Planificación de trayectorias óptimas de robots móviles empleando el mapeo de celdas

dc.contributor.advisorOsorio Londoño, Gustavo Adolfo
dc.contributor.authorGrisales Ramírez, Efraín
dc.contributor.orcidGrisales Ramírez, Efraín [0009000814296566]spa
dc.contributor.researchgroupPercepción y Control Inteligente (Pci)spa
dc.date.accessioned2023-10-03T02:17:55Z
dc.date.available2023-10-03T02:17:55Z
dc.date.issued2023
dc.descriptiongraficas, tablasspa
dc.description.abstractEl problema de planificación de trayectorias es de importancia dentro de la robótica móvil, puesto que es indispensable generar caminos de referencia que eviten obstáculos y de fácil seguimiento por los sistemas autónomos. La solución dada por los algoritmos de planificación puede ser de diferente naturaleza, aumentando o disminuyendo la complejidad computacional. En este documento se propone un método para la planificación de trayectorias de robots móviles empleando el algoritmo de mapeo de celdas (AMC), el cual contiene las restricciones cinemáticas y dinámicas del robot, así como las del entorno, permitiendo generar trayectos de fácil seguimiento por el sistema. También contiene la información necesaria con el fin de dar solución al problema de optimización multiobjetivo. El algoritmo consiste en dividir el espacio de estados en celdas y luego simular la evolución del sistema dinámico del móvil para cada condición inicial; con esto se generan grafos que contienen la información de las conexiones entre celdas en términos de distancia, tiempo, esfuerzo de control y energía. Con esta información se solucionan los problemas de optimización simple o multiobjetivo, según sea la función de costo empleada para encontrar el camino más corto entre dos puntos con el algoritmo de Dijkstra. Además, en este documento se introducen algunos conceptos de control óptimo que serán empleados en la planificación de trayectorias de robots móviles. Estos conceptos se aplican inicialmente al doble integrador (DI) en tiempo continuo, debido a que éste emula el comportamiento de un robot sin masa. Posteriormente se implementa el AMC para solucionar los mismos problemas de optimización en forma discreta para el movimiento en 1 y 2 dimensiones, y se extiende el concepto a la aplicación en robots móviles de guiado diferencial, así como para el Robotino de FESTO. (Texto tomado de la fuente)spa
dc.description.abstractThe trajectory planning problem is of importance in mobile robotics since it is essential to generate reference paths that avoid obstacles and are easy to follow for autonomous systems. The solutions provided by planning algorithms can vary in nature, either increasing or decreasing computational complexity. This paper presents a method for planning mobile robot trajectories using the Cell Mapping Algorithm (CMA), which incorporates the kinematic and dynamic constraints of the robot as well as those of the environment. This approach enables the generation of trajectories that are easy for the system to follow and includes the necessary information to address multi-objective optimization problems. The algorithm involves dividing the state space into cells and then simulating the evolution of the mobile robot's dynamic system for each initial condition. This process generates graphs that contain information about the connections between cells in terms of distance, time, control effort, and energy. With this information, simple or multi-objective optimization problems can be solved, depending on the cost function used to find the shortest path between two points, typically implemented with Dijkstra's algorithm. Also, this thesis introduces some optimal control concepts that will be used in path planning of mobile robots. These concepts are initially applied to continuous-time double integrator (DI), because it emulates behavior of a massless robot. Subsequently, the AMC is implemented to solve same optimization problems in discrete form for motion in 1 and 2 dimensions, and concept is extended to the application in differential guided mobile robots, as well as for FESTO Robotino.eng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaSistemas de Control y Robóticaspa
dc.format.extentxxiv, 136 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84744
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.referencesA. Ollero B. Libro: Robótica: Manipuladores y Robots Móviles. Marcombo, 2005.spa
dc.relation.referencesJ. F. Camarena. Tesis de maestría: Análisis cinemático, dinámico y control en tiempo real de un vehículo guiado automáticamente, 2009.spa
dc.relation.referencesY. Goto and A. Stentz. Mobile robot navigation: The CMU system. IEEE Intelligent Systems, 2(4), 1987.spa
dc.relation.referencesS. M. Lavalle. Motion planning part 1: The essentials. IEEE Robotics & Automation Society Magazine, 18:79–89, 2011.spa
dc.relation.referencesR. A. Jarvis. Collision-free trajectory planning using the distance transforms. Mechanical Engineering Transactions, 1985.spa
dc.relation.referencesS. M. LaValle. Motion planning part 2:Wild frontiers. IEEE Robotics & Automation Society Magazine, 18:108–118, 2011.spa
dc.relation.referencesA. Srivastava, D. Kartikey, U. Srivastava, V. Srivastava, and S. Rajesh. Non holonomic shortest robot path planning in a dynamic environment using polygonal obstacles. pages 553–558. Proceedings of the IEEE International Conference on Industrial Technology, 2010.spa
dc.relation.referencesG. Arechavaleta. Optimización de trayectorias para sistemas sujetos a restricciones no holónomas. Computación y Sistemas, 14:365–382, 2011.spa
dc.relation.referencesG. D. S. Lee, K. S. Lee, H. G. Park, and M. H. Lee. Optimal path planning with holonomic mobile robot using localization vision sensors. pages 1883–1886. Proceedings of the Control Automation and Systems (ICCAS), 2010.spa
dc.relation.referencesN. Ganganath, C. Cheng, and C. K. Tse. An aco-based off-line path planner for nonholonomic mobile robots. pages 1038–1041. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), 2014.spa
dc.relation.referencesS. Gay, S. Dégallier, U. Pattacini, A. Ijspeert, and J. S. Victor. Integration of vision and central pattern generator based locomotion for path planning of a non-holonomic crawling humanoid robot. pages 183–189. Proceedings of the IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS), 2010.spa
dc.relation.referencesA. Masoud. Kinodynamic motion planning. IEEE Robotics and Automation Magazine, 17:1048–1066, 2010.spa
dc.relation.referencesR. V. Cowlagi and P. Tsiotras. Kinematic feasibility guarantees in geometric path planning using history-based transition costs over cell decompositions. pages 5388–5393. Proceedings of the American Control Conference (ACC), 2010.spa
dc.relation.referencesO. Castillo, L. Trujillo, and P. Melin. Multiple objective genetic algorithms for pathplanning optimization in autonomous mobile robots. Soft Computing, 11:269–279, 2007.spa
dc.relation.referencesJ. K. Goyal and K. S. Nagla. A new approach of path planning for mobile robots. pages 863–867. International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2014.spa
dc.relation.referencesJ. Guo, L. Liu, Q. Liu, and Y. Qu. An improvement of d* algorithm for mobile robot path planning in partial unknown environment. volume 3, pages 10–13. Proceedings of the 2nd International Conference on Intelligent Computation Technology and Automation, 2009.spa
dc.relation.referencesA. Elshamli, H. A. Abdullah, and S. Areibi. Genetic algorithm for dynamic path planning. volume 2, pages 677–680. Proceedings of the Canadian Conference on Electrical and Computer Engineering, 2004.spa
dc.relation.referencesC. E. Thomaz and M. Vellasco. Mobile robot path planning using genetic. World Wide Web Internet And Web Information Systems.spa
dc.relation.referencesJ. Lu and D. Yang. Path planning based on double-layer genetic algorithm. Proceedings of the 3rd International Conference on Natural Computation (ICNC), 2007.spa
dc.relation.referencesF. Lingelbach. Path planning using probabilistic cell decomposition. page 467–472 Vol.1. IEEE International Conference on Robotics and Automation (ICRA), 2004.spa
dc.relation.referencesM. Piaggio and R. Zaccaria. Using roadmaps to classify regions of space for autonomous robot navigation. Robotics and Autonomous Systems, 25:209–217, 1998.spa
dc.relation.referencesS. X. Yang and C. Luo. A neural network approach to complete coverage path planning. IEEE Transactions on Systems, 34:718–725, 2004.spa
dc.relation.referencesB. Shi, P. Cheng, and N. Cheng. 3d flight path planning based on rrts for rnp requirements. pages 51–56. Proceedings of the IEEE International Conference on Information and Automation, 2012.spa
dc.relation.referencesG. F. Luger. Libro: Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Addison Wesley, 2005.spa
dc.relation.referencesS. M. LaValle. Libro: Planning algorithms. Cambridge University Press, 2006.spa
dc.relation.referencesG. I. R. K. Galgamuwa, L. K. G. Liyanage, M. P. B. Ekanayake, and B. G. L. T. Samaranayake. Simplified controller for three wheeled omni directional mobile robot. pages 314–319. Proceedings of the IEEE 10th International Conference on Industrial and Information Systems (ICIIS), 2016.spa
dc.relation.referencesP. F. Islas García. Tesis de pregrado: Sistema de control para el desplazamiento omnidireccional de un robot móvil, 2012.spa
dc.relation.referencesD. Cong, C. Liang, Q. Gong, X. Yang, and J. Liu. Path planning and following of omnidirectional mobile robot based on b-spline. pages 4931–4936. Proceedings of the Chinese Control And Decision Conference (CCDC), 2018.spa
dc.relation.referencesJ. Wang, S. A. Chepinskiy, A. J. Krasnov, B. Zhang, H. Liu, Y. Chen, and D. A. Khvostov. Geometric path following control for an omnidirectional mobile robot. pages 1063–1068. Proceedings of the 21st International Conference on Methods & Models in Automation & Robotics (MMAR), 2016.spa
dc.relation.referencesH. Kim and B. K. Kim. Online minimum-energy trajectory planning and control on a straight-line path for three-wheeled omnidirectional mobile robots. IEEE Transactions on Industrial Electronics, 61:4771–4779, 9 2014.spa
dc.relation.referencesN. M. Abdul Ghani, D. Ju, H. Z. Othman, and M. A. Ahmad. Two wheels mobile robot using optimal regulator control. pages 1066–1070. Proceedings of the 10th International Conference on Intelligent Systems Design and Applications (ISDA), 2010.spa
dc.relation.referencesY. Liu, J. J. Zhu, R. L.Williams, and J.Wu. Omni-directional mobile robot controller based on trajectory linearization. Robotics and Autonomous Systems, 56:461–479, 5 2008.spa
dc.relation.referencesM. S. Masmoudi, N. Krichen, M. Masmoudi, and N. Derbel. Fuzzy logic controllers design for omnidirectional mobile robot navigation. Applied Soft Computing, 49:901–919, 12 2016.spa
dc.relation.referencesJ. Åkesson, A. Blomdell, and R. Braun. Design and control of yaip - an inverted pendulum on two wheels robot. pages 2178–2183. Proceedings of the IEEE International Conference on Control Applications, 2006.spa
dc.relation.referencesJ. Li, X. Gao, Q. Huang, and O. Matsumoto. Controller design of a two-wheeled inverted pendulum mobile robot. pages 7–12. Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA), 2008.spa
dc.relation.referencesY. Kim, S. H. Kim, and Y. K. Kwak. Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot. Journal of Intelligent and Robotic Systems: Theory and Applications, 44:25–46, 9 2005.spa
dc.relation.referencesY. Kim, S. H. Lee, and D. H. Kim. Dynamic equations of a wheeled inverted pendulum with changing its center of gravity. pages 853–854. Proceedings of the International Conference on Control, Automation and Systems, 2011.spa
dc.relation.referencesY. Watanabe, T. Kanada, and G. Chen. Robust h2 control for two-wheeled inverted pendulum using lego mindstorms. Proceedings of the Australian Control Conference, 2011.spa
dc.relation.referencesC. H. Chiu and Y. F. Peng. Design and implement of the self-dynamic controller for twowheel transporter. pages 480–483. Proceedings of the IEEE International Conference on Fuzzy Systems, 2006.spa
dc.relation.referencesP. K.W. Abeygunawardhana and M. Toshiyuki. Stability improvement of two wheel mobile manipulator by real time gain control technique. pages 79–84. Proceedings of the 2nd International Conference on Industrial and Information Systems (ICIIS), 2007.spa
dc.relation.referencesC. Acar and T. Murakami. Underactuated two-wheeled mobile manipulator control using nonlinear backstepping method. pages 1680–1685. Proceedings of the Industrial Electronics Conference, 2008.spa
dc.relation.referencesP. K.W. Abeygunawardhana, M. Defoort, and T. Murakami. Self-sustaining control of twowheel mobile manipulator using sliding mode control. pages 792–797. Proceedings of the International Workshop on Advanced Motion Control (AMC), 2010.spa
dc.relation.referencesC. Acar and T. Murakami. Motion control of dynamically balanced two-wheeled mobile manipulator through cog manipulation. pages 715–720. Proceedings of the International Workshop on Advanced Motion Control (AMC), 2010.spa
dc.relation.referencesS. Ahmad, N. H. Siddique, and M. O. Tokhi. A modular fuzzy control approach for twowheeled wheelchair. Intelligent and Robotic Systems: Theory and Applications, 64:401– 426, 12 2011.spa
dc.relation.referencesC. Acar and T. Murakami. Multi-task control for dynamically balanced two-wheeled mobile manipulator through task-priority. pages 2195–2200. Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), 2011.spa
dc.relation.referencesS. Ahmad, M. Aminnuddin, and M. A. Sadiq M. Shukor. Modular hybrid control for doublelink two-wheeled mobile robot. pages 807–813. Proceedings of the International Conference on Computer and Communication Engineering (ICCCE), 2012.spa
dc.relation.referencesR. P. M. Chan, K. A. Stol, and C. R. Halkyard. Review of modelling and control of twowheeled robots. Annual Reviews in Control, 37:89–103, 4 2013.spa
dc.relation.referencesC. Li, F. Li, S. Wang, F. Dai, Y. Bai, X. Gao, and L. Kejie. Dynamic adaptive equilibrium control for a self-stabilizing robot. pages 609–614. Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), 2010.spa
dc.relation.referencesS. Lee and S. Jung. Novel design and control of a home service mobile robot for korean floor-living life style: Koboker. pages 863–867. Proceedings of the 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2011.spa
dc.relation.referencesS. Kim and S. J. Kwon. Sdre based nonlinear optimal control of a two-wheeled balancing robot. Journal of Institute of Control, Robotics and Systems, 17:1037–1043, 10 2011.spa
dc.relation.referencesZ. Kausar, K. Stol, and N. Patel. Performance enhancement of a statically unstable two wheeled mobile robot traversing on an uneven surface. pages 156–162. Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2010.spa
dc.relation.referencesZ. Kausar, K. Stol, and N. Patel. Stability region estimation of statically unstable two wheeled mobile robots. pages 1379–1384. 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO, 2011.spa
dc.relation.referencesZ. Kausar, K. Stol, and N. Patel. Nonlinear control design using lyapunov function for twowheeled mobile robots. pages 123–128. Proceedings of the 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2012.spa
dc.relation.referencesC. S. Hsu. Libro: Cell-to-Cell mapping: A method of global analysis for nonlinear systems. Springer, 1987.spa
dc.relation.referencesJ. Q. Sun, F. R. Xiong, O. Schütze, and C. Hernández. Libro: Cell mapping methods. Springer Singapore, 2019.spa
dc.relation.referencesC. Hernández, Y. Naranjani, Y. Sardahi, W. Liang, O. Schütze, and J. Q. Sun. Simple cell mapping method for multi-objective optimal feedback control design. International Journal of Dynamics and Control, 1:231–238, 9 2013.spa
dc.relation.referencesF. Y. Wang and P. J. A. Lever. A cell mapping method for general optimum trajectory planning of multiple robotic arms. Robotics and Autonomous Systems, 12:15–27, 3 1994.spa
dc.relation.referencesC. S. Hsu. A discrete method of optimal control based upon the cell state space concept. Journal of Optimization Theory and Applications, 46:547–569, 1985.spa
dc.relation.referencesA. Locatelli. Libro: Optimal control of a double integrator. Springer Cham, 2017.spa
dc.relation.referencesF. Gordillo-Álvarez. Contribuciones al problema del control óptimo, 1994.spa
dc.relation.referencesS. S. Rao. Libro: Engineering optimization: Theory and practice. JohnWiley & Sons, 2019.spa
dc.relation.referencesD. E. Kirk. Libro: Optimal Control Theory: An Introduction. 2004.spa
dc.relation.referencesR. Szabolcsi. Robust lqg controller design for the small unmanned aerial vehicle. Review of the Air Force Academy, pages 31–38, 2018.spa
dc.relation.referencesA. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit linear quadratic regulator for constrained systems. Automatica, 38:3–20, 1 2002.spa
dc.relation.referencesL. C. Evans. Libro: An introduction to mathematical optimal control theory version 0.2. 1983.spa
dc.relation.referencesR. Loxton, Q. Lin, and K. L. Teo. Minimizing control variation in nonlinear optimal control. Automatica, 49:2652–2664, 2013.spa
dc.relation.referencesC. Yalc¸ın-Kaya. Optimal control of the double integrator with minimum total variation. Optimization Theory and Applications, pages 966–981, 2020.spa
dc.relation.referencesL. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, K. N. Trirogoff, and L. W. Neustadt. Libro: L.S. Pontryagin selected works: The mathematical theory of optimal processes. Routledge, 2000.spa
dc.relation.referencesA. T. Fuller. Relay control systems optimized for various performance criteria. IFAC Proceedings Volumes, 1:520–529, 1960.spa
dc.relation.referencesD. Liberzon. Libro: Calculus of variations and optimal control theory. Princeton University Press, 2011.spa
dc.relation.referencesY. N. Kiselev, M. V. Orlov, and S. M. Orlov. A solution to fuller’s problem using constructions of pontryagin’s maximum principle. Moscow University Computational Mathematics and Cybernetics, 42:152–162, 2018.spa
dc.relation.referencesM. Caponigro, R. Ghezzi, B. Piccoli, and E. Tr´elat. Regularization of chattering phenomena via bounded variation controls. IEEE Transactions on Automatic Control, 63:2046–2060, 2018.spa
dc.relation.referencesA. T. Fuller. Minimization of various performance indices for a system with bounded control. International Journal of Control, 41:1–37, 1985.spa
dc.relation.referencesM. Dellnitz, S. Ober-Blöbaum, M. Post, O. Schütze, and B. Thiere. A multi-objective approach to the design of low thrust space trajectories using optimal control. Celestial Mechanics and Dynamical Astronomy, 105:33–59, 9 2009.spa
dc.relation.referencesJ. Lagunas-Jiménez, J. R. Lagunas-Jiménez, V. M. Moo-Yam, and B. Ortíz-Moctezuma. Two-degrees-of-freedom robust pid controllers tuning via a multiobjective genetic algorithm. Computación y Sistemas, 18:259–273, 6 2014.spa
dc.relation.referencesO. Schutze, M. Vasile, O. Junge, M. Dellnitz, and D. Izzo. Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach. Engineering Optimization, 41:155–181, 2 2009.spa
dc.relation.referencesS. Koziel and A. Bekasiewicz. Multi-objective optimization of expensive electromagnetic simulation models. Applied Soft Computing, 47:332–342, 2016.spa
dc.relation.referencesL. Jourdan, O. Schütze, T. Legrand, E. G. Talbi, and J. L. Wojkiewicz. An analysis of the effect of multiple layers in the multi-objective design of conducting polymer composites. Materials and Manufacturing Processes, 24:350–357, 3 2009.spa
dc.relation.referencesD. Temple and M. Colette. A goal-programming enhanced collaborative optimization approach to reducing lifecyle costs for naval vessels. Structural and Multidisciplinary Optimization, 53:1261–1275, 2016spa
dc.relation.referencesY. Chen and B. Peng. Multi-objective optimization on multi-layer configuration of cathode electrode for polymer electrolyte fuel cells via computational-intelligence-aided design and engineering framework. Applied Soft Computing, 43:357–371, 2016. Acceptance from webpage.spa
dc.relation.referencesS. Panda. Multi-objective pid controller tuning for a facts-based damping stabilizer using non-dominated sorting genetic algorithm-ii. International Journal of Electrical Power and Energy Systems, 33:1296–1308, 9 2011.spa
dc.relation.referencesI. Chiha, N. Liouane, and P. Borne. Tuning pid controller using multiobjective ant colony optimization. Applied Computational Intelligence and Soft Computing, 2012:1–7, 2012.spa
dc.relation.referencesM. Khoie, K. Salahshoor, E. Nouri, and A. K. Sedigh. Pid controller tuning using multiobjective optimization based on fused genetic-immune algorithm and immune feedback mechanism. volume 6839 LNAI, pages 267–276. Proceedings of the IEEE International Conference on Mechatronics and Automation, 2011.spa
dc.relation.referencesKai Zhang, Minshi Chen, Xin Xu, and Gary G. Yen. Multi-objective evolution strategy for multimodal multi-objective optimization. Applied Soft Computing, 101:107004, 2021.spa
dc.relation.referencesL. F. T. M. I. Solihin and M. L. Kean. Tuning of pid controller using particle swarm optimization (pso). Proceedings of the International Conference on Advanced Science, Engineering and Information Technology, 2011.spa
dc.relation.referencesJ. Fliege and B. F. Svaiter. Steepest descent methods for multicriteria optimization. Mathematical Methods of Operations Research, 51:479–494, 2000.spa
dc.relation.referencesP. A. N. Bosman. On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization. IEEE Transactions on Evolutionary Computation, 16:51–69, 2 2012.spa
dc.relation.referencesX. Zhong, W. Fan, J. Lin, and Z. Zhao. A novel multi-objective compass search. volume 1, pages 24–29, 2010.spa
dc.relation.referencesV. Pareto. Libro: Manual of political economy. A. M. Kelley, 1971.spa
dc.relation.referencesC. Hernández O. Schütze and J. Q. Sun. Capítulo: Global multi-objective optimization by means of cell mapping techniques, 2017.spa
dc.relation.referencesJ. Q. Sun, F. R. Xiong, O. Schütze, and C. Hernández. Libro: Cell mapping methods: Algorithmic approaches and applications. Springer Singapore, 6 2018.spa
dc.relation.referencesP. J. Zufiria and R. S. Guttalu. The adjoining cell mapping and its recursive unraveling, part i: Description of adaptive and recursive algorithms. Nonlinear Dynamics, 4:207–226, 6 1993.spa
dc.relation.referencesC. S. Hsu. A probabilistic theory of nonlinear dynamical systems based on the ceil state space concept. Journal of Applied Mechanics, Transactions ASME, 49:895–902, 12 1982.spa
dc.relation.referencesC. S. Hsu. Global analysis of dynamical systems using posets and digraphs. International Journal of Bifurcation and Chaos, 05:1085–1118, 8 1995.spa
dc.relation.referencesJ. Petersen. Die theorie der regul¨aren graphs. Acta Mathematica, 15:193–220, 12 1891.spa
dc.relation.referencesW. Li, L. Xia, and Y. Huang. An adaptive ant colony optimization in knowledge graphs. pages 26–32. Proceedings of the 11th IEEE International Conference on Knowledge Graph (ICKG), 2020.spa
dc.relation.referencesA. Agrawal, B. Dixit, V. U. Karve, and B. R. Chandavarkar. Optimizing set of paths connecting multiple source-sink pairs. pages 833–838. Proceedings of the IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, RTEICT, 2017.spa
dc.relation.referencesE.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 12 1959.spa
dc.relation.referencesP. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4:100–107, 1968.spa
dc.relation.referencesC. Zhong, S. Liu, B. Zhang, Q. Lu, J. Wang, Q. Wu, and F. Gao. A fast on-line global path planning algorithm based on regionalized roadmap for robot navigation. IFACPapersOnLine, 50:319–324, 2017.spa
dc.relation.referencesJ. M. Keil. Decomposing a polygon into simpler components. SIAM Journal on Computing, 14:799–817, 1985.spa
dc.relation.referencesH. Y. Zhang, W. M. Lin, and A. X. Chen. Path planning for the mobile robot: A review. Symmetry, 10, 2018.spa
dc.relation.referencesJ. R. Sánchez-Ibáñez, C. J. Pérez del Pulgar, and A. García-Cerezo. Path planning for autonomous mobile robots: A review. Sensors, 21, 2021.spa
dc.relation.referencesT. T. Mac, C. Copot, D. T. Tran, and R. De Keyser. Heuristic approaches in robot path planning: A survey. Robotics and Autonomous Systems, 86:13–28, 2016.spa
dc.relation.referencesS. Mirjalili and J. S. Dong. Introduction to nature-inspired algorithms. In Nature-Inspired Optimizers, pages 1–5. Springer, 2020.spa
dc.relation.referencesD. Tonon, M. Soledad-Aronna, and D. Kalise. Libro: Optimal control: Novel directions and applications, volume 1. Springer, 2017.spa
dc.relation.referencesD. Filliat and J. A. Meyer. Map-based navigation in mobile robots: I. a review of localisation strategies. Journal of Cognitive Systems Research, 4:243–282, 2003.spa
dc.relation.referencesT. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai. Visibility-polygon search and euclidean shortest paths. pages 155–164. Proceedings of the Annual Symposium on Foundations of Computer Science, 1985.spa
dc.relation.referencesK. Su, T. Phan, C. Yang, and W. Wang. Image-based smooth path planning for wheeled robot. pages 203–207. Proceedings of the 11th IEEE International Conference on Control & Automation (ICCA), 2014.spa
dc.relation.referencesO. Takahashi and R. J. Schilling. Motion planning in a plane using generalized voronoi diagrams. IEEE Transactions on Robotics and Automation, 5:143–150, 1989.spa
dc.relation.referencesJ. Tsitsiklis. Efficient algorothms for globally optimal trajectories. IEEE Transactions on Automatic Control, 40:1528–1538, 1995.spa
dc.relation.referencesZ. Dong, Z. Chen, R. Zhou, and R. Zhang. A hybrid approach of virtual force and a* search algorithm for uav path re-planning. pages 1140–1145. Proceedings of the 6th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2011.spa
dc.relation.referencesA. Stentz. Optimal and efficient path planning for partially-known environments. pages 3310–3317. Proceedings of the IEEE International Conference on Robotics and Automation, 1994.spa
dc.relation.referencesY. Toda and N. Kubota. Path planning using multi-resolution map for a mobile robot. pages 1276–1281. Proceedings of the SICE Annual Conference, 2011.spa
dc.relation.referencesO. Khatib. Capítulo: Real-time obstacle avoidance for manipulators and mobile robots, 1986spa
dc.relation.referencesS. S. Ge and Y. J. Cui. Dynamic motion planning for mobile robots using potential field method. Autonomous robots, 13:207–222, 2002.spa
dc.relation.referencesP. Vadakkepat, K. C. Tan, and W. Ming-Liang. Evolutionary artificial potential fields and their application in real time robot path planning. volume 1, pages 256–263. Proceedings of the Congress on evolutionary computation, 2000.spa
dc.relation.referencesR. Raja, A. Dutta, and K. S. Venkatesh. New potential field method for rough terrain path planning using genetic algorithm for a 6-wheel rover. Robotics and Autonomous Systems, 72:295–306, 2015.spa
dc.relation.referencesZ. Zhou, J. Wang, Z. Zhu, D. Yang, and J. Wu. Tangent navigated robot path planning strategy using particle swarm optimized artificial potential field. Optik, 158:639–651, 2018.spa
dc.relation.referencesH. H. Triharminto, O. Wahyunggoro, T. Adji, A. I. Cahyadi, and I. Ardiyanto. A novel of repulsive function on artificial potential field for robot path planning. International Journal of Electrical and Computer Engineering (IJECE), 6:3262–3275, 10 2016.spa
dc.relation.referencesD. Kim. Escaping route method for a trap situation in local path planning. International Journal of Control Automation and Systems, 7:495–500, 5 2009.spa
dc.relation.referencesF. Bayat, S. Najafinia, and M. Aliyari. Mobile robots path planning: Electrostatic potential field approach. Expert Systems with Applications, 100:68–78, 6 2018.spa
dc.relation.referencesG. Bermudez, L. A. Rojas Castellar, H. Montiel, and M. Ceballos. Aplicación del método de campos de potencial artificial para un robot móvil autónomo. Tecnura, 7:86–96, 10 2004.spa
dc.relation.referencesN. Buniyamin andW.W. Ngah. A simple local path planning algorithm for autonomous mobile robots. International Journal of Systems Application Engineering and Developement, 5:151–159, 2011.spa
dc.relation.referencesV. J. Lumelsky and A. A. Stepanov. Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2:403–430, 11 1987.spa
dc.relation.referencesI. Kamon, E. Rivlin, and E. Rimon. New range-sensor based globally convergent navigation algorithm for mobile robots. volume 1, pages 429–435. Proceedings of the IEEE International Conference on Robotics and Automation, 1996.spa
dc.relation.referencesI. Al-Taharwa, A. Sheta, and M. Al-Weshah. A mobile robot path planning using genetic algorithm in static environment. Journal of Computer Science, 4:341–344, 2008.spa
dc.relation.referencesS. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. The annual research report, 1998.spa
dc.relation.referencesX. Yun and Y. Yamamoto. Internal dynamics of a wheeled mobile robot. pages 1288–1294. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1993.spa
dc.relation.referencesY. Yamamoto and X. Yun. Coordinating locomotion and manipulation of a mobile manipulator recommended citation, 1992.spa
dc.relation.referencesY. Mei, Y. H. Lu, Y. C. Hu, and C. S. G. Lee. Energy-efficient motion planning for mobile robots. volume 2004, pages 4344–4349. Proceedings of the IEEE International Conference on Robotics and Automation, 2004.spa
dc.relation.referencesY. Mei, Y. H. Lu, Y. C. Hu, and C. S. G. Lee. A case study of mobile robot’s energy consumption and conservation techniques. volume 2005, pages 492–497. Proceedings of the International Conference on Advanced Robotics (ICAR), 2005.spa
dc.relation.referencesC. H. Kim. Phd thesis: Minimum-energy trajectory planning for differential-driven wheeled mobile robot, 2007.spa
dc.relation.referencesO. Chuy, E. G. Collins, W. Yu, and C. Ordonez. Power modeling of a skid steered wheeled robotic ground vehicle. pages 4118–4123. Proceedings of the IEEE International Conference on Robotics and Automation, 2009.spa
dc.relation.referencesJ. Morales, J. L. Martinez, A. Mandow, A. J. Garcia-Cerezo, and S. Pedraza. Power consumption modeling of skid-steer tracked mobile robots on rigid terrain. IEEE Transactions on Robotics, 25:1098–1108, 10 2009.spa
dc.relation.referencesR. Parasuraman, K. Kershaw, P. Pagala, and M. Ferre. Model based on-line energy prediction system for semi-autonomous mobile robots. volume 2015-September, pages 411–416. Proceedings of the International Conference on Intelligent Systems, Modelling and Simulation (ISMS), 2015.spa
dc.relation.referencesS. Dogru and L. Marques. A physics-based power model for skid-steered wheeled mobile robots. IEEE Transactions on Robotics, 34:421–433, 4 2018.spa
dc.relation.referencesL. Nicholls and Y. Strengers. Robotic vacuum cleaners save energy? raising cleanliness conventions and energy demand in australian households with smart home technologies. Energy Research and Social Science, 50:73–81, 4 2019.spa
dc.relation.referencesY. Mei, Y. H. Lu, C. S. G. Lee, and Y. C. Hu. Energy-efficient mobile robot exploration. volume 2006, pages 505–511. Proceedings of the IEEE International Conference on Robotics and Automation, 2006.spa
dc.relation.referencesA. Barili, M. Ceresa, and C. Parisi. Energy-saving motion control for an autonomous mobile robot. volume 2, pages 674–676. Proceedings of the IEEE International Symposium on Industrial Electronics, 1995.spa
dc.relation.referencesH. Kim and B. K. Kim. Minimum-energy translational trajectory planning for batterypowered three-wheeled omni-directional mobile robots. pages 1730–1735. Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision (ICARCV), 2008.spa
dc.relation.referencesH. Kim and B. K. Kim. Minimum-energy trajectory planning and control on a straight line with rotation for three-wheeled omni-directional mobile robots. pages 3119–3124. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.spa
dc.relation.referencesS. Liu and D. Sun. Minimizing energy consumption of wheeled mobile robots via optimal motion planning. IEEE/ASME Transactions on Mechatronics, 19:401–411, 4 2014.spa
dc.relation.referencesA. Stefek, T. van Pham, V. Krivanek, and K. L. Pham. Energy comparison of controllers used for a differential drive wheeled mobile robot. IEEE Access, 8:170915–170927, 6 2020.spa
dc.relation.referencesM. Wahab, F. Rios-Gutierrez, and A. El-Shahat. Energy modeling of differential drive robots. pages 1–6. Proceedings of the IEEE Southeastcon, 2015.spa
dc.relation.referencesM. F. Jaramillo-Morales and J. B. Gomez-Mendoza. Mixed energy model for a differential guide mobile robot. pages 114–119. 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), 2018.spa
dc.relation.referencesM. F. Jaramillo-Morales, S. Dogru, L. Marques, and J. B. Gomez-Mendoza. Predictive power estimation for a differential drive mobile robot based on motor and robot dynamic models. pages 301–307. Proceedings of the 3rd IEEE International Conference on Robotic Computing (IRC), 2019.spa
dc.relation.referencesM. F. Jaramillo-Morales, S. Dogru, J. B. Gomez-Mendoza, and L. Marques. Energy estimation for differential drive mobile robots on straight and rotational trajectories. International Journal of Advanced Robotic Systems, 17, 2020.spa
dc.relation.referencesE. Grisales-Ramirez, M. F. Jaramillo-Morales, G. Osorio, and J. B. Gomez-Mendoza. Multiobjective optimal path planning for mobile robots using state space cell mapping. Proceedings of the 4th IEEE Colombian Conference on Automatic Control (CCAC), 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalAlgoritmo de Dijsktraspa
dc.subject.proposalAlgoritmo de mapeo de celdasspa
dc.subject.proposalDoble integradorspa
dc.subject.proposalModelo dinámicospa
dc.subject.proposalOptimización combinatoriaspa
dc.subject.proposalOptimización continuaspa
dc.subject.proposalOptimización discretaspa
dc.subject.proposalRobot móvil de guiado diferencialspa
dc.subject.proposalTeoría de control óptimospa
dc.subject.proposalDijsktra algorithmeng
dc.subject.proposalCell mapping algorithmeng
dc.subject.proposalDiscrete optimizationeng
dc.subject.proposalDouble integratoreng
dc.subject.proposalDynamic modeleng
dc.subject.proposalCombinatorial optimizationeng
dc.subject.proposalContinuous optimizationeng
dc.subject.proposalDifferential guided mobile roboteng
dc.subject.proposalOptimal control theoryeng
dc.titlePlanificación de trayectorias óptimas de robots móviles empleando el mapeo de celdasspa
dc.title.translatedOptimal trajectory planning for mobile robots using cell mappingeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_71e4c1898caa6e32spa
dc.type.contentDataPaperspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053781686.2023.pdf
Tamaño:
3.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: