Comportamiento no lineal de losas compuestas por lámina colaborante, con y sin refuerzo convencional. Modelación experimental y numérica.
dc.contributor.advisor | Paredes López, Jairo Andrés | spa |
dc.contributor.advisor | Bedoya Ruiz, Daniel Alveiro | spa |
dc.contributor.author | Celis Imbajoa, Edgar Iván | spa |
dc.contributor.corporatename | Universidad Nacional de Colombia Sede Manizales | spa |
dc.date.accessioned | 2020-07-17T18:44:15Z | spa |
dc.date.available | 2020-07-17T18:44:15Z | spa |
dc.date.issued | 2020 | spa |
dc.description.abstract | Esta investigación presenta un estudio experimental y numérico de tres sistemas de losas: losas compuestas sin refuerzo convencional, losas compuestas con refuerzo convencional y losas de concreto reforzado de sección transversal multi-trapezoidal (losas macizas que siguen la geometría de la lámina colaborante), en el que se desarrolló ensayos experimentales a flexión de 54 especímenes a escala real y construcción de modelos numéricos aplicando el método de análisis no lineal de los elementos finitos (FEM), la teoría de mezclas serie-paralelo y los modelos constitutivos de los materiales simples: modelo elasto-plástico para el acero y modelo de daño isótropo para el concreto. Se analizó los resultados obtenidos, tales como los efectos de la resistencia a la flexión, la esbeltez, la deflexión, la carga máxima, los esfuerzos en el compuesto y en cada componente, carga máxima última, carga máxima por servicio, el grado de adherencia, la ductilidad y el cortante horizontal por adherencia. Los resultados establecieron que la capacidad a flexión depende de la relación de esbeltez, el grado de adherencia y la configuración geométrica de las losas. Del análisis numérico, se presentó una gran diferencia del comportamiento entre losas compactas y losas esbeltas, donde para losas compactas el modelo no se ajustó a los resultados experimentales (Texto tomado de la fuente) | spa |
dc.description.abstract | This research presents an experimental and numerical study of three slab systems: composite slabs without conventional reinforcement, composite slabs with conventional reinforcement and multi-trapezoidal slabs of reinforced concrete (solid slabs that follow the geometry of the steel deck), in which experimental tests were developed at the bending of 54 specimens on a real scale and construction of numerical models using the method of nonlinear analysis of finite elements (FEM), the theory of series-parallel mixtures and the constituent models of simple materials: elastic-plastic model for steel and isotropic damage model for concrete. The results obtained were analyzed, such as the effects of bending resistance, slenderness, deflection, maximum load, stresses on the compound and in each component, ultimate maximum load, maximum load per service, degree of bond, ductility and the horizontal shear by bond. The results established that bending capacity depends on the slenderness ratio, the degree of adhesion and the geometric configuration of the slabs. From the numerical analysis, there was a big difference in the behavior between compact slabs and slender slabs, where for compact slabs the model did not conform to the experimental results. | eng |
dc.description.additional | Tesis de investigación presentada como requisito parcial para optar al título de: Magister en Ingeniería - Estructuras. -- Líneas de Investigación: Análisis Estructural y Modelación Numérica no Lineal de Materiales Estructurales y Compuestos. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.project | Colciencias - Convocatoria 754 | spa |
dc.format.extent | 155 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77789 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.department | Departamento de Ingeniería Civil | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Estructuras | spa |
dc.relation.references | [1] R. Q. Bridge and M. Patrick, “Innovations in composite slabs incorporating profiled steel sheeting,” Adv. Build. Technol., vol. 1, pp. 191–198, 2007. [2] American Society of Civil Engineers ANSI/ASCE, Standard for the structural design of composite slabs. United Satates of America, 1992, pp. 1–63. [3] R. M. Schuster, M. L. Porter, and J. C. E. Ekberg, “Pilot tests of light gage steel forms as reinforcement for concrete slabs,” Ames, Iowa, 1968. [4] R. M. Schuster, “Strength and behaviour of cold-rolled steel-deck reinforced concrete floor slabs,” Iowa State University, Ames, Iowa, 1970. [5] M. L. Porter and J. C. E. Ekberg, “Design recommendatios for steel deck floor slabs,” in International Specialty Conference on Cold-Formed Steel Structures, 1975, vol. 8, pp. 761–791. [6] S. Plooksawasdi, “controlled test for composite slab design parameters,” West Virginia University, Morgantown, West Virginia, 1989. [7] B. . . Daniels, “Shear bond pull-out tests for cold-formed-steel composite slabs,” Ecole Polytechnique Federale de Lausanne, 1988. [8] E. Airumyan, V. Belyaev, and I. Rumyancev, “Efficient Embossment for Corrugated Steel Sheeting,” in LABSE Symposium on Mixed Structures Incluiding New Materials, 1990, pp. 137–142. [9] M. Veljkovic, “Behaviour and resistance of composite slabs. Experiments and Finite Element Analysis,” Lulea University of Techonology, 1996. [10] M. Burnet, “Analysis of composite steel and concrete flexural members that exhibit partial shear connection,” University of Adelaide, Australia, 1998. [11] J. Holomek, M. Bajera, and M. Vilda, “Test Arrangement of Small-scale Shear Tests of Composite Slabs,” Procedia Eng., vol. 161, pp. 716–721, 2016. [12] R. Abdullah, “Experimental Evaluation and Analytical Modeling of Shear Bond in Composite Slabs,” Faculty of the Virginia Poliytechnic Institute and State University, 2004. [13] L. An, “Load bearing capacity and behavior of composite slabs with profiled Steel sheet,” Chalmers University of Technology, 1993. [14] R. Abdullah and W. S. Easterling, “Determination of Composite Slab Strength Using a New Elemental Test Method,” J. Struct. Eng., vol. 133, no. 9, pp. 1268–1277, 2007. [15] Instituto Colombiano de Normas Técnicas y Certificaciones ICONTEC, “Norma Técnica Colombiana NTC 5805: Láminada colaborante de acero conformada en frío,” Bogotá, Colombia, 2010. [16] Eurocode 4:EN 1994-1-1, Design of composite steel and concrete structures – Part 1-1: General rules and rules for buildings. Europe, 2004. [17] Canadian Sheet Steel Building Institute, CSSBI-S3-2017: Criteria for the Design of Composite Slabs. Canada, 2017, pp. 1–7. [18] American National Standards Institute/Steel Deck Institute ANSI/SDI, C-2017 Standard for Composite Steel Floor Deck-Slabs. United Satates of America, 2017. [19] Asocociación Colombiana de Ingeniería AIS, Reglamento Colombiano de Construcción Sismo Resistente NSR-10. Colombia, 2010, p. Tiítulo C y F. [20] S. Chen, “Load carrying capacity of composite slabs with various end constraints,” J. Constr. Steel Res., vol. 59, no. 3, pp. 385–403, 2003. [21] V. Marimuthu, S. Seetharaman, S. Arul Jayachandran, A. Chellappan, T. K. Bandyopadhyay, and D. Dutta, “Experimental studies on composite deck slabs to determine the shear-bond characteristic (m - k) values of the embossed profiled sheet,” J. Constr. Steel Res., vol. 63, no. 6, pp. 791–803, 2007. [22] S. P. Siddh, Y. D. Patil, and H. S. Patil, “Experimental studies on behaviour of composite slab with profiled steel sheeting,” Mater. Today Proc., vol. 4, no. 9, pp. 9792–9796, 2017. [23] R. González Alcorta, E. Treviño Treviño, and J. Chávez Gómez, “Comportamiento de sistemas de piso compuestos por concreto y lámina acanalada,” San Nicolás de los Garza, México. [24] M. Ferrer, F. Marimon, and M. Casafont, “An experimental investigation of a new perfect bond technology for composite slabs,” Constr. Build. Mater., vol. 166, pp. 618–633, 2018. [25] I. Arrayago, M. Ferrer, F. Marimon, E. Real, and E. Mirambell, “Experimental investigation on ferritic stainless steel composite slabs,” Eng. Struct., vol. 174, no.April, pp. 538–547, 2018. [26] Y. J. Jeong, H. Y. Kim, and H. B. Koo, “Longitudinal shear resistance of steel-concrete composite slabs with perfobond shear connectors,” J. Constr. Steel Res., vol. 65, no. 1, pp. 81–88, 2009. [27] A. Gholamhoseini, I. Gibert, and M. Bradford, “Ultimate Strength of Continuous Composite Concrete Slabs,” Compos. Constr. Steel Concr., vol. VII, pp. 712–730, 2016. [28] A. Gholamhoseini, A. Khanlou, G. MacRae, A. Scott, S. Hicks, and R. Leon, “An experimental study on strength and serviceability of reinforced and steel fibre reinforced concrete (SFRC) continuous composite slabs,” Eng. Struct., vol. 114, pp. 171–180, 2016. [29] A. Montha, S. Sirimontree, and B. Witchayangkoon, “Behaviors of the composite slab composed of corrugated steel sheet and concrete topping using nonlinear finite element analysis,” Int. Trans. J. Eng. Manag. Appl. Sci. Technol., vol. 9, no. 2, pp. 75–84, 2018. [30] R. P. Johnson and A. J. Shepherd, “Resistance to longitudinal shear of composite slabs with longitudinal reinforcement,” J. Constr. Steel Res., vol. 82, pp. 190–194, 2013. [31] H. Mengiste, “Structural Behaviour of Comosite Slabs with High Performance Concretes,” Ryerson University, Canada, 2014. [32] K. M. A. Hossain, S. Attarde, and M. S. Anwar, “Finite element modelling of profiled steel deck composite slab system with engineered cementitious composite under monotonic loading,” Eng. Struct., vol. 186, no. February, pp. 13–25, 2019. [33] D. Waldmann, A. May, and V. B. Thapa, “Influence of the sheet profile design on the composite action of slabs made of lightweight woodchip concrete,” Constr. Build. Mater., vol. 148, pp. 887–899, 2017. [34] R. Abdullah and W. Samuel Easterling, “New evaluation and modeling procedure for horizontal shear bond in composite slabs,” J. Constr. Steel Res., vol. 65, no. 4, pp. 891–899, 2009. [35] M. López ávila, R. L. Quevedo, and C. R. Morfa, “Evaluating longitudinal shear resistance in composite slabs with steel decks,” Rev. Ing. Construcción, vol. 24, no. 1, pp. 95–113, 2009. [36] M. Ferrer, F. Marimon, and M. Crisinel, “Designing cold-formed steel sheets for composite slabs: An experimentally validated FEM approach to slip failure mechanics,” Thin-Walled Struct., vol. 44, no. 12, pp. 1261–1271, 2007. [37] J. D. Ríos, H. Cifuentes, A. Martínez-De La Concha, and F. Medina-Reguera, “Numerical modelling of the shear-bond behaviour of composite slabs in four and six-point bending tests,” Eng. Struct., vol. 133, pp. 91–104, 2017. [38] S. Attarde, “Nonlinear Finite Element Analysis of Profiled Steel Deck Composite Slab System Under Monotonic Loading,” Ryerson University, Toronto, 2014. [39] B. R. Widjaja, “Analysis and design of steel deck-concrete composite slabs,” Virginia Polytechnic Institute and State University, Blacksburg, 1997. [40] B. J. Daniels and M. Crisinel, “Composite slab behavior and strength analysis. Part I: Calculation procedure,” J. Struct. Eng., vol. 119, no. 1, pp. 16–35, 1993. [41] B. J. Daniels and M. Crisinel, “Composite slab behavior and strength analysis. Part II: comparisons with test results and parametric analysis,” J. Struct. Eng., vol. 119, no. 1, pp. 36–49, 1993. [42] M. Joshani, S. S. R. Koloor, and R. Abdullah, “Damage Mechanics Model for Fracture Process of Steel-Concrete Composite Slabs,” Appl. Mech. Mater., vol. 165, pp. 339–345, Jun. 2012. [43] M. M. Rana, B. Uy, and O. Mirza, “Experimental and numerical study of end anchorage in composite slabs,” J. Constr. Steel Res., vol. 115, pp. 372–386, 2015. [44] T. Limazie and S. Chen, “FE modeling and numerical investigation of shallow cellular composite floor beams,” J. Constr. Steel Res., vol. 119, pp. 190–201, 2016. [45] X. Martinez, S. Oller, F. Rastellini, and A. H. Barbat, “A numerical procedure simulating RC structures reinforced with FRP using the serial/parallel mixing theory,” Comput. Struct., vol. 86, no. 15–16, pp. 1604–1618, 2008. [46] D. A. Álvarez M., Mecánica de Sólidos, Versión: 5. Manizales: Universidad Nacional de Colombia Sede Manizales, 2018. [47] J. A. Paredes L. and J. P. Marín A., Mecánica de sólidos. Una visión práctica de los medios continuos. 2007. [48] Canadian Sheet Steel Building Institute, CSSBI-S2-2017: Criteria for the Testing of Composite Slabs. Canada, 2017, pp. 1–4. [49] C. A. Riveros Jerez, Estructuras de hormigón. Medellin, Colombia: Universidad de Antioquia, 2016. [50] E. Mattock, Alan H; Kriz, Ladislav b; Honestad, “Rectangular Concrete Stress. Distribution in Ultimate. Strength Design,” J. Am. Concr. Inst., vol. 57–43, pp. 875–928, 1961. [51] E. J. Barbero, Introduction to composite materials design, Second Edi. 2011. [52] C. Truesdell and R. Toupin, The Classical Field Theories. 1960. [53] X. Martinez, “Micro mechanical simulation of composite materials using the serial/parallel mixing theory.” Universidad de Cataluña, España, 2008. [54] D. Hutton, Fundamentals of finite element analysis. 2004. [55] E. Oñate, Cálculo de estructuras por el método de elementos finitos. Análisis estático lineal, Segunda ed. Barcelona, España: Centro Internacional de Métodos Numéricos en Ingeniería, 1995. [56] J. E. Hurtado, Introducción al análisis estructural por elementos finitos, Primera Ed. Manizales, 2002. [57] K.-J. Bathe, Finit Elements Procedures, Second Edi. United States of America, 2014. [58] S. Oller, Fractura mecánica. Un enfoque global, Primera Ed. Barcelona, España: Centro Internacional de métodos numéricos en ingeniería, 2001. [59] E. I. Celis, D. Bedoya-Ruiz, J. Paredes, C. Montana, T. Yeison, and G. John, “ARMEDECK Manual Técnico,” Manizales, 2019. [60] E. I. Celis et al., “Informe técnico de investigación numérica y experimental del Proyecto: formulación, ejecución, análisis y diseño de un programa de ensayos experimentales con fines de desarrollar un software de apoyo de un sistema estructural de entrepiso a base de lámina,” 2018. [61] “PLCd: non-linear thermomechanic finite element code for research-oriented applications. Free access code developed at CIMNE.” 2018. | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.proposal | Losas compuestas | spa |
dc.subject.proposal | Composite slabs | eng |
dc.subject.proposal | Horizontal shear bond | eng |
dc.subject.proposal | Cortante horizontal por adherencia | spa |
dc.subject.proposal | Steel deck | eng |
dc.subject.proposal | Lámina colaborante | spa |
dc.subject.proposal | Análisis por elementos finitos | spa |
dc.subject.proposal | Finite element analysis | eng |
dc.subject.proposal | Conventional reinforcement | eng |
dc.subject.proposal | Refuerzo convencional | spa |
dc.subject.proposal | Structural analysis (Engineering) | eng |
dc.subject.proposal | Análisis estructural | spa |
dc.title | Comportamiento no lineal de losas compuestas por lámina colaborante, con y sin refuerzo convencional. Modelación experimental y numérica. | spa |
dc.title.alternative | Non-linear behavior of composite slabs of steel deck, with and without conventional reinforcement. Experimental and numerical modeling. | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1124857996.2020.pdf
- Tamaño:
- 9.09 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Estructuras
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.9 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: