cocoa Producers. Agriculture, 10(5), 141. https://doi.org/10.3390/agriculture10050141spa
dc.relation.referencesEscobar, S., Santander, M., Zuluaga, M., Chacón, I., Rodríguez, J., & Vaillant, F. (2021). Fine cocoa beans production: Tracking aroma precursors through a comprehensive analysis of flavor attributes formation. Food Chemistry, 365(July). https://doi.org/10.1016/j.foodchem.2021.130627spa
dc.relation.referencesEyamo Evina, V. J., De Taeye, C., Niemenak, N., Youmbi, E., & Collin, S. (2016). Influence of acetic and lactic acids on cocoa flavan-3-ol degradation through fermentation-like incubations. LWT - Food Science and Technology, 68, 514–522. https://doi.org/10.1016/j.lwt.2015.12.047spa
dc.relation.referencesFaborode, M. O., Favier, J. F., & Ajayi, O. A. (1995). On the effects of forced air drying on cocoa quality. Journal of Food Engineering, 25(4), 455–472. https://doi.org/10.1016/0260-8774(94)00018-5spa
dc.relation.referencesFatouh, M., Metwally, M. N., Helali, A. B., & Shedid, M. H. (2006). Herbs drying using a heat pump dryer. Energy Conversion and Management, 47(15–16), 2629–2643. https://doi.org/10.1016/j.enconman.2005.10.022spa
dc.relation.referencesFEDECACAO. (2005). Caracterización fisícoquímica y beneficio del grano de cacao (Theobroma cacao L.) en Colombia. Retrieved from http://www.fedecacao.com.co/site/images/recourses/pub_doctecnicos/fedecacao-pub-doc_09B.pdfspa
dc.relation.referencesFEDECACAO. (2019). Economía Nacional e Internacional. Retrieved May 18, 2020, from https://www.fedecacao.com.co/portal/index.php/es/2015-02-12-17-20-59/nacionales#spa
dc.relation.referencesFEDECACAO- Federación Nacional de Cacaoteros. (2021). PRODUCCIÓN ANUAL.spa
dc.relation.referencesFranco, C. M. R., de Lima, A. G. B., Farias, V. S. O., & da Silva, W. P. (2019). Modeling and experimentation of continuous and intermittent drying of rough rice grains. Heat and Mass Transfer/Waerme- Und Stoffuebertragung. https://doi.org/10.1007/s00231-019-02773-0spa
dc.relation.referencesGarcía-Alamilla, P., Salgado-Cervantes, M. A., Barel, M., Berthomieu, G., Rodríguez-Jimenes, G. C., & García-Alvarado, M. A. (2007). Moisture, acidity and temperature evolution during cacao drying. Journal of Food Engineering, 79(4), 1159–1165. https://doi.org/10.1016/j.jfoodeng.2006.04.005spa
dc.relation.referencesGarcía, I., & Macías, T. (2020). Cocoa drying system using ancestral sliding. International Journal of Life Sciences, 4(1), 42–49. https://doi.org/10.29332/ijls.v4n1.392spa
dc.relation.referencesGolmohammadi, M., Assar, M., Rajabi-Hamaneh, M., & Hashemi, S. J. (2015). Energy efficiency investigation of intermittent paddy rice dryer: Modeling and experimental study. Food and Bioproducts Processing, 94, 275–283. https://doi.org/10.1016/j.fbp.2014.03.004spa
dc.relation.referencesGuehi, T. S., Zahouli, I. B., Ban-Koffi, L., Fae, M. A., & Nemlin, J. G. (2010). Performance of different drying methods and their effects on the chemical quality attributes of raw cocoa material. International Journal of Food Science and Technology, 45(8), 1564–1571. https://doi.org/10.1111/j.1365-2621.2010.02302.xspa
dc.relation.referencesHerman, C., Spreutels, L., Turomzsa, N., Konagano, E. M., & Haut, B. (2018a). Convective drying of fermented Amazonian cocoa beans (Theobroma cacao var. Forasteiro). Experiments and mathematical modeling. Food and Bioproducts Processing, 108, 81–94. https://doi.org/10.1016/j.fbp.2018.01.002spa
dc.relation.referencesHerman, C., Spreutels, L., Turomzsa, N., Konagano, E. M., & Haut, B. (2018b). Convective drying of fermented Amazonian cocoa beans (Theobroma cacao var. Forasteiro). Experiments and mathematical modeling. Food and Bioproducts Processing, 108, 81–94. https://doi.org/10.1016/j.fbp.2018.01.002spa
dc.relation.referencesHernández Suarez, A. C., & Monroy Olmos, B. (2017). Análisis de la politica de sustitución de cultivos de coca por cacao como estrategia de desarrollo local: El caso del municipio de Pauna (Boyaca) años 2005 y 2015. 图书情报工作, (6), 67–72.spa
dc.relation.referencesHii, C. L., Law, C. L., Cloke, M., & Suzannah, S. (2009a). Thin layer drying kinetics of cocoa and dried product quality. Biosystems Engineering, 102(2), 153–161. https://doi.org/10.1016/j.biosystemseng.2008.10.007spa
dc.relation.referencesHii, C. L., Law, C. L., Cloke, M., & Suzannah, S. (2009b). Thin layer drying kinetics of cocoa and dried product quality. Biosystems Engineering, 102(2), 153–161. https://doi.org/10.1016/j.biosystemseng.2008.10.007spa
dc.relation.referencesHii, C. L., Law, C. L., & Suzannah, S. (2012). Drying kinetics of the individual layer of cocoa beans during heat pump drying. Journal of Food Engineering, 108(2), 276–282. https://doi.org/10.1016/j.jfoodeng.2011.08.017spa
dc.relation.referencesHii, C. L., Law, C. L., Suzannah, S., Misnawi, & Cloke, M. (2009). Polyphenols in cocoa (Theobroma cacao L.) C.L. Asian Journal of Food and Agro-Industry, 2(4), 702–722.spa
dc.relation.referencesHo, J. C., Chou, S. K., Chua, K. J., Mujumdar, A. S., & Hawlader, M. N. A. (2002). Analytical study of cyclic temperature drying: Effect on drying kinetics and product quality. Journal of Food Engineering, 51(1), 65–75. https://doi.org/10.1016/S0260-8774(01)00038-3spa
dc.relation.referencesHorta-Téllez, H. B., Sandoval-Aldana, A. P., Garcia-Muñoz, M. C., & Cerón-Salazar, I. X. (2019). Evaluation of the fermentation process and final quality of five cacao clones from the department of huila, colombia. DYNA (Colombia), 86(210), 233–239. https://doi.org/10.15446/dyna.v86n210.75814spa
dc.relation.referencesHoskin, J. C., & Dimick, P. S. (1994). Chemistry of flavour development in chocolate. Industrial Chocolate Manufacture and Use, (2696), 102–116. https://doi.org/10.1007/978-1-4615-2111-2_8spa
dc.relation.referencesICCO-INTERNATIONAL COCOA ORGANIZATION. (2022). Quartely Bulletin of Cocoa Statistics.spa
dc.relation.referencesInternational Cocoa Organization-ICCO. (2022). Fine or Flavour Cocoa.spa
dc.relation.referencesJinap, S., Thien, J., & Yap, T. N. (1994). Effect of drying on acidity and volatile fatty acids content of cocoa beans. Journal of the Science of Food and Agriculture, 65(1), 67–75. https://doi.org/10.1002/jsfa.2740650111spa
dc.relation.referencesJohn, W. A., Kumari, N., Böttcher, N. L., Koffi, K. J., Grimbs, S., Vrancken, G., … Ullrich, M. S. (2016). Aseptic artificial fermentation of cocoa beans can be fashioned to replicate the peptide profile of commercial cocoa bean fermentations. Food Research International, 89, 764–772. https://doi.org/10.1016/j.foodres.2016.10.011spa
dc.relation.referencesKadow, D., Niemenak, N., Rohn, S., & Lieberei, R. (2015). Fermentation-like incubation of cocoa seeds (Theobroma cacao L.) - Reconstruction and guidance of the fermentation process. LWT - Food Science and Technology, 62(1), 357–361. https://doi.org/10.1016/j.lwt.2015.01.015spa
dc.relation.referencesKim, H., & Keeney, P. G. (1983). Method of Analysis for (‐)‐Epicatechin in Cocoa Beans by High Performance Liquid Chromatography. Journal of Food Science, 48(2), 548–551. https://doi.org/10.1111/j.1365-2621.1983.tb10787.xspa
dc.relation.referencesKim, H., & Keeney, P. G. (1984). (-)-Epicatechin Content in Fermented and Unfermented Cocoa Beans. Journal of Food Science, 49, 1090–1092. https://doi.org/10.1111/J.1365-2621.1984.TB10400.Xspa
dc.relation.referencesKongor, J. E., Hinneh, M., de Walle, D. Van, Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile - A review. Food Research International, 82, 44–52. https://doi.org/10.1016/j.foodres.2016.01.012spa
dc.relation.referencesKowalski, S. J., & Pawłowski, A. (2011). Energy consumption and quality aspect by intermittent drying. Chemical Engineering and Processing: Process Intensification, 50(4), 384–390. https://doi.org/10.1016/j.cep.2011.02.012spa
dc.relation.referencesKowalski, S. J., Szadzińska, J., & Łechtańska, J. (2013). Non-stationary drying of carrot: Effect on product quality. Journal of Food Engineering, 118(4), 393–399. https://doi.org/10.1016/j.jfoodeng.2013.04.028spa
dc.relation.referencesKris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., … Etherton, T. D. (2002). Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. American Journal of Medicine, 113(9 SUPPL. 2), 71–88. https://doi.org/10.1016/s0002-9343(01)00995-0spa
dc.relation.referencesKumar, C., Joardder, M. U. H., Farrell, T. W., Millar, G. J., & Karim, M. A. (2016). Mathematical model for intermittent microwave convective drying of food materials. Drying Technology, 34(8), 962–973. https://doi.org/10.1080/07373937.2015.1087408spa
dc.relation.referencesKumar, C., Karim, M. A., & Joardder, M. U. H. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121(1), 48–57. https://doi.org/10.1016/j.jfoodeng.2013.08.014spa
dc.relation.referencesKyi, T. M., Daud, W. R. W., Mohamad, A. B., Samsudin, M. W., Kadhum, A. A. H., & Talib, M. Z. M. (2005). The kinetics of polyphenol degradation during the drying of Malaysian cocoa beans. International Journal of Food Science and Technology, 40(3), 323–331. https://doi.org/10.1111/j.1365-2621.2005.00959.xspa
dc.relation.referencesLasisi, D. (2014). A Comparative Study of Effects of Drying Methods on Quality of Cocoa Beans. International Journal of Engineering Research and Technology, 3(1), 991–996. Retrieved from https://www.ijert.org/research/a-comparative-study-of-effects-of-drying-methods-on-quality-of-cocoa-beans-IJERTV3IS10490.pdfspa
dc.relation.referencesLefeber, T., Gobert, W., Vrancken, G., Camu, N., & De Vuyst, L. (2011). Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels. Food Microbiology, 28(3), 457–464. https://doi.org/10.1016/j.fm.2010.10.010spa
dc.relation.referencesLeite, P. B., Maciel, L. F., Opretzka, L. C. F., Soares, S. E., & Bispo, E. da S. (2013). Phenolic compounds, methylxanthines and antioxidant activity in cocoa mass and chocolates produced from “witch broom disease” resistant and non resistant cocoa cultivars. Ciência E Agrotecnologia, 37(3), 244–250. https://doi.org/10.1590/s1413-70542013000300007spa
dc.relation.referencesLópez-Alarcón, C., & Denicola, A. (2013). Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Analytica Chimica Acta, 763, 1–10. https://doi.org/10.1016/j.aca.2012.11.051spa
dc.relation.referencesLópez, B. (2016). Evaluación aagronómica de una plantación de cacao tipo CCN-51 en la zona de Balao, provincia del Guayas. Retrieved from http://repositorio.ucsg.edu.ec/bitstream/3317/6930/1/T-UCSG-PRE-TEC-AGRO-99.pdf%0Ahttp://repositorio.ucsg.edu.ec/bitstream/3317/1608/1/T-UCSG-PRE-TEC-IECA-6.pdfspa
dc.relation.referencesMaldaner, V., Carteri, P., Trojahn, M., Müller, A., Oliveira, L., Eduardo, P., … Irineu, E. (2021). Effects of intermittent drying on physicochemical and morphological quality of rice and endosperm of milled brown rice. LWT, 152(August), 112334. https://doi.org/10.1016/j.lwt.2021.112334spa
dc.relation.referencesMartin, S., Silva, J., Donzeles, S., Zanatta, F., Cecon, P., & Galvarro, S. (2009). ESTUDO DO EFEITO DO PERÍODO DE REPOUSO NA QUALIDADE DO CAFÉ CEREJA, 4–6.spa
dc.relation.referencesMazor Jolić, S., Radojčic Redovnikovic, I., Marković, K., Ivanec Šipušić, D., & Delonga, K. (2011). Changes of phenolic compounds and antioxidant capacity in cocoa beans processing. International Journal of Food Science and Technology, 46(9), 1793–1800. https://doi.org/10.1111/j.1365-2621.2011.02670.xspa
dc.relation.referencesMcevily, A. J., Iyengar, R., & Gross, A. T. (1992). Inhibition of Polyphenol Oxidase by Phenolic Compounds. In Phenolic Compounds in Food and Their Effects on Health I (Vol. 506, pp. 318–325). American Chemical Society. https://doi.org/10.1021/bk-1992-0506.ch025spa
dc.relation.referencesMercado-Mercado, G., de la Rosa Carrillo, L., Wall-Medrano, A., López Díaz, J. A., & Álvarez-Parrilla, E. (2013). Compuestos polifenólicos y capacidad antioxidante de especies típicas consumidas en México. Nutrición Hospitalaría, 28(1), 36–46. https://doi.org/10.3305/nh.2013.28.1.6298spa
dc.relation.referencesMisnawi. (2008). Physico-chemical changes during cocoa fermentation and key enzymes involved. Review Penelitian Kopi Dan Kakao, 24(1), 47–64.spa
dc.relation.referencesMisnawi, A., Jinap, S., Jamilah, B., & Nazamid, S. (2004). Sensory properties of cocoa liquor as affected by polyphenol concentration and duration of roasting. Food Quality and Preference, 15(5), 403–409. https://doi.org/10.1016/S0950-3293(03)00097-1spa
dc.relation.referencesMotamayor, J. C., Risterucci, A. M., Heath, M., & Lanaud, C. (2003). Cacao domestication II: Progenitor germplasm of the Trinitario cacao cultivar. Heredity, 91(3), 322–330. https://doi.org/10.1038/sj.hdy.6800298spa
dc.relation.referencesMotamayor, J. C., Risterucci, A. M., Lopez, P. A., Ortiz, C. F., Moreno, A., & Lanaud, C. (2002). Cacao domestication I: The origin of the cacao cultivated by the Mayas. Heredity, 89(5), 380–386. https://doi.org/10.1038/sj.hdy.6800156spa
dc.relation.referencesNair, K. P. P. (2010). Cocoa (Theobroma cacao L.). The Agronomy and Economy of Important Tree Crops of the Developing World. https://doi.org/10.1016/b978-0-12-384677-8.00005-9spa
dc.relation.referencesNazaruddin, R., Seng, L. K., Hassan, O., & Said, M. (2006). Effect of pulp preconditioning on the content of polyphenols in cocoa beans (Theobroma Cacao) during fermentation. Industrial Crops and Products, 24(1), 87–94. https://doi.org/10.1016/j.indcrop.2006.03.013spa
dc.relation.referencesNganhou, J., Njomo, D., Benet, J. C., Augier, F., & Berthomieu, G. (2003). Perfecting a method of micro-analysis of water and acetic acid in a cocoa bean in the course of drying: Applying to determine transportation coefficients. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 39(8–9), 797–803. https://doi.org/10.1007/s00231-002-0395-7spa
dc.relation.referencesNoguera, L. (2014). CARACTERIZACIÓN DE MATERIALES REGIONALES PROMISORIOS DE CACAO COLOMBIANO: FÍSICA, QUÍMICA; FUNCIONAL Y ORGANOLÉPTICA. UNIVERSIDAD INDUSTRIAL DE SANTANDER. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesOke, D. O., & Omotayo, K. F. (2012). Effect of forced-air artificial intermittent drying on cocoa beans in South-Western Nigeria. Journal of Cereals and Oil Seeds, 3(1), 1–5. https://doi.org/10.5897/JCO11.037spa
dc.relation.referencesPallares, A., Estupiñán A, M. R., Perea Villamil, J. A., & López Giraldo, L. J. (2017). Impacto de la fermentación y secado sobre el contenido de polifenoles y capacidad antioxidante del clon de cacao CCN-51. Revista Ion, Investigación, Optimización Y Nuevos Procesos En Ingeniería, 29(2), 7–21. https://doi.org/10.18273/revion.v29n2-2016001spa
dc.relation.referencesPérez, E., & Cañas, I. (2017). Del cacao al chocolate: Una industria en Auge. (B. E. técnicas y Científicas, Ed.), Nesvida (1st ed., Vol. 6). España.spa
dc.relation.referencesPham, N. D., Khan, M. I. H., & Karim, M. A. (2020). A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying. Food Chemistry, 325, 126932. https://doi.org/10.1016/j.foodchem.2020.126932spa
dc.relation.referencesPorras-Barrientos, L. D., Torres-Oquendo, J. D., Gil-Garzón, M. A., & Martínez Álvarez, O. L. (2018). Effect of the solar drying process on the sensory and chemical quality of cocoa (Theobroma cacao L.) cultivated in Antioquia, Colombia. Food Research International. https://doi.org/10.1016/J.FOODRES.2018.08.084spa
dc.relation.referencesPutranto, A., Chen, X. D., Xiao, Z., & Webley, P. A. (2011). Mathematical modeling of intermittent and convective drying of rice and coffee using the reaction engineering approach (REA). Journal of Food Engineering, 105(4), 638–646. https://doi.org/10.1016/j.jfoodeng.2011.03.036spa
dc.relation.referencesRamli, N., Yatim, A. M., Said, M., & Hok, H. C. (2001). HPLC Determination of Methylxanthines and Polyphenols Levels In Cocoa and Chocolate Products, 7(2), 377–386.spa
dc.relation.referencesReineccius, G. (2005). Flavour Chemistry and Technology (segunda).spa
dc.relation.referencesRodriguez-Campos, J., Escalona-Buendía, H. B., Orozco-Avila, I., Lugo-Cervantes, E., & Jaramillo-Flores, M. E. (2011). Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Research International, 44(1), 250–258. https://doi.org/10.1016/j.foodres.2010.10.028spa
dc.relation.referencesRodriguez, J., & Bon, J. (2009). OPTIMIZACIÓN DE LA APLICACIÓN DE LA TECNOLOGÍA DE SECADO INTERMITENTE AL SECADO CONVECTIVO DE PATATA: DESARROLLO DE UNA HERRAMIENTA DE GESTIÓN DE LA TOMA DE DECISIONES, 1–26.spa
dc.relation.referencesRodríguez, J., Clemente, G., Sanjuán, N., & Bon, J. (2014). Modelling drying kinetics of thyme (Thymus vulgaris L.): Theoretical and empirical models, and neural networks. Food Science and Technology International, 20(1), 13–22. https://doi.org/10.1177/1082013212469614spa
dc.relation.referencesRyan, C. M., Khoo, W., Stewart, A. C., O’Keefe, S. F., Lambert, J. D., & Neilson, A. P. (2017). Flavanol concentrations do not predict dipeptidyl peptidase-IV inhibitory activities of four cocoas with different processing histories. Food and Function, 8(2), 746–756. https://doi.org/10.1039/c6fo01730dspa
dc.relation.referencesSánchez, E. (2017). Efecto de tipos de secado del cacao (Theobroma cacao L) CCN-51 en la preservación de polifenoles totales y antocianinas. Universidad Nacional de San Martín-Tarapoto Perú. Retrieved from http://repositorio.unsm.edu.pe/handle/11458/2460spa
dc.relation.referencesSantander Muñoz, M., Rodríguez Cortina, J., Vaillant, F. E., & Escobar Parra, S. (2020a). An overview of the physical and biochemical transformation of cocoa seeds to beans and to chocolate: Flavor formation. Critical Reviews in Food Science and Nutrition. Taylor & Francis. https://doi.org/10.1080/10408398.2019.1581726spa
dc.relation.referencesSantander Muñoz, M., Rodríguez Cortina, J., Vaillant, F. E., & Escobar Parra, S. (2020b). An overview of the physical and biochemical transformation of cocoa seeds to beans and to chocolate: Flavor formation. Critical Reviews in Food Science and Nutrition, 60(10), 1593–1613. https://doi.org/10.1080/10408398.2019.1581726spa
dc.relation.referencesSanthanam Menon, A., Hii, C. L., Law, C. L., Shariff, S., & Djaeni, M. (2017a). Effects of drying on the production of polyphenol-rich cocoa beans. Drying Technology, 35(15), 1799–1806. https://doi.org/10.1080/07373937.2016.1276072spa
dc.relation.referencesSanthanam Menon, A., Hii, C. L., Law, C. L., Shariff, S., & Djaeni, M. (2017b). Effects of drying on the production of polyphenol-rich cocoa beans. Drying Technology, 35(15), 1799–1806. https://doi.org/10.1080/07373937.2016.1276072spa
dc.relation.referencesSchroeter, H., Heiss, C., Balzer, J., Kleinbongard, P., Keen, C. L., Hollenberg, N. K., … Kelm, M. (2006). (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 1024–1029. https://doi.org/10.1073/pnas.0510168103spa
dc.relation.referencesSchwan, R. F., & Wheals, A. E. (2004). The microbiology of cocoa fermentation and its role in chocolate quality. Critical Reviews in Food Science and Nutrition, 44(4), 205–221. https://doi.org/10.1080/10408690490464104spa
dc.relation.referencesSingleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299(1974), 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1spa
dc.relation.referencesSrinivasan, D., Kirk, P., & Owen R, F. (2007). Fennema´s Food Chemistry (4th Editio). CRC Press. https://doi.org/https://doi.org/10.1201/9781420020526spa
dc.relation.referencesSzadzińska, J., Mierzwa, D., Pawłowski, A., Musielak, G., Pashminehazar, R., & Kharaghani, A. (2020). Ultrasound- and microwave-assisted intermittent drying of red beetroot. Drying Technology, 38(1–2), 93–107. https://doi.org/10.1080/07373937.2019.1624565spa
dc.relation.referencesTeh, Q. T. M., Tan, G. L. Y., Loo, S. M., Azhar, F. Z., Menon, A. S., & Hii, C. L. (2016). The Drying Kinetics and Polyphenol Degradation of Cocoa Beans. Journal of Food Process Engineering, 39(5), 484–491. https://doi.org/10.1111/jfpe.12239spa
dc.relation.referencesUrbańska, B., Derewiaka, D., Lenart, A., & Kowalska, J. (2019). Changes in the composition and content of polyphenols in chocolate resulting from pre-treatment method of cocoa beans and technological process. European Food Research and Technology. Springer Berlin Heidelberg. https://doi.org/10.1007/s00217-019-03333-wspa
dc.relation.referencesUtrilla-Vázquez, M., Rodríguez-Campos, J., Avendaño-Arazate, C. H., Gschaedler, A., & Lugo-Cervantes, E. (2019). Analysis of volatile compounds of five varieties of Maya cocoa during fermentation and drying processes by Venn diagram and PCA. Food Research International, 129, 108834. https://doi.org/10.1016/j.foodres.2019.108834spa
dc.relation.referencesVan Engeland, C., Spreutels, L., Legros, R., & Haut, B. (2022). Comprehensive analysis of intermittent drying . A theoretical approach. Food and Bioproducts Processing, 131, 86–101. https://doi.org/10.1016/j.fbp.2021.10.009spa
dc.relation.referencesVáquiro, H. A., Clemente, G., García-Pérez, J. V., Mulet, A., & Bon, J. (2009). Enthalpy-driven optimization of intermittent drying of Mangifera indica L. Chemical Engineering Research and Design, 87(7), 885–898. https://doi.org/10.1016/j.cherd.2008.12.002spa
dc.relation.referencesVega-Valencia, Y., Cruz Y Victoria, M. T., Vizcarra Mendoza, M. G., & Sosa, I. A. (2014). Intermittent drying of nopal (Opuntia Ficus Indica) in a fluidized bed pilot dryer adapted with revolving chambers. Journal of Food Process Engineering, 37(3), 211–219. https://doi.org/10.1111/jfpe.12072spa
dc.relation.referencesVera, J., Vallejo, C., Párraga, D., Morales, W., Macías, J., & Ramos, R. (2014). Atributos físicos-químicos y sensoriales de las almendras de quince clones de cacao Nacional (Theobroma cacao L.) en el Ecuador. Ciencia Y Tecnología, 7(2), 21–34. https://doi.org/10.1079/9780851996622.0639spa
dc.relation.referencesWollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423–447. https://doi.org/10.1016/S0963-9969(00)00068-5spa
dc.relation.referencesYépez-Rivadeneira, J. L. (2017). CARACTERIZACIÓN DEL CONTENIDO DE POLIFENOLES: CATEQUINA, EPICATEQUINA Y PROCIANIDINAS B1, B2 Y C1; EN CACAO CCN-51 DE LAS PRINCIPALES ZONAS PRODUCTORAS DEL ECUADOR. UNIVERSIDAD CENTRAL DEL ECUADOR. https://doi.org/10.3975/cagsb.2017.02.15spa
dc.relation.referencesYoung, A. M. (2007). The Chocolate Tree: A Natural History of Cacao. (University Press of Florida, Ed.).spa
dc.relation.referencesZambrano, A., Gómez, Á., Ramos, G., Romero, C., Lacruz, C., & Rivas, E. (2010). Caracterización de parámetros físicos de calidad en almendras de cacao Criollo, Trinitario y Forastero durante el proceso de secado. Agronomía Tropical, 60(4), 389–396.spa
dc.relation.referencesBon, J., & Kudra, T. (2007). Enthalpy-Driven Optimization of Intermittent Drying. Drying Technology: An International Journal, 25, 523–532. https://doi.org/10.1080/07373930701226880spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocSecado
dc.subject.agrovocDrying
dc.subject.agrovocTheobroma cacao
dc.subject.agrovocCompuestos fenólicos
dc.subject.agrovocPhenolic compounds
dc.subject.agrovocCocoa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.otherVariedad TCS01
dc.subject.otherDrying Kinetics
dc.subject.otherDrying methods
dc.subject.proposalModelación matemáticaspa
dc.subject.proposalLiberación ácidos orgánicosspa
dc.subject.proposalEpicatequinaspa
dc.subject.proposalCatequinaspa
dc.subject.proposalSecado transitorio o intermitentespa
dc.subject.proposalpolifenolesspa
dc.subject.proposalCinética de degradaciónspa
dc.subject.proposalCinética de secadospa
dc.subject.proposalCromatografía liquida de ultra rendimiento (UPLC)spa
dc.subject.proposalPolifenolesspa
dc.subject.proposalEpicatechineng
dc.subject.proposalCatechineng
dc.subject.proposalMathematical modelingeng
dc.subject.proposalDrying kineticseng
dc.subject.proposalTransient dryingeng
dc.titleSecado de granos de cacao (variedad TCS01) y su efecto sobre la concentración de compuestos fenólicos, azúcares y ácidos orgánicosspa
dc.title.translatedDrying of cocoa beans (variety TCS01) and its effect on the concentration of phenolic compounds, sugars and organic acids.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo de alternativas de valorización poscosecha para mejorar la competitividad de los productores del sector cacao en Colombia: producción regular de cacaos con calidad diferenciada tipo especialspa
oaire.fundernameCorporación Colombiana de Investigación Agropecuaria (AGROSAVIA)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1086109084.2022.pdf
Tamaño:
3.68 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría Ingeniería Agroindustrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: