Descripción del mecanismo de reconocimiento durante la interacción entre una especie hospedera con Phytophthora palmivora
| dc.contributor.advisor | Romero Angulo, Hernan Mauricio | spa |
| dc.contributor.author | García Gaona, Mariandrea | spa |
| dc.contributor.researchgroup | Fisiología y Bioquímica de Especies Perennes | spa |
| dc.date.accessioned | 2026-01-28T00:14:33Z | |
| dc.date.available | 2026-01-28T00:14:33Z | |
| dc.date.issued | 2025 | |
| dc.description | ilustraciones, diagramas, fotografías | spa |
| dc.description.abstract | La palma de aceite (Elaeis guineensis) es un cultivo clave para la economía agrícola colombiana, pero enfrenta graves pérdidas debido a la Pudrición del Cogollo (PC), una enfermedad causada por el oomiceto Phytophthora palmivora. El objetivo principal de este estudio fue describir el mecanismo de reconocimiento durante la interacción entre P. palmivora y dos tipos de hospedero: uno de importancia económica (E. guineensis) y una planta modelo (Arabidopsis thaliana). Metodológicamente, se estableció un patosistema heterólogo entre A. thaliana y P. palmivora. Posteriormente, se analizó el transcriptoma de las interacciones E. guineensis – P. palmivora y A. thaliana – P. palmivora mediante redes de coexpresión génica. A partir de este análisis, se identificaron genes clave en el genotipo resistente de palma (Clon 34) asociados a mecanismos de defensa, entre ellos el gen receptor EgSOBIR1, el cual fue validado funcionalmente en A. thaliana. Finalmente, se cuantificó la expresión de los genes candidatos asociados al reconocimiento y a la defensa en folíolos provenientes de varios genotipos de palma de aceite. Los hallazgos demuestran que P. palmivora en ambos hospederos (A. thaliana y E. guineensis) coexpresa genes relacionados con la degradación de la pared celular, efectores apoplásticos (elicitinas, NLPs, hidrolasas) y citoplasmáticos (RXLRs), además de factores de transcripción asociados a la regulación del estrés oxidativo, la producción de toxinas y canales transportadores posiblemente ligados a la adquisición de nutrientes, lo cual resulta crítico para su establecimiento en ambos hospederos y en el cambio metabólico de biotrofia a necrotrofia. En respuesta, la defensa clave de E. guineensis y A. thaliana es la resistencia mediada por receptores de membrana, lo que induce una inmunidad basal asociada al ácido salicílico. La validación funcional de EgSOBIR1 en Arabidopsis Col-0 mostró una reducción significativa de las lesiones y la activación de genes de defensa como AtPR1 y AtEDS1. La presencia de un dominio quinasa activo en la proteína EgSOBIR1 y su coexpresión con otros receptores sugieren su participación central en las cascadas de señalización de defensa mediadas por receptores de membrana. Además, se evidenció que la expresión del gen EgSOBIR1 es consistente entre varios cultivares de palma evaluados, reforzando su importancia en la inmunidad basal de E. guineensis. Los resultados presentados demuestran la capacidad de EgSOBIR1 para integrarse funcionalmente en la maquinaria de defensa de A. thaliana, lo que sugiere que la estructura operativa de este nodo de señalización se ha mantenido en ambas especies a pesar de la divergencia evolutiva entre monocotiledóneas y dicotiledóneas. En consecuencia, este trabajo no solo valida a EgSOBIR1 como un blanco molecular prometedor para entender la resistencia en palma, sino que también legitima el uso de Arabidopsis como plataforma para acelerar el descubrimiento de genes de la inmunidad basal en palma de aceite. Para futuras investigaciones, se recomienda ampliar los estudios transcriptómicos a una mayor diversidad de cultivares y aislamientos para comprender mejor la variabilidad de la interacción. Asimismo, se sugiere emplear técnicas de interacción proteína-proteína para caracterizar el complejo EgSOBIR1 en planta y aplicar la edición genética en el patógeno para validar funcionalmente los genes de virulencia de P. palmivora identificados en este estudio. (Texto tomado de la fuente). | spa |
| dc.description.abstract | Oil palm (Elaeis guineensis) is a key crop for the Colombian agricultural economy, yet it faces severe losses due to Bud Rot (BR), a disease caused by the oomycete Phytophthora palmivora. The main objective of this study was to elucidate the recognition mechanisms during interactions between P. palmivora and two host types: an economically important crop (E. guineensis) and a model plant (Arabidopsis thaliana). Methodologically, a heterologous pathosystem was established between A. thaliana and P. palmivora. Subsequently, a comparative transcriptome analysis of the E. guineensis–P. palmivora and A. thaliana–P. palmivora interactions was performed using gene co-expression networks. This analysis identified key defenseassociated genes in the resistant oil palm genotype (Clone 34), including the receptor gene EgSOBIR1, which was functionally validated in A. thaliana. Finally, the expression of candidate genes associated with recognition and defense was quantified in leaflets from various oil palm genotypes. Our findings show that P. palmivora co-expresses genes related to cell wall degradation, apoplastic effectors (elicitins, NLPs, hydrolases), cytoplasmic effectors (RXLRs), transcription factors linked to oxidative stress regulation, toxin production, and membrane transporters likely involved in nutrient acquisitioncritical for its establishment and the metabolic shift from biotrophy to necrotrophy. In response, the key defense mechanism in both E. guineensis and A. thaliana is membrane receptor-mediated resistance, inducing salicylic acid-associated basal immunity. Functional validation of EgSOBIR1 in Arabidopsis Col-0 showed a significant reduction in lesion size and the constitutive activation of defense genes such as AtPR1 and AtEDS1. The presence of a kinase domain in the EgSOBIR1 protein, along with its co-expression with other receptors, suggests its central participation in defense signaling cascades. Furthermore, EgSOBIR1 expression was consistent across several evaluated oil palm cultivars, reinforcing its importance in E. guineensis basal immunity. The presented results demonstrate the capacity of EgSOBIR1 to functionally integrate into the defense machinery of A. thaliana, suggesting that the operational structure of this signaling hub has remained compatible across the evolutionary divergence between monocots and dicots. Consequently, this work not only validates EgSOBIR1 as a promising molecular target for resistance engineering but also legitimizes the use of Arabidopsis as a platform to accelerate the discovery of immunity genes in oil palm. For future research, it is recommended to expand transcriptomic studies to a wider diversity of cultivars and isolates to better understand interaction variability. Additionally, employing protein-protein interaction techniques to characterize the EgSOBIR1 complex in planta, and applying gene editing in the pathogen to functionally validate the P. palmivora virulence genes identified in this study, are suggested. | eng |
| dc.description.degreelevel | Doctorado | spa |
| dc.description.degreename | Doctora en Biotecnología | spa |
| dc.description.researcharea | Interacciones planta-patógeno | spa |
| dc.description.sponsorship | Fondo de Fomento Palmero | spa |
| dc.format.extent | xii, 134 páginas | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89337 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.faculty | Facultad de Ciencias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias - Doctorado en Biotecnología | spa |
| dc.relation.indexed | Agrosavia | spa |
| dc.relation.indexed | Agrovoc | spa |
| dc.relation.references | Adachi, H., Kamoun, S., & Maqbool, A. (2019). A resistosome-activated ‘death switch’. Nature Plants, 5(5), 457-458. https://doi.org/10.1038/s41477-019-0425-9 | |
| dc.relation.references | Aerts, N., Chhillar, H., Ding, P., & Van Wees, S. C. M. (2022). Transcriptional regulation of plant innate immunity. Essays in Biochemistry, 66(5), 607-620. https://doi.org/10.1042/EBC20210100 | |
| dc.relation.references | Ahmad, S., Van Hulten, M., Martin, J., Pieterse, C. M. J., Van Wees, S. C. M., & Ton, J. (2011). Genetic dissection of basal defence responsiveness in accessions of Arabidopsis thaliana. Plant, Cell & Environment, 34(7), 1191-1206. https://doi.org/10.1111/j.1365-3040.2011.02317.x | |
| dc.relation.references | Ahn, H., Lin, X., Olave‐Achury, A. C., Derevnina, L., Contreras, M. P., Kourelis, J., Wu, C., Kamoun, S., & Jones, J. D. G. (2023). Effector‐dependent activation and oligomerization of plant NRC class helper NLRs by sensor NLR immune receptors Rpi‐amr3 and Rpi‐amr1. The EMBO Journal, 42(5), e111484. https://doi.org/10.15252/embj.2022111484 | |
| dc.relation.references | Albert, I., Hua, C., Nurnberger, T., Pruitt, R., & Zhang, L. (2020). Surface sensor systems in plant immunity. Plant Physiology. https://doi.org/10.1104/pp.19.01299 | |
| dc.relation.references | Albert, I., Zhang, L., Bemm, H., & Nürnberger, T. (2019). Structure-Function Analysis of Immune Receptor AtRLP23 with Its Ligand nlp20 and Coreceptors AtSOBIR1 and AtBAK1. Molecular Plant-Microbe Interactions. (world). https://doi.org/10.1094/MPMI-09-18-0263-R | |
| dc.relation.references | Ali, G. S., Hu, X., & Reddy, A. S. N. (2019). Overexpression of the Arabidopsis thaumatin-like protein 1 in transgenic potato plants enhances resistance against early and late blights. bioRxiv, 621649. https://doi.org/10.1101/621649 | |
| dc.relation.references | An, X., Abdullah, S. N. A., Halwi, M. H., Mohamad Azzeme, A., & Rusli, M. H. (2025). Molecular insights into the oil palm (Elaeis guineensis) defense response to Ganoderma boninense infection. Physiological and Molecular Plant Pathology, 139, 102819. https://doi.org/10.1016/j.pmpp.2025.102819 | |
| dc.relation.references | Andersen, E. J., Ali, S., Byamukama, E., Yen, Y., & Nepal, M. P. (2018). Disease Resistance Mechanisms in Plants. Genes, 9(7), 339. https://doi.org/10.3390/genes9070339 | |
| dc.relation.references | Avila, K., Diazgranados, R., Pardo, A., Herrera, M., Sarria, G., & Romero, H. (2019). Response of in vitro obtained oil palm and interspecific OxG hybrids to inoculation with Phytophthora palmivora. 11. https://doi.org/10.1111/efp.12486 | |
| dc.relation.references | Avila-Diazgranados, R. A., Daza, E. S., Navia, E., & Romero, H. M. (2016). Response of various oil palm materials (Elaeis guineensis and Elaeis oleifera × Elaeis guineensis interspecific hybrids) to bud rot disease in the southwestern oil palm-growing area of Colombia. Agronomía Colombiana, 34(1), 74-81. https://doi.org/10.15446/agron.colomb.v34n1.53760 | |
| dc.relation.references | Avila-Mendez, K., Rodrigo, Á., Araque, L., & Romero, H. M. (2019). Simultaneous transcriptome analysis of oil palm clones and Phytophthora palmivora reveals oil palm defense strategies. PLOS ONE, 14(9), e0222774. https://doi.org/10.1371/journal.pone.0222774 | |
| dc.relation.references | Bacete, L., Mélida, H., Miedes, E., & Molina, A. (2018). Plant cell wall-mediated immunity: Cell wall changes trigger disease resistance responses. The Plant Journal, 93(4), 614-636. https://doi.org/10.1111/tpj.13807 | |
| dc.relation.references | Backer, R., Naidoo, S., & van den Berg, N. (2019). The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00102 | |
| dc.relation.references | Bahari, M. N. A., Sakeh, N. M., Abdullah, S. N. A., Ramli, R. R., & Kadkhodaei, S. (2018). Transciptome profiling at early infection of Elaeis guineensis by Ganoderma boninense provides novel insights on fungal transition from biotrophic to necrotrophic phase. BMC Plant Biology, 18(1), 377. https://doi.org/10.1186/s12870-018-1594-9 | |
| dc.relation.references | Bailey, P. C., Schudoma, C., Jackson, W., Baggs, E., Dagdas, G., Haerty, W., Moscou, M., & Krasileva, K. V. (2018). Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biology, 19(1), 23. https://doi.org/10.1186/s13059-018-1392-6 | |
| dc.relation.references | Bakshi, M., & Oelmüller, R. (2014). WRKY transcription factors. Plant Signaling & Behavior, 9. https://doi.org/10.4161/psb.27700 Balint‐Kurti, P. (2019). The plant hypersensitive response: Concepts, control and consequences. Molecular Plant Pathology, 20(8), 1163-1178. https://doi.org/10.1111/mpp.12821 | |
| dc.relation.references | Balmer, D., Planchamp, C., & Mauch-Mani, B. (2013). On the move: Induced resistance in monocots. Journal of Experimental Botany, 64(5), 1249-1261. https://doi.org/10.1093/jxb/ers248 | |
| dc.relation.references | Bi, G., Liebrand, T. W. H., Bye, R. R., Postma, J., van der Burgh, A. M., Robatzek, S., Xu, X., & Joosten, M. H. A. J. (2016). SOBIR1 requires the GxxxG dimerization motif in its transmembrane domain to form constitutive complexes with receptor-like proteins. Molecular Plant Pathology, 17(1), 96-107. https://doi.org/10.1111/mpp.12266 | |
| dc.relation.references | Bi, G., Su, M., Li, N., Liang, Y., Dang, S., Xu, J., Hu, M., Wang, J., Zou, M., Deng, Y., Li, Q., Huang, S., Li, J., Chai, J., He, K., Chen, Y., & Zhou, J.-M. (2021). The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell, 184(13), 3528-3541.e12. https://doi.org/10.1016/j.cell.2021.05.003 | |
| dc.relation.references | Borrelli, G. M., Mazzucotelli, E., Marone, D., Crosatti, C., Michelotti, V., Valè, G., & Mastrangelo, A. M. (2018). Regulation and Evolution of NLR Genes: A Close Interconnection for Plant Immunity. International Journal of Molecular Sciences, 19(6), 1662. https://doi.org/10.3390/ijms19061662 | |
| dc.relation.references | Boyd, L. A., Ridout, C., O’Sullivan, D. M., Leach, J. E., & Leung, H. (2013). Plant–pathogen interactions: Disease resistance in modern agriculture. Trends in Genetics, 29(4), 233-240. https://doi.org/10.1016/j.tig.2012.10.011 | |
| dc.relation.references | Boyd, L. A., Ridout, C., O’Sullivan, D. M., Leach, J. E., & Leung, H. (2013). Plant–pathogen interactions: Disease resistance in modern agriculture. Trends in Genetics, 29(4), 233-240. https://doi.org/10.1016/j.tig.2012.10.011 | |
| dc.relation.references | Breen, S., Williams, S. J., Outram, M., Kobe, B., & Solomon, P. S. (2017). Emerging Insights into the Functions of Pathogenesis-Related Protein 1. Trends in Plant Science, 22(10), 871-879. https://doi.org/10.1016/j.tplants.2017.06.013 | |
| dc.relation.references | Carella, P., Gogleva, A., Tomaselli, M., Alfs, C., & Schornack, S. (2018a. Phytophthora palmivora establishes tissue-specific intracellular infection structures in the earliest divergent land plant lineage. Proceedings of the National Academy of Sciences of the United States of America, 115(16), E3846-E3855. https://doi.org/10.1073/pnas.1717900115 | |
| dc.relation.references | Catinot, J., Buchala, A., Abou-Mansour, E., & Métraux, J.-P. (2008). Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Letters, 582(4), 473-478. https://doi.org/10.1016/j.febslet.2007.12.039 | |
| dc.relation.references | Cock, J. H., Ayala-Diaz, I. M., & Romero, H. M. (2023). A scheme for distribution of genetically improved oil palm plants well suited to local conditions. Agricultural Systems, 212, 103756. https://doi.org/10.1016/j.agsy.2023.103756 | |
| dc.relation.references | Contreras, M. P., Lüdke, D., Pai, H., Toghani, A., & Kamoun, S. (2023). NLR receptors in plant immunity: Making sense of the alphabet soup. EMBO reports, 24(10), e57495. https://doi.org/10.15252/embr.202357495 | |
| dc.relation.references | Corwin, J. A., & Kliebenstein, D. J. (2017). Quantitative Resistance: More Than Just Perception of a Pathogen. The Plant Cell, 29(4), 655-665. https://doi.org/10.1105/tpc.16.00915 | |
| dc.relation.references | Couto, D., & Zipfel, C. (2016). Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 16(9), 537-552. https://doi.org/10.1038/nri.2016.77 | |
| dc.relation.references | Dangl, J. L., & Jones, J. D. G. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411(6839), 826-833. https://doi.org/10.1038/35081161 | |
| dc.relation.references | De Saeger, J., Park, J., Thoris, K., De Bruyn, C., Chung, H. S., Inzé, D., & Depuydt, S. (2022). IMPLANT: A new technique for transgene copy number estimation in plants using a single end-point PCR reaction. Plant Methods, 18(1), 132. https://doi.org/10.1186/s13007-022-00965-0 | |
| dc.relation.references | Dempsey, D. A., Vlot, A. C., Wildermuth, M. C., & Klessig, D. F. (2011). Salicylic Acid Biosynthesis and Metabolism. The Arabidopsis Book / American Society of Plant Biologists, 9. https://doi.org/10.1199/tab.0156 | |
| dc.relation.references | Deng, Y., Ning, Y., Yang, D.-L., Zhai, K., Wang, G.-L., & He, Z. (2020). Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. Molecular Plant, Special Issue on Plant-Microbe Interactions, 13(10), 1402-1419. https://doi.org/10.1016/j.molp.2020.09.018 | |
| dc.relation.references | Depotter, J. R. L., & Doehlemann, G. (2020). Target the core: Durable plant resistance against filamentous plant pathogens through effector recognition. Pest Management Science, 76(2), 426-431. https://doi.org/10.1002/ps.5677 | |
| dc.relation.references | Derevnina, L., Dagdas, Y. F., De la Concepcion, J. C., Bialas, A., Kellner, R., Petre, B., Domazakis, E., Du, J., Wu, C.-H., Lin, X., Aguilera-Galvez, C., Cruz-Mireles, N., Vleeshouwers, V. G. A. A., & Kamoun, S. (2016). Nine things to know about elicitins. The New Phytologist, 212(4), 888-895. https://doi.org/10.1111/nph.14137 | |
| dc.relation.references | Dodds, P. N., Rafiqi, M., Gan, P. H. P., Hardham, A. R., Jones, D. A., & Ellis, J. G. (2009). Effectors of biotrophic fungi and oomycetes: Pathogenicity factors and triggers of host resistance. New Phytologist, 183(4), 993-1000. https://doi.org/10.1111/j.1469-8137.2009.02922.x | |
| dc.relation.references | Domazakis, E., Wouters, D., Visser, R. G. F., Kamoun, S., Joosten, M. H. A. J., & Vleeshouwers, V. G. A. A. (2018). The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against Phytophthora infestans. Molecular Plant-Microbe Interactions®, 31(8), 795-802. https://doi.org/10.1094/MPMI-09-17-0217-R | |
| dc.relation.references | Duxbury, Z., Wu, C., & Ding, P. (2021). A Comparative Overview of the Intracellular Guardians of Plants and Animals: NLRs in Innate Immunity and Beyond. Annual Review of Plant Biology, 72(Volume 72, 2021), 155-184. https://doi.org/10.1146/annurev-arplant-080620-104948 | |
| dc.relation.references | Evangelisti, E., Gogleva, A., Hainaux, T., Doumane, M., Tulin, F., Quan, C., Yunusov, T., Floch, K., & Schornack, S. (2017). Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors. BMC Biology, 15(1), 39. https://doi.org/10.1186/s12915-017-0379-1 | |
| dc.relation.references | Fabro, G. (2022). Oomycete intracellular effectors: Specialised weapons targeting strategic plant processes. New Phytologist, 233(3), 1074-1082. https://doi.org/10.1111/nph.17828 | |
| dc.relation.references | Farr, D. F., & Rossman, A. Y. (2024). USDA Fungal Databases. https://fungi.ars.usda.gov/ | |
| dc.relation.references | Fawke, S., Doumane, M., & Schornack, S. (2015). Oomycete Interactions with Plants: Infection Strategies and Resistance Principles. Microbiology and Molecular Biology Reviews, 79(3), 263-280. https://doi.org/10.1128/MMBR.00010-15 | |
| dc.relation.references | FEDEPALMA. (2024). Anuario Estadistico 2024 | Anuario Estadístico. https://publicaciones.fedepalma.org/index.php/anuario/issue/view/1698 | |
| dc.relation.references | Fuechtbauer, W., Yunusov, T., Bozsóki, Z., Gavrin, A., James, E. K., Stougaard, J., Schornack, S., & Radutoiu, S. (2018). LYS12 LysM receptor decelerates Phytophthora palmivora disease progression in Lotus japonicus. The Plant Journal, 93(2), 297-310. https://doi.org/10.1111/tpj.13785 | |
| dc.relation.references | Gao, M., Wang, X., Wang, D., Xu, F., Ding, X., Zhang, Z., Bi, D., Cheng, Y. T., Chen, S., Li, X., & Zhang, Y. (2009). Regulation of Cell Death and Innate Immunity by Two Receptor-like Kinases in Arabidopsis. Cell Host & Microbe, 6(1), 34-44. https://doi.org/10.1016/j.chom.2009.05.019 | |
| dc.relation.references | García-Gaona, M., Botero-Rozo, D., Araque, L., & Romero, H. M. (2024). The Dynamic Interaction between Oil Palm and Phytophthora palmivora in Bud Rot Disease: Insights from Transcriptomic Analysis and Network Modelling. Journal of Fungi, 10(3), Article 3. https://doi.org/10.3390/jof10030164 | |
| dc.relation.references | García-Gaona, M., & Romero, H. M. (2024). Infection of Phytophthora palmivora Isolates on Arabidopsis thaliana. Journal of Fungi, 10(7), Article 7. https://doi.org/10.3390/jof10070446 | |
| dc.relation.references | Gil, J., Herrera, M., Duitama, J., Sarria, G., Restrepo, S., & Romero, H. M. (2020). Genomic variability of Phytophthora palmivora isolates from different oil palm cultivation regions in Colombia. Phytopathology®. https://doi.org/10.1094/PHYTO-06-19-0209-R | |
| dc.relation.references | Gou, M., Balint-Kurti, P., Xu, M., & Yang, Q. (2023). Quantitative disease resistance: Multifaceted players in plant defense. Journal of Integrative Plant Biology, 65(2), 594-610. https://doi.org/10.1111/jipb.13419 | |
| dc.relation.references | Han, Z., Xiong, D., Schneiter, R., & Tian, C. (2023). The function of plant PR1 and other members of the CAP protein superfamily in plant-pathogen interactions. Molecular Plant Pathology, 24(6), 651-668. https://doi.org/10.1111/mpp.13320 | |
| dc.relation.references | Harris, F. M., & Mou, Z. (2024). Damage-Associated Molecular Patterns and Systemic Signaling. Phytopathology®, 114(2), 308-327. https://doi.org/10.1094/PHYTO-03-23-0104-RVW | |
| dc.relation.references | Harrison, S. J., Mott, E. K., Parsley, K., Aspinall, S., Gray, J. C., & Cottage, A. (2006). A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods, 2, 19. https://doi.org/10.1186/1746-4811-2-19 | |
| dc.relation.references | Hermann, M., Maier, F., Masroor, A., Hirth, S., Pfitzner, A. J. P., & Pfitzner, U. M. (2013). The Arabidopsis NIMIN proteins affect NPR1 differentially. Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00088 | |
| dc.relation.references | Hiruma, K., Nishiuchi, T., Kato, T., Bednarek, P., Okuno, T., Schulze-Lefert, P., & Takano, Y. (2011). Arabidopsis ENHANCED DISEASE RESISTANCE 1 is required for pathogen-induced expression of plant defensins in nonhost resistance, and acts through interference of MYC2-mediated repressor function. The Plant Journal, 67(6), 980-992. https://doi.org/10.1111/j.1365-313X.2011.04651 | |
| dc.relation.references | Houston, K., Tucker, M. R., Chowdhury, J., Shirley, N., & Little, A. (2016). The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00984 | |
| dc.relation.references | Huang, W. R. H., Braam, C., Kretschmer, C., Villanueva, S. L., Liu, H., Ferik, F., van der Burgh, A. M., Wu, J., Zhang, L., Nürnberger, T., Wang, Y., Seidl, M. F., Evangelisti, E., Stuttmann, J., & Joosten, M. H. A. J. (2024). Receptor-like cytoplasmic kinases of different subfamilies differentially regulate SOBIR1/BAK1-mediated immune responses in Nicotiana benthamiana. Nature Communications, 15(1), 4339. https://doi.org/10.1038/s41467-024-48313-1 | |
| dc.relation.references | Huffaker, A., & Ryan, C. A. (2007). Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proceedings of the National Academy of Sciences, 104(25), 10732-10736. https://doi.org/10.1073/pnas.0703343104 | |
| dc.relation.references | Jaggi, M. (2018). Recent Advancement on Map Kinase Cascade in Biotic Stress. En A. Singh & I. K. Singh (Eds.), Molecular Aspects of Plant-Pathogen Interaction (pp. 139-158). Springer Singapore. https://doi.org/10.1007/978-981-10-7371-7_6 | |
| dc.relation.references | Jain, D., & Khurana, J. P. (2018). Role of Pathogenesis-Related (PR) Proteins in Plant Defense Mechanism. En A. Singh & I. K. Singh (Eds.), Molecular Aspects of Plant-Pathogen Interaction (pp. 265-281). Springer Singapore. https://doi.org/10.1007/978-981-10-7371-7_12 | |
| dc.relation.references | Jensen, M. K., Rung, J. H., Gregersen, P. L., Gjetting, T., Fuglsang, A. T., Hansen, M., Joehnk, N., Lyngkjaer, M. F., & Collinge, D. B. (2007). The HvNAC6 transcription factor: A positive regulator of penetration resistance in barley and Arabidopsis. Plant Molecular Biology, 65(1-2), 137-150. https://doi.org/10.1007/s11103-007-9204-5 | |
| dc.relation.references | Jogaiah, S., Govind, S. R., & Shetty, H. S. (2019). Role of Oomycete Elicitors in Plant Defense Signaling. Bioactive Molecules in Plant Defense, 59-74. https://doi.org/10.1007/978-3-030-27165-7_4 | |
| dc.relation.references | John Martin, J. J., Yarra, R., Wei, L., & Cao, H. (2022). Oil Palm Breeding in the Modern Era: Challenges and Opportunities. Plants, 11(11), 1395. https://doi.org/10.3390/plants11111395 | |
| dc.relation.references | Jones, J.D.G., Dangl. J. L. (2006). The Plant Immune System. Nature, 444(7117), 323-329. | |
| dc.relation.references | Judelson, H. S., & Ah-Fong, A. M. V. (2019). Exchanges at the Plant-Oomycete Interface That Influence Disease. Plant Physiology, 179(4), 1198-1211. https://doi.org/10.1104/pp.18.00979 | |
| dc.relation.references | Kamoun, S. (2006). A Catalogue of the Effector Secretome of Plant Pathogenic Oomycetes. Annual Review of Phytopathology, 44(1), 41-60. https://doi.org/10.1146/annurev.phyto.44.070505.143436 | |
| dc.relation.references | Keller, H., Bonnet, P., Galiana, E., Pruvot, L., Friedrich, L., Ryals, J., & Ricci, P. (1996). Salicylic acid mediates elicitin-induced systemic acquired resistance, but not necrosis in tobacco. Molecular Plant-Microbe Interactions : MPMI (USA). https://scholar.google.com/scholar_lookup?title=Salicylic+acid+mediates+elicitin-induced+systemic+acquired+resistance%2C+but+not+necrosis+in+tobacco&author=Keller%2C+H.+%28INRA%2C+Antibes%2C+France.%29&publication_year=1996 | |
| dc.relation.references | Krasileva, K. V., Dahlbeck, D., & Staskawicz, B. J. (2010). Activation of an Arabidopsis Resistance Protein Is Specified by the in Planta Association of Its Leucine-Rich Repeat Domain with the Cognate Oomycete Effector. The Plant Cell, 22(7), 2444-2458. https://doi.org/10.1105/tpc.110.075358 | |
| dc.relation.references | Kronmiller, B. A., Feau, N., Shen, D., Tabima, J. F., Ali, S. S., Armitage, A. D., Arredondo, F. D., Bailey, B. A., Bollmann, S. R., Dale, A., Harrison, R., Hrywkiw, K., Kasuga, T., McDougal, R., Nellist, C. F., Panda, P., Tripathy, S., Williams, N. M., Ye, W., … Grunwald, N. J. (2022). Comparative genomic analysis of 31 Phytophthora genomes reveal genome plasticity and horizontal gene transfer. Molecular Plant-Microbe Interactions®. https://doi.org/10.1094/MPMI-06-22-0133-R | |
| dc.relation.references | Kushalappa, A. C., Yogendra, K. N., & Karre, S. (2016). Plant Innate Immune Response: Qualitative and Quantitative Resistance. Critical Reviews in Plant Sciences, 35(1), 38-55. https://doi.org/10.1080/07352689.2016.1148980 Lacaze, A., & Joly, D. L. (2020). Structural specificity in plant–filamentous pathogen interactions. Molecular Plant Pathology, 21(11), 1513-1525. https://doi.org/10.1111/mpp.12983 | |
| dc.relation.references | Lacerda, A., Vasconcelos, É., PELEGRINI, P., & Grossi-de-Sa, M. F. (2014). Antifungal defensins and their role in plant defense. Frontiers in Microbiology, 5. https://www.frontiersin.org/articles/10.3389/fmicb.2014.00116 | |
| dc.relation.references | Lehninger, A. L., & Cox, M. M. (2006). Principios de bioquímica (4th ed.). Ediciones Omega, S.a. | |
| dc.relation.references | Liebrand, T. W. H., van den Berg, G. C. M., Zhang, Z., Smit, P., Cordewener, J. H. G., America, A. H. P., Sklenar, J., Jones, A. M. E., Tameling, W. I. L., Robatzek, S., Thomma, B. P. H. J., & Joosten, M. H. A. J. (2013). Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proceedings of the National Academy of Sciences, 110(24), 10010-10015. https://doi.org/10.1073/pnas.1220015110 | |
| dc.relation.references | Liebrand, T. W. H., van den Burg, H. A., & Joosten, M. H. A. J. (2014). Two for all: Receptor-associated kinases SOBIR1 and BAK1. Trends in Plant Science, 19(2), 123-132. https://doi.org/10.1016/j.tplants.2013.10.003 | |
| dc.relation.references | Liu, X., Williams, C. E., Nemacheck, J. A., Wang, H., Subramanyam, S., Zheng, C., & Chen, M.-S. (2010). Reactive Oxygen Species Are Involved in Plant Defense against a Gall Midge. Plant Physiology, 152(2), 985-999. https://doi.org/10.1104/pp.109.150656 | |
| dc.relation.references | Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262 | |
| dc.relation.references | Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Yang, Shao, Y., Dong, S., Zhang, Z., Dou, D., Zheng, X., Tyler, B. M., & Wang, Yuanchao. (2015). A Phytophthora sojae Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. The Plant Cell, 27(7), 2057-2072. https://doi.org/10.1105/tpc.15.00390 | |
| dc.relation.references | Maizatul-Suriza, M., Dickinson, M., & Idris, A. S. (2019). Molecular characterization of Phytophthora palmivora responsible for bud rot disease of oil palm in Colombia. World Journal of Microbiology and Biotechnology, 35(3), 44. https://doi.org/10.1007/s11274-019-2618-9 | |
| dc.relation.references | Manners, J. M., Penninckx, I. A., Vermaere, K., Kazan, K., Brown, R. L., Morgan, A., Maclean, D. J., Curtis, M. D., Cammue, B. P., & Broekaert, W. F. (1998). The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Molecular Biology, 38(6), 1071-1080. https://doi.org/10.1023/a:1006070413843 | |
| dc.relation.references | Masani, M. Y. A., Izawati, A. M. D., Rasid, O. A., & Parveez, G. K. A. (2018). Biotechnology of oil palm: Current status of oil palm genetic transformation. Biocatalysis and Agricultural Biotechnology, 15, 335-347. https://doi.org/10.1016/j.bcab.2018.07.008 | |
| dc.relation.references | McLellan, H., Boevink, P. C., & Birch, P. R. J. (2023). How to convert host plants into nonhosts. Trends in Plant Science, 28(8), 876-879. https://doi.org/10.1016/j.tplants.2023.05.008 | |
| dc.relation.references | Meng, X., & Zhang, S. (2013). MAPK Cascades in Plant Disease Resistance Signaling. Annual Review of Phytopathology, 51(1), 245-266. https://doi.org/10.1146/annurev-phyto-082712-102314 | |
| dc.relation.references | Nakagawa, T., Suzuki, T., Murata, S., Nakamura, S., Hino, T., Maeo, K., Tabata, R., Kawai, T., Tanaka, K., Niwa, Y., Watanabe, Y., Nakamura, K., Kimura, T., & Ishiguro, S. (2007). Improved Gateway binary vectors: High-performance vectors for creation of fusion constructs in transgenic analysis of plants. Bioscience, Biotechnology, and Biochemistry, 71(8), 2095-2100. https://doi.org/10.1271/bbb.70216 | |
| dc.relation.references | Navia, E. A., Ávila, R. A., Daza, E. E., Restrepo, E. F., & Romero, H. M. (2014). Assessment of tolerance to bud rot in oil palm under field conditions. European Journal of Plant Pathology, 140(4), 711-720. https://doi.org/10.1007/s10658-014-0491-9 | |
| dc.relation.references | Ngou, B. P. M., Ahn, H.-K., Ding, P., & Jones, J. D. G. (2021). Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature, 592(7852), Article 7852. https://doi.org/10.1038/s41586-021-03315-7 | |
| dc.relation.references | Ngou, B. P. M., Ding, P., & Jones, Jonathan D G. (2022). Thirty years of resistance: Zig-zag through the plant immune system. The Plant Cell, 34(5), 1447-1478. https://doi.org/10.1093/plcell/koac041 | |
| dc.relation.references | Ngou, B. P. M., Heal, R., Wyler, M., Schmid, M. W., & Jones, J. D. G. (2022). Concerted expansion and contraction of immune receptor gene repertoires in plant genomes. Nature Plants, 8(10), 1146-1152. https://doi.org/10.1038/s41477-022-01260-5 | |
| dc.relation.references | Ngou, B. P. M., Jones, J. D. G., & Ding, P. (2022). Plant immune networks. Trends in Plant Science, 27(3), 255-273. https://doi.org/10.1016/j.tplants.2021.08.012 | |
| dc.relation.references | Noctor, G., Reichheld, J.-P., & Foyer, C. H. (2018). ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology, Redox signalling in development and regeneration, 80, 3-12. https://doi.org/10.1016/j.semcdb.2017.07.013 | |
| dc.relation.references | Oome, S., Raaymakers, T. M., Cabral, A., Samwel, S., Böhm, H., Albert, I., Nürnberger, T., & Van den Ackerveken, G. (2014). Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proceedings of the National Academy of Sciences, 111(47), 16955-16960. (world). https://doi.org/10.1073/pnas.1410031111 | |
| dc.relation.references | Panstruga, R., & Moscou, M. J. (2020). What is the Molecular Basis of Nonhost Resistance? Molecular Plant-Microbe Interactions®, 33(11), 1253-1264. https://doi.org/10.1094/MPMI-06-20-0161-CR | |
| dc.relation.references | Passardi, F., Cosio, C., Penel, C., & Dunand, C. (2005). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports, 24(5), 255-265. https://doi.org/10.1007/s00299-005-0972-6 | |
| dc.relation.references | Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Métraux, J.-P., & Broekaert, W. F. (1998). Concomitant Activation of Jasmonate and Ethylene Response Pathways Is Required for Induction of a Plant Defensin Gene in Arabidopsis. The Plant Cell, 10(12), 2103-2113. https://doi.org/10.1105/tpc.10.12.2103 | |
| dc.relation.references | Pettongkhao, S., & Churngchow, N. (2019). Novel Cell Death-Inducing Elicitors from Phytophthora palmivora Promote Infection on Hevea brasiliensis. Phytopathology, 109(10), 1769-1778. https://doi.org/10.1094/PHYTO-01-19-0002-R | |
| dc.relation.references | Pilet-Nayel, M.-L., Moury, B., Caffier, V., Montarry, J., Kerlan, M.-C., Fournet, S., Durel, C.-E., & Delourme, R. (2017). Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01838 | |
| dc.relation.references | Pirc, K., Clifton, L. A., Yilmaz, N., Saltalamacchia, A., Mally, M., Snoj, T., Žnidaršič, N., Srnko, M., Borišek, J., Parkkila, P., Albert, I., Podobnik, M., Numata, K., Nürnberger, T., Viitala, T., Derganc, J., Magistrato, A., Lakey, J. H., & Anderluh, G. (2022). An oomycete NLP cytolysin forms transient small pores in lipid membranes. Science Advances, 8(10), eabj9406. https://doi.org/10.1126/sciadv.abj9406 | |
| dc.relation.references | Raaymakers, T. M., & Van den Ackerveken, G. (2016). Extracellular Recognition of Oomycetes during Biotrophic Infection of Plants. Frontiers in Plant Science, 7, 906. https://doi.org/10.3389/fpls.2016.00906 | |
| dc.relation.references | Rey, T., Bonhomme, M., Chatterjee, A., Gavrin, A., Toulotte, J., Yang, W., André, O., Jacquet, C., & Schornack, S. (2017). The Medicago truncatula GRAS protein RAD1 supports arbuscular mycorrhiza symbiosis and Phytophthora palmivora susceptibility. Journal of Experimental Botany, 68(21-22), 5871-5881. https://doi.org/10.1093/jxb/erx398 | |
| dc.relation.references | Romero, H. M. (2022). En qué va el mejoramiento de cara a las problemáticas de la palmicultura. 3, 43, 102-107. https://publicaciones.fedepalma.org/index.php/palmas/article/view/13928/13705 | |
| dc.relation.references | Rose, J. K. C., Ham, K.-S., Darvill, A. G., & Albersheim, P. (2002). Molecular Cloning and Characterization of Glucanase Inhibitor Proteins. The Plant Cell, 14(6), 1329-1345. https://doi.org/10.1105/tpc.002253 | |
| dc.relation.references | Saijo, Y., Loo, E. P., & Yasuda, S. (2018). Pattern recognition receptors and signaling in plant–microbe interactions. The Plant Journal, 93(4), 592-613. https://doi.org/10.1111/tpj.13808 | |
| dc.relation.references | Salguero-Linares, J., & Coll, N. S. (2019). Plant proteases in the control of the hypersensitive response. Journal of Experimental Botany, 70(7), 2087-2095. https://doi.org/10.1093/jxb/erz030 | |
| dc.relation.references | Sarris, P. F., Duxbury, Z., Huh, S. U., Ma, Y., Segonzac, C., Sklenar, J., Derbyshire, P., Cevik, V., Rallapalli, G., Saucet, S. B., Wirthmueller, L., Menke, F. L. H., Sohn, K. H., & Jones, J. D. G. (2015). A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors. Cell, 161(5), 1089-1100. https://doi.org/10.1016/j.cell.2015.04.024 | |
| dc.relation.references | Segonzac, C., Macho, A. P., Sanmartín, M., Ntoukakis, V., Sánchez-Serrano, J. J., & Zipfel, C. (2014). Negative control of BAK1 by protein phosphatase 2A during plant innate immunity. The EMBO Journal, 33(18), 2069-2079. https://doi.org/10.15252/embj.201488698 | |
| dc.relation.references | Shimizu, M., Hirabuchi, A., Sugihara, Y., Abe, A., Takeda, T., Kobayashi, M., Hiraka, Y., Kanzaki, E., Oikawa, K., Saitoh, H., Langner, T., Banfield, M. J., Kamoun, S., & Terauchi, R. (2022). A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Proceedings of the National Academy of Sciences, 119(27), e2116896119. https://doi.org/10.1073/pnas.2116896119 | |
| dc.relation.references | Sun, Y., Li, L., Macho, A. P., Han, Z., Hu, Z., Zipfel, C., Zhou, J.-M., & Chai, J. (2013). Structural Basis for flg22-Induced Activation of the Arabidopsis FLS2-BAK1 Immune Complex. Science, 342(6158), 624-628. https://doi.org/10.1126/science.1243825 | |
| dc.relation.references | Sundram, S., & Intan-Nur, A. M. A. (2017). South American Bud rot: A biosecurity threat to South East Asian oil palm. Crop Protection, 101, 58-67. https://doi.org/10.1016/j.cropro.2017.07.010 | |
| dc.relation.references | Thomma, B. P. H. J., Nürnberger, T., & Joosten, M. H. A. J. (2011). Of PAMPs and Effectors: The Blurred PTI-ETI Dichotomy. The Plant Cell, 23(1), 4-15. https://doi.org/10.1105/tpc.110.082602 | |
| dc.relation.references | Tian, M., Huitema, E., da Cunha, L., Torto-Alalibo, T., & Kamoun, S. (2004). A Kazal-like Extracellular Serine Protease Inhibitor from Phytophthora infestans Targets the Tomato Pathogenesis-related Protease P69B*. Journal of Biological Chemistry, 279(25), 26370-26377. https://doi.org/10.1074/jbc.M400941200 | |
| dc.relation.references | Torres, G. A., Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2015). Bud Rot Caused by Phytophthora palmivora: A Destructive Emerging Disease of Oil Palm. Phytopathology, 106(4), 320-329. https://doi.org/10.1094/PHYTO-09-15-0243-RVW | |
| dc.relation.references | Tsuda, K., & Somssich, I. E. (2015). Transcriptional networks in plant immunity. New Phytologist, 206(3), 932-947. https://doi.org/10.1111/nph.13286 | |
| dc.relation.references | van der Burgh, A. M., Postma, J., Robatzek, S., & Joosten, M. H. A. J. (2019). Kinase activity of SOBIR1 and BAK1 is required for immune signalling. Molecular Plant Pathology, 20(3), 410-422. https://doi.org/10.1111/mpp.12767 | |
| dc.relation.references | van der Hoorn, R. A. L., & Kamoun, S. (2008). From Guard to Decoy: A new model for perception of plant pathogen effectors. The Plant Cell, 20(8), 2009-2017. https://doi.org/10.1105/tpc.108.060194 | |
| dc.relation.references | van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of Inducible Defense-related Proteins in Infected Plants. Annual Review of Phytopathology, 44(1), 135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425 | |
| dc.relation.references | Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16. https://doi.org/10.1186/s12870-016-0771-y | |
| dc.relation.references | Wang, Yan, Tyler, B. M., & Wang, Yuanchao. (2019). Defense and Counterdefense During Plant-Pathogenic Oomycete Infection. Annual Review of Microbiology, 73(1), 667-696. https://doi.org/10.1146/annurev-micro-020518-120022 | |
| dc.relation.references | Wang, Yan, & Wang, Yuanchao. (2018). Trick or Treat: Microbial Pathogens Evolved Apoplastic Effectors Modulating Plant Susceptibility to Infection. Molecular Plant-Microbe Interactions®, 31(1), 6-12. https://doi.org/10.1094/MPMI-07-17-0177-FI | |
| dc.relation.references | Wang, Yan, Xu, Y., Sun, Y., Wang, H., Qi, J., Wan, B., Ye, W., Lin, Y., Shao, Y., Dong, S., Tyler, B. M., & Wang, Yuanchao. (2018). Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nature Communications, 9(1), 594. https://doi.org/10.1038/s41467-018-03010-8 | |
| dc.relation.references | Wei, X., Wang, Y., Zhang, S., Gu, T., Steinmetz, G., Yu, H., Guo, G., Liu, X., Fan, S., Wang, F., Gu, Y., & Xin, F. (2022). Structural analysis of receptor-like kinase SOBIR1 reveals mechanisms that regulate its phosphorylation-dependent activation. Plant Communications, 3(2), 100301. https://doi.org/10.1016/j.xplc.2022.100301 | |
| dc.relation.references | Weng, H., Pan, A., Yang, L., Zhang, C., Liu, Z., & Zhang, D. (2004). Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay withHMG I/Y as an endogenous reference gene. Plant Molecular Biology Reporter, 22(3), 289-300. https://doi.org/10.1007/BF02773139 | |
| dc.relation.references | Wiermer, M., Feys, B. J., & Parker, J. E. (2005). Plant immunity: The EDS1 regulatory node. Current Opinion in Plant Biology, Biotic interactions, 8(4), 383-389. https://doi.org/10.1016/j.pbi.2005.05.010 | |
| dc.relation.references | Wu, C.-H., Derevnina, L., & Kamoun, S. (2018). Receptor networks underpin plant immunity. Science, 360(6395), 1300-1301. https://doi.org/10.1126/science.aat2623 | |
| dc.relation.references | Yoshioka, H., Mase, K., Yoshioka, M., Kobayashi, M., & Asai, S. (2011). Regulatory mechanisms of nitric oxide and reactive oxygen species generation and their role in plant immunity. Nitric Oxide, Frontiers in Nitric Oxide and Redox Signaling, 25(2), 216-221. https://doi.org/10.1016/j.niox.2010.12.008 | |
| dc.relation.references | Yu, X.-Q., Niu, H.-Q., Liu, C., Wang, H.-L., Yin, W., & Xia, X. (2024). PTI-ETI synergistic signal mechanisms in plant immunity. Plant Biotechnology Journal, 22(8), 2113-2128. https://doi.org/10.1111/pbi.1433 | |
| dc.relation.references | Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., Wang, Y., Cai, B., Zhou, J.-M., He, S. Y., & Xin, X.-F. (2021). Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 592(7852), 105-109. https://doi.org/10.1038/s41586-021-03316-6 | |
| dc.relation.references | Yuan, X., Wang, H., Cai, J., Li, D., & Song, F. (2019). NAC transcription factors in plant immunity. Phytopathology Research, 1(1), 3. https://doi.org/10.1186/s42483-018-0008-0 | |
| dc.relation.references | Zhang, J., Coaker, G., Zhou, J.-M., & Dong, X. (2020). Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. Molecular Plant, Special Issue on Plant-Microbe Interactions, 13(10), 1358-1378. https://doi.org/10.1016/j.molp.2020.09.007 | |
| dc.relation.references | Zhang, J., Wang, F., Liang, F., Zhang, Y., Ma, L., Wang, H., & Liu, D. (2018). Functional analysis of a pathogenesis-related thaumatin-like protein gene TaLr35PR5 from wheat induced by leaf rust fungus. BMC Plant Biology, 18. https://doi.org/10.1186/s12870-018-1297-2 | |
| dc.relation.references | Zhang, Q., Li, W., Yang, J., Xu, J., Meng, Y., & Shan, W. (2020). Two Phytophthora parasitica cysteine protease genes, PpCys44 and PpCys45, trigger cell death in various Nicotiana spp. And act as virulence factors. Molecular Plant Pathology, 21(4), 541-554. https://doi.org/10.1111/mpp.12915 | |
| dc.relation.references | Zhang, X., Henriques, R., Lin, S.-S., Niu, Q.-W., & Chua, N.-H. (2006). Agrobacterium -mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 1(2), 641-646. https://doi.org/10.1038/nprot.2006.97 | |
| dc.relation.references | Zhang, Y., & Skolnick, J. (2005). TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302-2309. https://doi.org/10.1093/nar/gki524 | |
| dc.relation.references | Zolnierowicz, S., & Bollen, M. (2000). Protein phosphorylation and protein phosphatases. The EMBO Journal, 19(4), 483-488. https://doi.org/10.1093/emboj/19.4.483 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.agrovoc | Podredumbre | spa |
| dc.subject.agrovoc | rots | eng |
| dc.subject.agrovoc | Resistencia a la enfermedad | spa |
| dc.subject.agrovoc | disease resistance | eng |
| dc.subject.agrovoc | Mecanismo de defensa | spa |
| dc.subject.agrovoc | defence mechanisms | eng |
| dc.subject.agrovoc | Arabidopsis thaliana | spa |
| dc.subject.agrovoc | Elaeis guineensis | eng |
| dc.subject.agrovoc | Phytophthora palmivora | spa |
| dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación | spa |
| dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación | spa |
| dc.subject.proposal | Palma de aceite | spa |
| dc.subject.proposal | Pudrición del Cogollo (PC) | spa |
| dc.subject.proposal | Arabidopsis | spa |
| dc.subject.proposal | EgSOBIR1 | spa |
| dc.subject.proposal | Inmunidad basal | spa |
| dc.subject.proposal | Oil palm | eng |
| dc.subject.proposal | Bud Rot | eng |
| dc.subject.proposal | Arabidopsis | eng |
| dc.subject.proposal | EgSOBIR1 | eng |
| dc.subject.proposal | Receptor-mediated immunity | eng |
| dc.title | Descripción del mecanismo de reconocimiento durante la interacción entre una especie hospedera con Phytophthora palmivora | spa |
| dc.title.translated | Description of the recognition mechanism during the interaction between a host species and Phytophthora palmivora | eng |
| dc.type | Trabajo de grado - Doctorado | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- DESCRIPCIÓN DEL MECANISMO DE RECONOCIMIENTO DURANTE LA INTERACCIÓN ENTRE UNA ESPECIE HOSPEDERA CON Phytophthora palmivora.pdf
- Tamaño:
- 7.6 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Biotecnología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

