En 1 hora(s) y 16 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Efecto del tiempo y la temperatura de revenido en la tasa de erosión y la microestructura de soldaduras superficiales de acero ASTM A743 grado CA6NM

dc.contributor.advisorToro Betancur, Alejandro Octavio
dc.contributor.advisorSanta Marín, Juan Felipe
dc.contributor.authorBanquez Cabarcas, Juan Carlos
dc.contributor.orcidToro, Alejandro [0000000255895820]
dc.contributor.researchgroupGrupo de Tribología y Superficies
dc.date.accessioned2025-12-04T14:05:29Z
dc.date.available2025-12-04T14:05:29Z
dc.date.issued2025
dc.descriptionIlustraciones
dc.description.abstractEn esta tesis se correlaciona la microestructura con la tasa de la erosión por partículas sólidas presentes en un chorro rasante en recargues de soldadura de acero inoxidable ASTM A743 grado CA6NM. El objetivo fue evaluar el efecto del tiempo y la temperatura de revenido posterior al soldeo sobre la evolución microestructural y la resistencia a la erosión mediante la aplicación de ciclos térmicos controlados en laboratorio. Para el análisis se depositaron recubrimientos mediante soldadura GMAW-P utilizando electrodo EC410NiMo, y se aplicaron seis condiciones de revenido. La caracterización incluyó dureza Vickers, microscopía óptica, difracción de rayos X (DRX) y ensayos de erosión húmeda por partículas de partículas según la norma ASTM G76 Los resultados mostraron variaciones en la dureza inferiores a 10 HV entre los tratamientos consideradas no significativas. La fracción promedio máxima de austenita resultante (9,35% en peso) se obtuvo a 640 °C durante 15 minutos. Asimismo, los tratamientos con tiempos iguales o superiores a 45 minutos generaron microestructuras más homogéneas, lo que redujo la desviación estándar de las mediciones. La menor tasa de erosión se alcanzó en las muestras tratadas a 640 °C durante 75 minutos. Estos hallazgos son relevantes para definir nuevos protocolos de reparación en componentes de turbinas hidráulicas expuestos a ambientes erosivos. (Tomado de la fuente)spa
dc.description.abstractThis thesis correlates the microstructure with the solid particle erosion rate produced by an impinging jet in weld overlays onto ASTM A743 grade CA6NM stainless steel. The objective was to evaluate the effect of tempering time and temperature after welding on the microstructural evolution and erosion resistance through the application of controlled thermal cycles in the laboratory. Weld overlays were deposited using the GMAW-P process with EC410NiMo filler metal, and six tempering conditions were applied. Characterization included Vickers hardness testing, optical microscopy, X-ray diffraction (XRD), and solid particle erosion tests according to ASTM G76. The results showed hardness variations below 10 HV among the different treatments, considered not significant. The highest retained austenite content (9.35 wt%) was obtained at 640 °C held for 15 minutes. Likewise, tempering times equal to or longer than 45 minutes produced more homogeneous microstructures, reducing the standard deviation of measurements. The lowest erosion rate was achieved in samples tempered at 640 °C held for 75 minutes. These findings are relevant for defining new repair protocols for hydraulic turbine components exposed to erosive environments.eng
dc.description.curricularareaMateriales Y Nanotecnología.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.researchareaMateriales funcionales
dc.format.extent1 recurso en línea (122 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89180
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.relation.referencesASTM, “Standard Specification for Castings, Iron-Chromium, Iron-Chromium-Nickel, Corrosion Resistant, for General Application 1,” 2021. doi: 10.1520/A0743_A0743M-21.
dc.relation.referencesK. C. Vilela and C. T. Vaz, “Influence of temperature and time of the double-stage tempering heat treatment on the microstructure and properties of the weld metal 13% cr, 4% ni and 0.4% mo,” Soldagem e Inspecao, vol. 25, pp. 1–21, 2020, doi: 10.1590/0104-9224/SI25.20.
dc.relation.referencesM. M. Amrei, H. Monajati, D. Thibault, Y. Verreman, and P. Bocher, “Effects of Various Post-Weld Heat Treatments on Austenite and Carbide Formation in a 13Cr4Ni Steel Multipass Weld,” Metallography, Microstructure, and Analysis, vol. 5, no. 1, pp. 50–61, Feb. 2016, doi: 10.1007/s13632-015-0251-z.
dc.relation.referencesD. Thibault, P. Bocher, M. Thomas, M. Gharghouri, and M. Côté, “Residual stress characterization in low transformation temperature 13%Cr-4%Ni stainless steel weld by neutron diffraction and the contour method,” Materials Science and Engineering: A, vol. 527, no. 23, pp. 6205–6210, 2010, doi: 10.1016/j.msea.2010.06.035.
dc.relation.referencesAWS, Specification for stainless steel electrodes for shielded metal arc welding. American Welding Society, 2006.
dc.relation.referencesASME, SECTION VIII Rules for Construction of Pressure Vessels 2023 ASME Boiler and Pressure Vessel Code An International Code. New York, 2023.
dc.relation.referencesJ. D. Escobar, R. Correa, J. F. Santa, J. E. Giraldo, and A. Toro, “EVALUACION MECÁNICA, TRIBOLÓGICA Y MICROESTRUCTURAL DE SOLDADURAS DE ACERO INOXIDABLE MARTENSÍTICO DEL TIPO AWS A5.9 ER 410 NiMo,” in III INTERNATIONAL CONFERENCE ON WELDING AND JOINING OF MATERIALS, 2010, pp. 1–10.
dc.relation.referencesJ. C. Lippold and D. J. Kotecki, WELDING METALLURGY AND WELDABILITY OF STAINLESS STEELS. 2005.
dc.relation.referencesENGA, “STAINLESS STEEL TECHNICAL HANDBOOK,” 2016
dc.relation.referencesASTM, “Specification for Steel Castings Suitable for Pressure Service,” May 01, 2021, ASTM International, West Conshohocken, PA. doi: 10.1520/A0487_A0487M-21.
dc.relation.referencesASTM, “Standard Specification for Steel Castings, Ferritic and Martensitic, for Pressure-Containing Parts, Suitable for Low-Temperature Service 1,” 1998.
dc.relation.referencesH.-J. Niederau, “State of development of soft martensitic stainless chromium-nickel steels,” in 119 General Session of the materials comité, 1977.
dc.relation.referencesE. Folkhard, Welding metallurgy of stainless steels. 1988.
dc.relation.referencesG. E. Totten, Steel heat treatment : metallurgy and technologies. Taylor & Francis, 2007.
dc.relation.referencesP. D. Bilmes, M. Solari, and C. L. Llorente, “Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals,” 2001.
dc.relation.referencesF. Mirakhorli, X. Cao, X. T. Pham, P. Wanjara, and J. L. Fihey, “Phase structures and morphologies of tempered CA6NM stainless steel welded by hybrid laser-arc process,” Mater Charact, vol. 123, pp. 264–274, Jan. 2017, doi: 10.1016/j.matchar.2016.10.029.
dc.relation.referencesMejía Velásquez Jeisson, “Estudio del efecto de los modos sinérgicos de soldadura en el proceso de manufactura aditiva por arco (WAAM-GMA) con electrodo EC410NiMo,” 2025.
dc.relation.referencesM. Mokhtabad Amrei, Y. Verreman, F. Bridier, D. Thibault, and P. Bocher, “Microstructure Characterization of Single and Multipass 13Cr4Ni Steel Welded Joints,” Metallography, Microstructure, and Analysis, vol. 4, no. 3, pp. 207–218, Jun. 2015, doi: 10.1007/s13632-015-0202-8.
dc.relation.referencesSFSA, “STEEL CASTINGS HANDBOOK Supplement 8 High Alloy Data Sheets Corrosion Series,” 2004
dc.relation.referencesASTM, “Test Method for Liquid Impingement Erosion Using Rotating Apparatus,” Nov. 01, 2021, ASTM International, West Conshohocken, PA. doi: 10.1520/G0073-10R21.
dc.relation.referencesM. M. Amrei, H. Monajati, D. Thibault, Y. Verreman, L. Germain, and P. Bocher, “Microstructure characterization and hardness distribution of 13Cr4Ni multipass weld metal,” Mater Charact, vol. 111, pp. 128–136, Jan. 2016, doi: 10.1016/j.matchar.2015.11.022.
dc.relation.referencesD. Thibault, P. Bocher, and M. Thomas, “Residual stress and microstructure in welds of 13%Cr-4%Ni martensitic stainless steel,” J Mater Process Technol, vol. 209, no. 4, pp. 2195–2202, Feb. 2009, doi: 10.1016/j.jmatprotec.2008.05.005.
dc.relation.referencesMorales Galeano John Edison, “Efecto del GMAW pulsado (GMAW-P) en la integridad y microestructura de soldaduras aplicadas sobre acero inoxidable martensítico con electrodo EC410NiMo,” 2024.
dc.relation.referencesM. Ramos-Azpeitia, J. A. Ruiz-Ochoa, J. L. Hernandez-Rivera, and C. A. Perez-Alonso, “Heat Treatment Optimization of CA-6NM Cast Alloy Using a Full Factorial Design of Experiments Approach,” International Journal of Metalcasting, vol. 15, no. 1, pp. 76–87, Jan. 2021, doi: 10.1007/s40962-020-00445-y.
dc.relation.referencesD. A. López, J. Zapata, M. Sepúlveda, E. Hoyos, and A. Toro, “The role of particle size and solids concentration on the transition from moderate to severe slurry wear regimes of ASTM A743 grade CA6NM stainless steel,” Tribol Int, vol. 127, pp. 96–107, Nov. 2018, doi: 10.1016/j.triboint.2018.05.035.
dc.relation.referencesJuan Carlos Baena Vargas, “Interdependencia entre las condiciones de operación y el desgaste en rodetes tipo pelton fabricados en acero ASTM A743 GRADO CA6NM,” 2008.
dc.relation.referencesH. Gutiérrez Pulido and R. de la Vara Salazar, Análisis y diseño de experimentos, Segunda. México D.F.: Mc GrawHill, 2008.
dc.relation.referencesJ. D. Crawford, “CA6NM an Update,” in 29th Annual Steel Founder’s Society of America Techical and Operating Conference., 1974, pp. 1–13.
dc.relation.referencesASTM, “Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials,” Apr. 01, 2017, ASTM International, West Conshohocken, PA. doi: 10.1520/E0092-17.
dc.relation.referencesG. F. Vander Voort, Metallography, principles and practice. ASM International, 1999.
dc.relation.referencesASTM, “Guide for Electrolytic Polishing of Metallographic Specimens,” Sep. 01, 2021, ASTM International, West Conshohocken, PA. doi: 10.1520/E1558-09R21.
dc.relation.referencesB.D Cullity and S.R. Stock, Elements of X-Ray Diffraction, Third. Pearson Education Limited, 2014.
dc.relation.referencesRojas Marín Jessika Viviana, “IDENTIFICACIÓN Y CUANTIFICACIÓN DE FASES EN ACERO INOXIDABLE ASTM A743 GRADO CA6NM MEDIANTE LA TÉCNICA DE DIFRACCIÓN DE RAYOS X.,” 2009.
dc.relation.referencesP. Wang, S. P. Lu, N. M. Xiao, D. Z. Li, and Y. Y. Li, “Effect of delta ferrite on impact properties of low carbon 13Cr-4Ni martensitic stainless steel,” Materials Science and Engineering: A, vol. 527, no. 13–14, pp. 3210–3216, 2010, doi: 10.1016/j.msea.2010.01.085.
dc.relation.referencesL. A. Espitia, L. Varela, C. E. Pinedo, and A. P. Tschiptschin, “Cavitation erosion resistance of low temperature plasma nitrided martensitic stainless steel,” Wear, vol. 301, no. 1–2, pp. 449–456, Apr. 2013, doi: 10.1016/j.wear.2012.12.029.
dc.relation.referencesASME Section II Part C, “SECTION II MATERIALS Par t C Specifications for Welding Rods, Electrodes, and Filler Metals 2015 ASME Boiler and Pressure Vessel Code An International Code,” 2015.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.subject.lembAcero inoxidable martensítico
dc.subject.lembSoldadura de acero
dc.subject.lembTratamiento térmico del acero
dc.subject.proposalAcero inoxidable martensíticospa
dc.subject.proposalSoldaduraspa
dc.subject.proposalRevenidospa
dc.subject.proposalMicroestructuraspa
dc.subject.proposalResistencia a la erosiónspa
dc.subject.proposalMartensitic stainless steeleng
dc.subject.proposalWeldingeng
dc.subject.proposalTemperingeng
dc.subject.proposalMicrostructureeng
dc.subject.proposalErosion resistanceeng
dc.titleEfecto del tiempo y la temperatura de revenido en la tasa de erosión y la microestructura de soldaduras superficiales de acero ASTM A743 grado CA6NMspa
dc.title.translatedEffect of tempering time and temperature on the erosion rate and microstructure of ASTM A743 Grade CA6NM Surface Weldseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleReparación y protección de componentes mediante tecnologías de mecanizado, soldadura y proyección térmica
oaire.fundernameEmpresas Públicas de Medellín

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1028035596.2025.pdf
Tamaño:
3.91 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: