Análisis del impacto de la tensión transitoria de recuperación en el sistema de distribución de CHEC con presencia de recursos energéticos distribuidos
dc.contributor.advisor | Carvajal Quintero, Sandra Ximena | |
dc.contributor.author | Cardona Ospina, Santiago | |
dc.date.accessioned | 2025-05-26T16:37:55Z | |
dc.date.available | 2025-05-26T16:37:55Z | |
dc.date.issued | 2024 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | El presente documento se enfoca en estudiar el fenómeno transitorio del voltaje de recuperación transitorio (TRV) en interruptores de potencia, considerando particularmente las variables eléctricas de los sistemas de potencia que tienen efecto sobre la amplitud, frecuencia y duración de la TRV. Lo anterior, con el fin de entender el efecto sobre sistemas de distribución ante la presencia de nuevos recursos distribuidos, así como tipos de tecnología de fuentes de generación en niveles de tensión menores a 110 kV. Para el modelo detallado de interruptores de potencia y redes de distribución, se utilizó la información de parámetros eléctricos del sistema del operador de red CHEC y se modeló en el software DIgSILENT Power Factory, se utilizó información de transformadores, líneas, generadores y cargas. Adicionalmente, en el presente trabajo de grado se analizó el fenómeno transitorio mencionado para diferentes condiciones o escenarios operativos, variando, entre otros, la capacidad de los transformadores de potencia y el número de estos en una misma subestación, capacidad y tecnología de los generadores distribuidos, tiempos de apertura de los interruptores y diferentes tipos de fallas (terminales y kilométricas). A partir del entendimiento del fenómeno transitorio del voltaje de recuperación transitorio y el modelo detallado de simulación se logró identificar las variaciones en la amplitud y la frecuencia de la TRV bajo diferentes configuraciones de sistema, así como su impacto en la integridad y operación de los dispositivos de interrupción. Se evidenció que las fallas terminales generan picos de tensión más altos, lo que puede comprometer equipos sensibles, mientras que las fallas kilométricas ofrecen un panorama distinto, donde el aumento en la instalación de recursos energéticos distribuidos influye directamente en la tensión pico y su tasa de crecimiento. Esta información es crucial para optimizar la selección y especificación de interruptores de potencia en sistemas con recursos distribuidos, asegurando su adecuada operación ante condiciones extremas (Texto tomado de la fuente). | spa |
dc.description.abstract | This document focuses on studying the transient phenomenon of transient recovery voltage in circuit breakers, particularly considering the electrical variables of power systems that have an effect on the amplitude, frequency and duration of the TRV. The above in order to understand the effect on distribution systems in the presence of new distributed resources, as well as, types of generation source technology at voltage levels below 110 kV. For the detailed model of power switches and distribution networks, the information of electrical parameters of the CHEC network operator system was used and modeled in the DIgSILENT Power Factory software, using information of transformers, lines, generators and loads. In addition, the transient phenomenon mentioned above was analyzed for different operating conditions or scenarios, varying, among others, the capacity of power transformers and the number of them in the same substation, capacity and technology of distributed generators, breaker opening times and different types of faults (terminal and kilometer). Based on the understanding of the transient phenomenon of transient recovery voltage (TRV) and the detailed simulation model, variations in the amplitude and frequency of TRV under different system configurations were identified, along with their impact on the integrity and operation of interrupting devices. It was demonstrated that terminal faults generate higher voltage peaks, which can compromise sensitive equipment, whereas kilometric faults present a different scenario, where the increase in distributed energy resources directly affects the peak voltage and its rate of rise. This information is crucial for optimizing the selection and specification of power switches in systems with distributed resources, ensuring their proper operation under extreme conditions. | eng |
dc.description.curriculararea | Eléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Eléctrica | spa |
dc.format.extent | 139 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88188 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | Ametani, A. et al. (1998). Field test and EMTP simulation of transient voltages when cleaning a transformer secondary fault. Denki Gakkai Ronbunshi, 118(4), 381-388. | spa |
dc.relation.references | ANSI-IEEE. (1980). ANSI/IEEE Std 37.011-1979. IEEE Guide for the Application of Transient Recovery Voltage for AC High-Voltage Circuit Breakers. IEEE. | spa |
dc.relation.references | Bewley, L.V. (1951). Travelling Waves on Transmission Systems. Dover Publications. | spa |
dc.relation.references | Chaj, E.E. (2008). Análisis de sobretensiones debido a transitorios por maniobras en sistemas eléctricos de potencia mayores de 300 kV [Tesis de pregrado]. Programa de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de San Carlos de Guatemala, Guatemala. | spa |
dc.relation.references | Chetty, V. (2016). Network Studies and Mitigation of High 132 Kv Fault Currents in Ethekwini Electricity [Tesis de maestría]. University of KwaZulu-Natal, South Africa. | spa |
dc.relation.references | CIGRE. (2014). Electrical transient interaction between transformers and the power system - Part 1: Expertise. CIGRE. | spa |
dc.relation.references | CIGRE. (1990). Guidelines for representation of network elements when calculating transients. CIGRE. | spa |
dc.relation.references | Das, J. (2018). TRV (transient recovery voltage) in high voltage current interruption. IEEE Transactions on Power Apparatus and Systems, 55(2), 2165-2172. | spa |
dc.relation.references | Das, J.C., & Mohla, D.C. (2011). Harmonization of ANSI/IEEE standards for high-voltage circuit breakers with IEC and its impact on application and analysis. Proceedings of the IEEE/IAS Pulp & Paper Industry Technical Paper Conference, Nashville, USA. | spa |
dc.relation.references | Dufournet, D. (2013). Transient Recovery Voltages (TRVs) for High-Voltage Circuit Breakers. Part 1. Alstom. | spa |
dc.relation.references | Fortescue, C.L. (1918). Method of symmetrical co-ordinates applied to solution of polyphase networks. Transactions of the American Institute of Electrical Engineers, 37(2), 1027-1140. | spa |
dc.relation.references | Greenwood, A. (2010). Electrical transients in power systems. John Wiley & Sons. | spa |
dc.relation.references | Haginomori, E. et al. (2008). Investigation of transformer model for TRV calculation after fault current interrupting. International Conference on Electrical Engineering, Panel discussion, Part 2, PN2-08. | spa |
dc.relation.references | Harner, R.H. (1968). Distribution system recovery voltage characteristics: I- Transformer secondary fault recovery voltage investigation. IEEE Transactions on Power Apparatus and Systems, 87(2), 463-487. | spa |
dc.relation.references | Heller, B., & Veverka, A. (1968). Surge Phenomena in Electrical Machines. Iliffe. | spa |
dc.relation.references | Heydari, M., & Razi-Kazemi, A.A. (2022). Impacts of Various Wind Turbine Generators on Transient Recovery Voltage in a Medium Voltage Power Network. 30th International Conference on Electrical Engineering, Tehran, Iran. | spa |
dc.relation.references | Hewlett, E.M., Mahony, J.N., & Burnham, G.A. (1918). Rating and selection of oil circuit breakers. Transactions of the American Institute of Electrical Engineers, 37(2), 123-165. | spa |
dc.relation.references | IEEE. (2011). Std C62.82.1-2010. IEEE Standard for Insulation Coordination-Definitions, Principles, and Rules. IEEE. | spa |
dc.relation.references | IEEE. (2019). C37.011-2019 - IEEE Guide for the Application of Transient Recovery Voltage for AC High-Voltage Circuit Breakers with Rated Maximum Voltage above 1000 V. IEEE. | spa |
dc.relation.references | Johnson, K.S. (1927). Transmission Circuits and Telephonic Communication. D. Van Nostrand Company, Inc. | spa |
dc.relation.references | Marini, P. (2019). Impact of De-Energization of 33 kV Harmonic Filter on TRV of Vacuum Circuit Breaker. IPST. | spa |
dc.relation.references | Martinez-Velasco, J.A. (2015). Transient Analysis of Power Systems: Solution Techniques, Tools and Applications. Wiley. | spa |
dc.relation.references | Merciris, T. et al. (2023). Dielectric recovery of an AC arc after current zero: Experimental determination & simulation prediction. 23rd International Conference on Gas Discharges and their Applications, Greifswald, Germany. | spa |
dc.relation.references | Mourad, N., & Mohamed, B. (2015). Short Circuit Current Contribution of Distributed Photovoltaic Integration on Radial Distribution Networks. 4th International Conference on Electrical Engineering (ICEE 2015), Boumerdes, Algeria. | spa |
dc.relation.references | Myo-Thein, M. et al. (2011). Investigation of Transformer Model for TRV Calculation by Using Frequency Dependent Inductance Model. Journal of International Council on Electrical Engineering, 1(2), 188-193. | spa |
dc.relation.references | Niayesh, K., & Runde, M. (2017). Power Switching Components: Theory, Applications and Future Trends. Springer. | spa |
dc.relation.references | Parrott, P.G. (1985). A review of transformer TRV conditions. ELECTRA, 102, 87-118. | spa |
dc.relation.references | Pepermans, G. et al. (2005). Distributed generation: definition, benefits and issues. Energy Policy, 33(6), 787-798. | spa |
dc.relation.references | Prince, D.C. (1935). Circuit breakers for Boulder Dam line. Transactions of the American Institute of Electrical Engineers, 54(4), 366-372. | spa |
dc.relation.references | Said, A. et al. (2022). Induced Overvoltage Caused by Indirect Lightning Strikes in Large Photovoltaic Power Plants and Effective Attenuation Techniques. IEEE Access, 10, 112934-112947. | spa |
dc.relation.references | Smeets, R. et al. (2014). Switching in Electrical Transmission and Distribution systems. John Wiley & Sons. | spa |
dc.relation.references | Sporn, P., & St. Clair, H.P. (1927). Tests on high- and low-voltage oil circuit breakers. Transactions of the American Institute of Electrical Engineers, 46, 289-314. | spa |
dc.relation.references | Thein, M. et al. (2009). Investigation of Transformer Model for TRV Calculation by EMTP. IEEE Transactions on Power Apparatus and Systems, 129(10), 1174-1180. | spa |
dc.relation.references | Thein, M. et al. (2009). Investigation of transformer model for TRV calculation by EMTP. IEEJ Transactions on Power and Energy, 129(10), 1174-1180. | spa |
dc.relation.references | Todeschini, G. (2012). Analysis of the effect of distance on the TRV waveform for a short-line fault. Proceedings of the PES T&D 2012, Orlando, USA. | spa |
dc.relation.references | Van Craenenbroeck, T. et al. (2000). Experimental and numerical analysis of fast transient phenomena in distribution transformers. Proceedings of the 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 00CH37077), Singapore. | spa |
dc.relation.references | Wetjen, S. (2019). Investigation of the Transient Recovery Voltage across Circuit Breakers in Networks with Distributed Energy Resources [Tesis de maestría]. Norwegian University of Science and Technology. | spa |
dc.relation.references | Wu, Y.K. et al. (2022). Planning of Flexible Generators and Energy Storages under High Penetration of Renewable Power in Taiwan Power System. Energies, 15, 5224. | spa |
dc.relation.references | Zhou, Z., Wang, X., & Wilson, P. (2006). Transient Recovery Voltage Assessment for 138kV Breakers with the New Addition of a Wind Farm. International Conference on Power System Technology, Chongqing, China. | spa |
dc.relation.references | Zhou, S., Teng, F., & Tong, Q. (2018). Mitigating sulfur hexafluoride (SF6) emission from electrical equipment in China. Sustainability, 10(7), 2402. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::513 - Aritmética | spa |
dc.subject.ddc | 530 - Física::537 - Electricidad y electrónica | spa |
dc.subject.proposal | TRV | eng |
dc.subject.proposal | RRRV | eng |
dc.subject.proposal | Sistema de segundo orden | spa |
dc.subject.proposal | Falla simétrica | spa |
dc.subject.proposal | Falla asimétrica | spa |
dc.subject.proposal | Arco eléctrico | spa |
dc.subject.proposal | Falla asimétrica | spa |
dc.subject.proposal | Second order system | eng |
dc.subject.proposal | Symmetrical fault | eng |
dc.subject.proposal | Asymmetrical fault | eng |
dc.subject.proposal | Electric arc | eng |
dc.title | Análisis del impacto de la tensión transitoria de recuperación en el sistema de distribución de CHEC con presencia de recursos energéticos distribuidos | spa |
dc.title.translated | Analysis of the impact of transient recovery voltage on the CHEC distribution system with the presence of distributed energy resources | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053830168.2024.pdf
- Tamaño:
- 8.11 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: