Metodología para la estimación de biomasa aérea en un bosque tropical amazónico a partir de imágenes ópticas y de radar. Caso de estudio: Calamar – Guaviare

dc.contributor.advisorLizarazo Salcedo, Ivan Albert
dc.contributor.authorOsorio Romero, Juan Ricardo Jannereth
dc.contributor.orcidOsorio Romero, Juan Ricardo Jannereth [0009-0006-7491-750X]
dc.date.accessioned2025-09-03T13:18:28Z
dc.date.available2025-09-03T13:18:28Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, mapas
dc.description.abstractEsta investigación propone una metodología para estimar biomasa aérea en bosque tropical amazónico usando imágenes de radar (Sentinel-1), ópticas (Sentinel-2) y algoritmos de aprendizaje de máquina. Se compararon dos enfoques: Random Forest clásico (RF) y su versión geográfica (GRF), que incorpora autocorrelación espacial. Los resultados muestran que RF alcanzó valores de R² entre 0.53 y 0.57, mientras que GRF logró hasta 0.66. Esto indica una mejora sustancial en la precisión del modelo. La metodología demuestra el potencial de integrar sensores remotos y técnicas espaciales para estimar biomasa en regiones de difícil acceso. Sus resultados pueden apoyar iniciativas de monitoreo forestal y conservación, especialmente en contextos de deforestación y cambio climático. (Texto tomado de la fuente)spa
dc.description.abstractThis research proposes a methodology to estimate aboveground biomass in tropical Amazonian forest using radar (Sentinel-1), optical imagery (Sentinel-2), and machine learning. Two approaches were compared: classic Random Forest (RF) and its geographical version (GRF), which includes spatial autocorrelation. RF achieved R² values between 0.53 and 0.57, while GRF reached up to 0.66, showing a significant improvement in accuracy. This confirms the advantage of including spatial structure in biomass modeling. The results highlight the potential of integrating remote sensing and spatial methods in forest biomass estimation, especially in inaccessible tropical areas. The methodology supports forest monitoring and conservation efforts in deforestation and climate mitigation contexts.eng
dc.description.curricularareaCiencias Agronómicas.Sede Bogotá
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Geomática
dc.description.methodsLa metodología del estudio se estructuró en cuatro fases principales para estimar la biomasa aérea en bosques tropicales amazónicos mediante imágenes satelitales y algoritmos de aprendizaje de máquina. Primero, se prepararon los datos de entrada a partir de estimaciones de biomasa de la ESA y se definieron dos escenarios de muestreo (con y sin valores de biomasa igual a cero). Luego, en Google Earth Engine se preprocesaron imágenes ópticas Sentinel-2 y de radar Sentinel-1, aplicando correcciones radiométricas y filtros para estandarizar los productos. En la tercera fase, se generaron variables predictoras como índices de vegetación (EVI y SAVI), bandas de radar (VV, VH y derivados), métricas texturales GLCM y variables topográficas. Finalmente, se implementaron y compararon los modelos Random Forest (RF) y Geographically Weighted Random Forest (GRF) en RStudio, optimizando hiperparámetros y evaluando su desempeño mediante métricas de regresión (R², MAE y MSE), así como mapas de error para analizar la distribución espacial de las predicciones
dc.description.researchareaTecnologías Geoespaciales
dc.description.technicalinfoEl flujo de trabajo desarrollado para la implementación de los modelos Random Forest (RF) y Geographical Random Forest (GRF), incluyendo el script empleado (con comentarios), los insumos necesarios y el archivo README que orienta su uso, se encuentra disponible en el repositorio de GitHub: https://github.com/juanrosorior/GEOGRAPHICAL-RANDOM-FOREST.gitspa
dc.description.technicalinfoThe workflow developed for the implementation of the Random Forest (RF) and Geographical Random Forest (GRF) models, including the script used (with comments), the required inputs, and the README file with usage instructions, is available in the following GitHub repository: https://github.com/juanrosorior/GEOGRAPHICAL-RANDOM-FOREST.giteng
dc.format.extentxiv, 136 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88567
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomática
dc.relation.referencesAdamu, B., Ibrahim, S., Rasul, A., Whanda, S. J., Headboy, P., Muhammed, I., & Maiha, I. A. (2021). Evaluating the accuracy of spectral indices from Sentinel-2 data for estimating forest biomass in urban areas of the tropical savanna. Remote Sensing Applications: Society and Environment, 22. https://doi.org/10.1016/j.rsase.2021.100484
dc.relation.referencesAli, I., Greifeneder, F., Stamenkovic, J., Neumann, M., & Notarnicola, C. (2015). Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sensing, 7(12), 16398–16421. https://doi.org/10.3390/rs71215841
dc.relation.referencesALOS Research and Application Project. (2024, April). ALOS Global Digital Surface Model “ALOS World 3D - 30m (AW3D30).” https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm
dc.relation.referencesAukema, J., Wilson, S., & Irwin, D. (2018). THE SAR HANDBOOK Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. https://doi.org/10.25966/nr2c-s697
dc.relation.referencesBallère, M., Bouvet, A., Mermoz, S., Le Toan, T., Koleck, T., Bedeau, C., André, M., Forestier, E., Frison, P. L., & Lardeux, C. (2021). SAR data for tropical forest disturbance alerts in French Guiana: Benefit over optical imagery. Remote Sensing of Environment, 252. https://doi.org/10.1016/j.rse.2020.112159
dc.relation.referencesBerveglieri, A., Imai, N. N., Christovam, L. E., Galo, M. L. B. T., Tommaselli, A. M. G., & Honkavaara, E. (2021). Analysis of trends and changes in the successional trajectories of tropical forest using the Landsat NDVI time series. Remote Sensing Applications: Society and Environment, 24. https://doi.org/10.1016/j.rsase.2021.100622
dc.relation.referencesBoundy, R. G., Diegel, S. W., Wright, L. L., & Davis, S. C. (2006). Biomass Energy Data Book: Edition 1. https://doi.org/10.2172/1050890
dc.relation.referencesBreiman, L. (2001). Random Forests. Machine Learning, 45, 5–32.
dc.relation.referencesCao, R., Chen, Y., Chen, J., Zhu, X., & Shen, M. (2020). Thick cloud removal in Landsat images based on autoregression of Landsat time-series data. Remote Sensing of Environment, 249. https://doi.org/10.1016/j.rse.2020.112001
dc.relation.referencesChai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014
dc.relation.referencesChapungu, L., Nhamo, L., & Gatti, R. C. (2020). Estimating biomass of savanna grasslands as a proxy of carbon stock using multispectral remote sensing. Remote Sensing Applications: Society and Environment, 17(August 2019), 100275. https://doi.org/10.1016/j.rsase.2019.100275
dc.relation.referencesCharrad, M., Ghazzali, N., Laval, U., & Niknafs, A. (2014). NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set Véronique Boiteau. In JSS Journal of Statistical (Vol. 61, Issue 6). http://www.jstatsoft.org/
dc.relation.referencesChuvieco, E. (1995). Fundamentos de Teledetección Espacial (2nd ed.).
dc.relation.referencesDang, A. T. N., Nandy, S., Srinet, R., Luong, N. V., Ghosh, S., & Senthil Kumar, A. (2019). Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecological Informatics, 50(July 2018), 24–32. https://doi.org/10.1016/j.ecoinf.2018.12.010
dc.relation.referencesDe Lucas Herguedas, A. I., Del Peso Taranco, C., Rodriguez García, E., & Prieto Paniagua, P. (2012). BIOMASA, BIOCOMBUSTIBLES Y SOSTENIBILIDAD.
dc.relation.referencesDing, J., Zhang, G., Wang, S., Xue, B., Yang, J., Gao, J., Wang, K., Jiang, R., & Zhu, X. (2022). Forecast of Hourly Airport Visibility Based on Artificial Intelligence Methods. Atmosphere, 13(1). https://doi.org/10.3390/atmos13010075
dc.relation.referencesDiniz, C. G., Souza, A. A. D. A., Santos, D. C., Dias, M. C., Luz, N. C. Da, Moraes, D. R. V. De, Maia, J. S. A., Gomes, A. R., Narvaes, I. D. S., Valeriano, D. M., Maurano, L. E. P., & Adami, M. (2015). DETER-B: The New Amazon Near Real-Time Deforestation Detection System. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7), 3619–3628. https://doi.org/10.1109/JSTARS.2015.2437075
dc.relation.referencesDuque Montoya, A. Javier., Yepes Quintero, A. Patricia., Navarrete Encinales, D. Alejandro., Phillips Bernal, J. Fernando., & Instituto de Hidrología Meteorología y Estudios Ambientales (Colombia). (2011). Protocolo para la estimación nacional y subnacional de biomasa-carbono en Colombia.
dc.relation.referencesEuropean Space Agency. (2021). Sentinel-2 Products Specification Document.
dc.relation.referencesEuropean Space Agency. (2022a). Sentinel-1 Radar vision for Copernicus. Https://Www.Esa.Int/Applications/Observing_the_Earth/Copernicus/Sentinel-1.
dc.relation.referencesEuropean Space Agency. (2022b). Sentinel-1 SAR - User Guides. Https://Sentinels.Copernicus.Eu/Web/Sentinel/User-Guides/Sentinel-1-Sar/Overview.
dc.relation.referencesEuropean Space Agency. (2022c). Sentinel-2 MSI - User Guides - Processing Levels - Level-2. Https://Sentinel.Esa.Int/Web/Sentinel/User-Guides/Sentinel-2-Msi/Processing-Levels/Level-2.
dc.relation.referencesEuropean Space Agency. (2024). S1 Processing. https://sentiwiki.copernicus.eu/web/s1-processing#S1Processing-L1AlgorithmsS1-Processing-L1-Algorithms
dc.relation.referencesEuropean Space Agency. (2025). SentiWiki. . https://sentiwiki.copernicus.eu/web/sentinel-1
dc.relation.referencesEuropean Space Agency, Vincent, P., Bourbigot, M., Johnsen, H., Piantanida, R., Poullaouec, J., & Hajduch, G. (2020). Sentinel-1 Product Specification.
dc.relation.referencesEuropean Spatial Agency. (n.d.). S2 Products. Retrieved May 20, 2024, from https://sentiwiki.copernicus.eu/web/s2-products#S2Products-L2AS2-Products-L2Atrue
dc.relation.referencesFang, L., Yang, J., Zhang, W., Zhang, W., & Yan, Q. (2019). Combining allometry and landsat-derived disturbance history to estimate tree biomass in subtropical planted forests. Remote Sensing of Environment, 235(September 2019), 111423. https://doi.org/10.1016/j.rse.2019.111423
dc.relation.referencesFAO. (2010). Global Forest Resources Assessment 2010.
dc.relation.referencesFlores, A., Herndon, K., Thapa, R. B., & Cherrington, E. A. (2019). The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation Mesoamerican Regional Visualization & Monitoring System (SERVIR-Mesoamerica) View project Chan Chich Archaeological Project View project. https://doi.org/10.25966/nr2c-s697
dc.relation.referencesFurumo, P. R., & Lambin, E. F. (2020). Scaling up zero-deforestation initiatives through public-private partnerships: A look inside post-conflict Colombia. Global Environmental Change, 62. https://doi.org/10.1016/j.gloenvcha.2020.102055
dc.relation.referencesGalidaki, G., Zianis, D., Gitas, I., Radoglou, K., Karathanassi, V., Tsakiri–Strati, M., Woodhouse, I., & Mallinis, G. (2017). Vegetation biomass estimation with remote sensing: focus on forest and other wooded land over the Mediterranean ecosystem. International Journal of Remote Sensing, 38(7), 1940–1966. https://doi.org/10.1080/01431161.2016.1266113
dc.relation.referencesGalvão, L. S., Breunig, F. M., dos Santos, J. R., & de Moura, Y. M. (2013). View-illumination effects on hyperspectral vegetation indices in the Amazonian tropical forest. International Journal of Applied Earth Observation and Geoinformation, 21(1), 291–300. https://doi.org/10.1016/j.jag.2012.07.005
dc.relation.referencesGao, S., Zhong, R., Yan, K., Ma, X., Chen, X., Pu, J., Gao, S., Qi, J., Yin, G., & Myneni, R. B. (2023). Evaluating the saturation effect of vegetation indices in forests using 3D radiative transfer simulations and satellite observations. Remote Sensing of Environment, 295. https://doi.org/10.1016/j.rse.2023.113665
dc.relation.referencesGardner, T. A., Barlow, J., Araujo, I. S., Ávila-Pires, T. C., Bonaldo, A. B., Costa, J. E., Esposito, M. C., Ferreira, L. V., Hawes, J., Hernandez, M. I. M., Hoogmoed, M. S., Leite, R. N., Lo-Man-Hung, N. F., Malcolm, J. R., Martins, M. B., Mestre, L. A. M., Miranda-Santos, R., Overal, W. L., Parry, L., … Peres, C. A. (2008). The cost-effectiveness of biodiversity surveys in tropical forests. Ecology Letters, 11(2), 139–150. https://doi.org/10.1111/j.1461-0248.2007.01133.x
dc.relation.referencesGeorganos, S., Grippa, T., Niang Gadiaga, A., Linard, C., Lennert, M., Vanhuysse, S., Mboga, N., Wolff, E., & Kalogirou, S. (2021). Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling. Geocarto International, 36(2), 121–136. https://doi.org/10.1080/10106049.2019.1595177
dc.relation.referencesGeorganos, S., & Kalogirou, S. (2022). A Forest of Forests: A Spatially Weighted and Computationally Efficient Formulation of Geographical Random Forests. ISPRS International Journal of Geo-Information, 11(9). https://doi.org/10.3390/ijgi11090471
dc.relation.referencesGhosh, S. M., & Behera, M. D. (2018). Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Applied Geography, 96(March), 29–40. https://doi.org/10.1016/j.apgeog.2018.05.011
dc.relation.referencesGobron, N., & Verstraete, M. (2009). Assesment of the status of the development of the standards for the terrestrial essential climate variables.
dc.relation.referencesGonçalves, F., Treuhaft, R., Law, B., Almeida, A., Walker, W., Baccini, A., dos Santos, J. R., & Graça, P. (2017). Estimating aboveground biomass in tropical forests: Field methods and error analysis for the calibration of remote sensing observations. Remote Sensing, 9(1). https://doi.org/10.3390/rs9010047
dc.relation.referencesGonzalez, R. C. ., & Woods, R. E. . (2018). Digital image processing. Pearson.
dc.relation.referencesGonzález-Márquez, L. C., Torres-Bejarano, F. M., Torregroza-Espinosa, A. C., Hansen-Rodríguez, I. R., & Rodríguez-Gallegos, H. B. (2018). Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia. Journal of South American Earth Sciences, 82, 231–238. https://doi.org/10.1016/j.jsames.2018.01.004
dc.relation.referencesGuadalupe, V., Sotta, E. D., Santos, V. F., Gonçalves Aguiar, L. J., Vieira, M., de Oliveira, C. P., & Nascimento Siqueira, J. V. (2018). REDD+ implementation in a high forest low deforestation area: Constraints on monitoring forest carbon emissions. Land Use Policy, 76(March), 414–421. https://doi.org/10.1016/j.landusepol.2018.02.015
dc.relation.referencesHall-Beyer, M. (2017). GLCM Texture: A Tutorial.
dc.relation.referencesHansen, M. C., Krylov, A., Tyukavina, A., Potapov, P. V., Turubanova, S., Zutta, B., Ifo, S., Margono, B., Stolle, F., & Moore, R. (2016). Humid tropical forest disturbance alerts using Landsat data. Environmental Research Letters, 11(3). https://doi.org/10.1088/1748-9326/11/3/034008
dc.relation.referencesHaralick, R., Shanguman, K., & Distein, I. (1973). Textural Features For Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, 6, 610–620.
dc.relation.referencesHernandez Pacheco, D., & Taboada Crispí, A. (2008). Análisis de Textura Basado en la Matriz de Ocurrencia de Niveles de Gris. Universidad Central “Marta Abreu” de Las Villas.
dc.relation.referencesIBM. (2020, July 15). Machine Learning. Https://Www.Ibm.Com/Co-Es/Cloud/Learn/Machine-Learning.
dc.relation.referencesInstituto Amazónico de Investigaciones Científicas SINCHI. (2020). Capa de Coberturas de la tierra de la Amazonia colombiana. Escala 1:100.000. Periodo 2020. Versión 1. https://sinchi.maps.arcgis.com/home/item.html?id=054930af104f427398cddb7d0d676a86
dc.relation.referencesInstituto de Hidrología Meteorología y Estudios Ambientales - IDEAM. (2011). Estimación de la biomasa aérea usando datos de campo e información de sensores remotos Versión 1.0.
dc.relation.referencesInstituto de Hidrología Meteorología y Estudios Ambientales - IDEAM. (2019). Operación Estadística Monitoreo de la Superficie de Bosque Natural en Colombia.
dc.relation.referencesJensen, J. R. (2015). DIGITAL IMAGE PROCESSING A Remote Sensing Perspective (4th ed.). Pearson.
dc.relation.referencesJet, A., & O, H. J. (2017). Supervised Machine Learning Algorithms: Classification and Comparison. International Journal of Computer Trends and Technology, 48. https://doi.org/10.14445/22312803/IJCTT-V48P126
dc.relation.referencesJoo, D., Woosnam, K. M., Shafer, C. S., Scott, D., & An, S. (2017). Considering Tobler’s first law of geography in a tourism context. Tourism Management, 62, 350–359. https://doi.org/10.1016/j.tourman.2017.03.021
dc.relation.referencesKaufman, L., & Rousseeuw, P. (1986). Clustering by Means of Medoids. In Y. Dodge (Ed.), Statistical Data Analysis Based on the L1-Norm and Related Methods.
dc.relation.referencesKowalczewski, T., & Prosperi, P. (2017). Climate MRV for Africa-Phase 2 Development of National GHG Inventory Forest lands Project of the European Commission DG Clima Action.
dc.relation.referencesKuplich, T. M., Curran, P. J., & Atkinson, P. M. (2005). Relating SAR image texture to the biomass of regenerating tropical forests. International Journal of Remote Sensing, 26, 4829–4854. https://doi.org/10.1109/igarss.2003.1294615
dc.relation.referencesLi, W., Zhang, Y., Zhang, J., Chen, H., Chen, E., Zhao, L., & Zhao, D. (2023). Tropical forest AGB estimation based on structure parameters extracted by TomoSAR. International Journal of Applied Earth Observation and Geoinformation, 121. https://doi.org/10.1016/j.jag.2023.103369
dc.relation.referencesLiu, Y., Wang, Y., & Zhang, J. (2012). New Machine Learning Algorithm: Random Forest. In LNCS (Vol. 7473).
dc.relation.referencesMalhi, R. K. M., Anand, A., Srivastava, P. K., Chaudhary, S. K., Pandey, M. K., Behera, M. D., Kumar, A., Singh, P., & Sandhya Kiran, G. (2022). Synergistic evaluation of Sentinel 1 and 2 for biomass estimation in a tropical forest of India. Advances in Space Research, 69(4), 1752–1767. https://doi.org/10.1016/j.asr.2021.03.035
dc.relation.referencesMårtensson, U. (2011). Introduction to Remote Sensing and Geographical Information Systems. Lund University.
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (n.d.). ¿Que es un Certificado de Resultados de Mitigación?
dc.relation.referencesMohd Zaki, N. A., & Abd Latif, Z. (2017). Carbon sinks and tropical forest biomass estimation: a review on role of remote sensing in aboveground-biomass modelling. Geocarto International, 32(7), 701–716. https://doi.org/10.1080/10106049.2016.1178814
dc.relation.referencesMoreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6–43. https://doi.org/10.1109/MGRS.2013.2248301
dc.relation.referencesMullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., Gorelick, N., & Reiche, J. (2021). Sentinel-1 sar backscatter analysis ready data preparation in google earth engine. Remote Sensing, 13(10). https://doi.org/10.3390/rs13101954
dc.relation.referencesNie, Y., Li, J., Wang, C., Huang, G., Fu, J., Chang, S., Li, H., Ma, S., Yu, L., Cui, X., & Cai, W. (2022). A fine-resolution estimation of the biomass resource potential across China from 2020 to 2100. Resources, Conservation and Recycling, 176, 105944. https://doi.org/10.1016/j.resconrec.2021.105944
dc.relation.referencesNV5 Goespatial Software. (2025). Textures Metrics Background. https://www.nv5geospatialsoftware.com/docs/BackgroundTextureMetrics.html
dc.relation.referencesOladipupo Ayodele, T. (2010). Types of Machine Learning Algorithms. www.intechopen.com
dc.relation.referencesONF Andina. (2018). Límite del Plan de Manejo Forestal .
dc.relation.referencesONF Andina. (2020). Censo Forestal, Unidad de Corta 1, Plan de Manejo Forestal del municipio de Calamar en Guaviare.
dc.relation.referencesONF Andina. (2022). Plan de manejo forestal sostenible de la Cooperativa Multiactiva agroforestal del Itilla COAGROITILLA - Calamar, Guaviare Colombia.
dc.relation.referencesORNL DAAC. (2022a). GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1. https://doi.org/https://doi.org/10.3334/ORNLDAAC/2056
dc.relation.referencesORNL DAAC. (2022b). Oak Ridge National Laboratory Distributed Active Archive Center. https://daac.ornl.gov/about/
dc.relation.referencesParques Nacionales Naturales de Colombia. (2024). Límite de Parques Nacionales Naturales.
dc.relation.referencesPizaña, J. M. G., Hernández, J. M. N., & Romero, N. C. (2016). Remote Sensing-Based Biomass Estimation. In Environmental Applications of Remote Sensing. InTech. https://doi.org/10.5772/61813
dc.relation.referencesPosit. (2025). R Studio. https://posit.co/download/rstudio-desktop/
dc.relation.referencesPulido, E. N., Otavo Rodríguez, R. E., Felipe, J., Gutiérrez, S., Andrés, S., Albarracín, M., Quintero Gómez, A., Mayerly, S., Ariza, A., Suárez Díaz, S., Camilo, J., & Jimenez, A. (2018). Propiedades físico-mecánicas y uso de 17 especies forestales en la Amazonia Colombiana “Ambiente para la paz.”
dc.relation.referencesPuliti, S., Breidenbach, J., Schumacher, J., Hauglin, M., Klingenberg, T. F., & Astrup, R. (2021). Above-ground biomass change estimation using national forest inventory data with Sentinel-2 and Landsat. Remote Sensing of Environment, 265. https://doi.org/10.1016/j.rse.2021.112644
dc.relation.referencesReymondin, L., Perez-Uribe, A., Argote, K., & Castro, A. C. (2012). Terra-i A methodology for near real-time monitoring of habitat change at continental scales using MODIS-NDVI and TRMM Informal settlement mapping View project Climate-smart agriculture View project. https://doi.org/10.13140/RG.2.2.15618.99520
dc.relation.referencesRoc, D. R. (2019). Above-ground biomass estimation in boreal productive forests using Sentinel-1 data. Stockholm University.
dc.relation.referencesRodríguez-de-francisco, J. C., Ortiz-gallego, D., Velez-triana, J. S., & Hein, J. (2021). Forest Policy and Economics Post-conflict transition and REDD + in Colombia : Challenges to reducing deforestation in the Amazon. 127(August 2019). https://doi.org/10.1016/j.forpol.2021.102450
dc.relation.referencesRosales Solórzano, E. R. (2019). Ecuaciones de niveles de humedad relacionada a la densidad básica de la madera de especies forestales tropicales en Madre de Dios, Perú. Revista Forestal Mesoamericana Kurú, 33–42.
dc.relation.referencesRousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. In Journal of Computational and Applied Mathematics (Vol. 20).
dc.relation.referencesSaatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S., White, L., Silman, M., & Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences of the United States of America, 108(24), 9899–9904. https://doi.org/10.1073/pnas.1019576108
dc.relation.referencesSantoro, M., Cartus, O., & Centre for Environmental Data Analysis. (2021, March 17). ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the years 2010, 2017 and 2018. https://doi.org/10.5285/84403d09cef3485883158f4df2989b0c.
dc.relation.referencesSelvaraj, J. J., & Gallego Pérez, B. E. (2023). Estimating mangrove aboveground biomass in the Colombian Pacific coast: A multisensor and machine learning approach. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e20745
dc.relation.referencesSmola, A., & Vishwanathan, S. V. N. (2010). Introduction to Machine Learning. Cambridge University Press.
dc.relation.referencesSteinhausen, M. J., Wagner, P. D., Narasimhan, B., & Waske, B. (2018). Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. International Journal of Applied Earth Observation and Geoinformation, 73, 595–604. https://doi.org/10.1016/j.jag.2018.08.011
dc.relation.referencesStovall, A. E. L., Vorster, A. G., Anderson, R. S., Evangelista, P. H., & Shugart, H. H. (2017). Non-destructive aboveground biomass estimation of coniferous trees using terrestrial LiDAR. Remote Sensing of Environment, 200(August), 31–42. https://doi.org/10.1016/j.rse.2017.08.013
dc.relation.referencesSu, H., Shen, W., Wang, J., Ali, A., & Li, M. (2020). Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests. Forest Ecosystems, 7(1). https://doi.org/10.1186/s40663-020-00276-7
dc.relation.referencesTalebi, H., Peeters, L. J. M., Otto, A., & Tolosana-Delgado, R. (2022). A Truly Spatial Random Forests Algorithm for Geoscience Data Analysis and Modelling. Mathematical Geosciences, 54(1). https://doi.org/10.1007/s11004-021-09946-w
dc.relation.referencesTejada, G., Görgens, E. B., Espírito-Santo, F. D. B., Cantinho, R. Z., & Ometto, J. P. (2019). Evaluating spatial coverage of data on the aboveground biomass in undisturbed forests in the Brazilian Amazon. Carbon Balance and Management, 14(1), 1–18. https://doi.org/10.1186/s13021-019-0126-8
dc.relation.referencesTibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. https://academic.oup.com/jrsssb/article/63/2/411/7083348
dc.relation.referencesToth, C., & Jóźków, G. (2016). Remote sensing platforms and sensors: A survey. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 115, pp. 22–36). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2015.10.004
dc.relation.referencesTovar Blanco, A. L. (2018). Estimación de biomasa aérea de eucalipto (Eucalyptus grandis) y pino (Pinus spp) en plantaciones forestales comerciales, usando imágenes satelitales Sentinel. Universidad Nacional de Colombia.
dc.relation.referencesVorster, A. G., Evangelista, P. H., Stovall, A. E. L., & Ex, S. (2020). Variability and uncertainty in forest biomass estimates from the tree to landscape scale: The role of allometric equations. Carbon Balance and Management, 15(1). https://doi.org/10.1186/s13021-020-00143-6
dc.relation.referencesWatzlawick, L. F., Kirchner, F. F., & Sanquetta, C. R. (2009). Estimativa de biomassa e carbono em floresta com araucaria utilizando imagens do satélite ikonos II. Ciencia Florestal, 19(2), 169–181. https://doi.org/10.5902/19805098408
dc.relation.referencesWheeler, D., Hammer, D., Kraft Robin, & Steele Aaron. (2014). SATELLITE-BASED FOREST CLEARING DETECTION IN THE BRAZILIAN AMAZON: FORMA, DETER, AND PRODES.
dc.relation.referencesWhittle, M., Quegan, S., Uryu, Y., Stüewe, M., & Yulianto, K. (2012). Detection of tropical deforestation using ALOS-PALSAR: A Sumatran case study. Remote Sensing of Environment, 124, 83–98. https://doi.org/10.1016/j.rse.2012.04.027
dc.relation.referencesWillmott, C., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. CLIMATE RESEARCH, 30, 79–82. www.int-res.com
dc.relation.referencesXiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., Ichii, K., Ni, W., Pang, Y., Rahman, A. F., Sun, G., Yuan, W., Zhang, L., & Zhang, X. (2019). Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 233(September), 111383. https://doi.org/10.1016/j.rse.2019.111383
dc.relation.referencesZhang, X., & Kondragunta, S. (2006). Estimating forest biomass in the USA using generalized allometric models and MODIS land products. Geophysical Research Letters, 33(9), 1–5. https://doi.org/10.1029/2006GL025879
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.subject.ddc000 - Ciencias de la computación, información y obras generales
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)
dc.subject.ddc520 - Astronomía y ciencias afines::526 - Geografía matemática
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
dc.subject.lembBosques tropicalesspa
dc.subject.lembTropical forestseng
dc.subject.lembReconocimiento de bosquesspa
dc.subject.lembForest surveyseng
dc.subject.lembDeforestaciónspa
dc.subject.lembDeforestationeng
dc.subject.lembBiomasa forestalspa
dc.subject.lembForest biomasseng
dc.subject.otherTeledetecciónspa
dc.subject.otherRemote sensingeng
dc.subject.proposalBiomasa aéreaspa
dc.subject.proposalAprendizaje de máquinaspa
dc.subject.proposalRandom Foresteng
dc.subject.proposalSensores remotosspa
dc.subject.proposalAmazoníaspa
dc.subject.proposalAutocorrelación espacialspa
dc.subject.proposalRandom forest geográficoeng
dc.titleMetodología para la estimación de biomasa aérea en un bosque tropical amazónico a partir de imágenes ópticas y de radar. Caso de estudio: Calamar – Guaviarespa
dc.title.translatedMethodology for estimating aboveground biomass in an Amazonian tropical forest using optical and radar imagery. Case study: Calama r– Guaviareeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentPúblico general

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032375966.2025.pdf
Tamaño:
4.8 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: