Sistema para la recirculación automática de drenajes en el cultivo de rosa

dc.contributor.advisorMelo Martínez, Sandra Esperanzaspa
dc.contributor.advisorFlórez Roncancio, Víctor Juliospa
dc.contributor.authorCuervo Bejarano, William Javierspa
dc.contributor.researchgroupHorticulturaspa
dc.date.accessioned2020-09-28T20:03:47Zspa
dc.date.available2020-09-28T20:03:47Zspa
dc.date.issued2019spa
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractEn Colombia, desde hace más de 15 años se utilizan mezclas de sustratos como la cascarilla de arroz quemada (CAQ) y la fibra de coco (FC) para el cultivo de flores de corte. Se aplican volúmenes de fertirriego que aseguren drenajes de cerca del 30 % que pueden contaminar aguas y suelos. Las características físicas y químicas de los drenajes permitirían la reutilización realizando ajustes, pero se requiere de un sistema automatizado. Se construyó un sistema automático para el reciclaje de drenajes (SARD) en un cultivo de rosa cv. ‘Charlotte’ establecido en mezclas 100 CAQ, 65 CAQ:35 FC y 35 CAQ:65 FC con 0, 50 y 100 % de reciclaje drenajes (RD) y se evaluaron pH y conductividad eléctrica (CE), desde la poda hasta ocho semanas después (SDP), y los contenidos de S, Na+ y Cl- en drenajes, sustratos y tejido foliar en las 0, 5 y 8 SDP. El SARD demostró ser capaz de manejar tiempos y movimientos de acuerdo con los valores consignados. En 1, 2 y 3 SDP la CE fue significativamente mayor al reciclar la solución en 35 CAQ y 65 CAQ y en 7 y 8 SDP lo fue para 100 CAQ y 65 CAQ. En 6 SDP hubo efecto significativo de 50 y 100 % RD independiente del sustrato. El pH fue significativamente menor entre 0 y 4 SDP para 100 CAQ sin reciclaje. En drenajes, en 0 SDP los sustratos con mayores contenidos de FC y 100 % RD tuvieron significativamente mayores concentraciones de SO42- y Na+, y 8 SDP sucedió lo contrario, mientras que para Cl- las concentraciones fueron significativamente menores en 50 y 100 % RD, independiente del tipo de mezcla de sustratos. En sustratos solo hubo efecto significativo del porcentaje de reciclaje en el contenido de Na+. Este comportamiento puede estar relacionado con las características de los sustratos en términos de adsorción y desorción de iones influenciadas por la actividad de microorganismos. (Texto tomado de la fuente).spa
dc.description.abstractIn Colombia, in cut flower cropping systems, for about 15 years burnt rice husk (BRH) and coconut fiber (CF) have been used as a rooting medium, requiring leaching fractions up to 30 %; however, leachates could contaminate water and soils. Leachates’ physical and chemical characteristics could allow their reuse and recycling, adjusting some variables first. In a rose crop cv. ‘Charlotte’ established in the substrates mixes (100 BRH, 65 BRH:35 CF y 35 BRH:65 CF) an automatic drainage recycling system (ADRS) capable to recycle 0, 50, and 100 % (DR) of the drained solution was constructed. Solution pH, electrical conductivity (EC) from pruning to 8 weeks after (WAP), and S, Na+ and Cl- in, substrates, and leaf tissue in 0, 5, and 8 were analyzed to estimate the effect of substrates and recycling percentage. ADRS was capable to execute operations according to input target values. During 1, 2, and 3 WAP EC was significatively higher in 35 BRH and 65 BRH with 50 and 100 DR; and similarly in 7 and 8 WAP with 100 BRH and 65 BRH. In 6 WAP EC only was significant with complete or partial DR. pH was significatively lower between 0 and 4 WAP for 100 BRH without recycling. In drainages, in 0 WAP for mixes composed by CF, and 100 % RD, SO42- and Na+ contents were significatively higher, and conversely in 8 WAP. Cl- concentration, regardless of the substrate, was lower in 50 and 100 % RD. No effects were detected in leaf tissues or substrates, except the Na+ concentration in substrates. These findings could be related to the substrate’s ion adsorption and desorption as an influence of microorganisms and chemical breakdown.eng
dc.description.curricularareaCiencias Agronómicasspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.projectProducción más limpia de rosa y clavel en sistemas de cultivo sin suelo en la Sabana de Bogotá.spa
dc.description.researchareaFisiología de cultivosspa
dc.description.sponsorshipMinisterio de Agricultura y Desarrollo Rural. Colciencias.spa
dc.format.extentxiii, 73 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78512
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAbad M., P. Noguera, R. Puchades, A. Maquieira y V. Noguera. 2002. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresour Technol. 82(3):241-5. DOI: 10.1016/S0960-8524(01)00189-4spa
dc.relation.referencesArp, D.J., P.S.G. Chain y M.G. Klotz. 2007. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu. Rev. Microbiol. 61:503-528.spa
dc.relation.referencesAtta Aly, M.A., M.A. Saltveit y A.S. El Beltagy. 1998. Saline growing conditions induce ripening of a non-ripening mutants nor and rin tomato fruits but not of Nr fruit. Postharvest Boil. Technol. 13:225-234.spa
dc.relation.referencesAvrahami, S. y R. Conrad. 2003. Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl. Environ. Microbiol. 69:6152–6164.spa
dc.relation.referencesBarguil, B.M., F.M.P. Viana, R.M. Anjos y J.E. Cardoso. 2009. First report of dry rot caused by Fusarium oxysporum on rose (Rosa spp.) in Brazil. Plant Dis. 93(7):766-766.spa
dc.relation.referencesBaas, R. y D. Van den Berg. 1999. Sodium accumulation and nutrient discharge in recirculation systems: A case study with roses. Acta Hortic. 507:157-164.spa
dc.relation.referencesBlumwald, E., G.S. Aharon y M.P. Apse. 2000. Sodium transport in plant cells. Biochim. Biophys. Acta. 1465:140-151.spa
dc.relation.referencesBreś, W. 2009. Estimation of nutrient losses from open fertigation systems to soil during horticultural plant cultivation. Pol. J. Environ.Stud. 18(3):341-345.spa
dc.relation.referencesIkeda,H., P. Koohakan, T. y T. Jaenaksorn. 2002. Problems and countermeasures in the re-use of the nutrient solution in soilless production. Acta Hortic. 578:213-219.spa
dc.relation.referencesBroadley, M., P. Brown, I. Cakmak, Z. Rengel y F. Zhao. 2012. Chapter 7 - Function of nutrients: micronutrients. pp. 191-248. En: Marschner, P. (Ed.). Marschner's mineral nutrition of higher plants (3.a ed.), London: Academic Press. 651p. DOI: 10.1016/B978-0-12-384905-2.00007-8.spa
dc.relation.referencesBrun, R., A. Settembrino y C. Couve. 2001. Recycling of nutrient solutions for rose (Rosa hybrida) in soilless culture. Acta Hortic. 554:183-192. DOI: 10.17660/ActaHortic.2001.554.19.spa
dc.relation.referencesBugbee, B. 2004. Nutrient management in recirculating hydroponic culture. Acta Hortic. 648:99-112.spa
dc.relation.referencesCabrera, R.I., A.R. Solís-Pérez y W.J. Cuervo-Bejarano. 2017. Tolerancia y manejo de salinidad, pH y alcalinidad en el cultivo de flores. pp. 63-73. En: Flórez R., V.J. (Ed.). Consideraciones sobre producción, manejo y poscosecha de flores de corte con énfasis en rosa y clavel. Bogotá: Editorial Universidad Nacional de Colombia. 212p.spa
dc.relation.referencesCabrera, R.I. y P. Perdomo. 2003. Reassessing the salinity tolerance of greenhouse roses under soilless production conditions. HortScience. 38:533-536.spa
dc.relation.referencesCabrera, R.I. 2002. Rose yield, dry matter partitioning and nutrient status responses to rootstock selection. Sci. Hortic. 95:75-83.spa
dc.relation.referencesCabrera, R.I., A.R. Solís-Pérez y J.J. Sloan. 2009. Greenhouse rose yield and ion accumulation responses to salt stress as modulated by rootstock selection. HortScience. 44(7):2000-2008.spa
dc.relation.referencesCarrillo-López, L. M., L.I. Trejo-Téllez, G. Alcántar-González, L. Arévalo-Galarza, E.A. Gaytán-Acuña y F.C. Gómez-Merino. 2012. Nutrient solutions and traditional production system of Chrysanthemum on growth and nutrient concentration in leaves. Acta Hortic. 947:283-290.spa
dc.relation.referencesChabite, I.T., Z. Lei, Y. Ningning, F. Qiang y Y. Haiye. 2017. Mode of managing nutrient solution based on N use efficiency for lettuce (Lactuca sativa L.). J. Food Sci. Eng. 7:29-37. DOI: 10.17265/2159-5828/2017.01.003.spa
dc.relation.referencesCuervo B., W.J., V.J. Flórez R. y C.A. González M. 2012. Aspectos a tener en cuenta para optimizar un sistema de cultivo en sustrato con reciclaje de drenajes. Agron. colomb. 30(3):379-387. Disponible en https://revistas.unal.edu.co/index.php/agrocol/article/view/29029/47048; consulta: junio 2019.spa
dc.relation.referencesCuervo B. W.J., V.J. Flórez R. y C.A. González M. 2011. Generalidades de la automatización y control para el reciclaje de drenajes en cultivos bajo cubierta. pp. 247-275. En: Flórez R., V.J. (Ed.). Sustratos, manejo del clima, automatización y control en sistemas de cultivo sin suelo. Bogotá: Editorial Universidad Nacional de Colombia. 294p.spa
dc.relation.referencesde Medinburu. 2019. R package version 1.3-1 Statistical Procedures for Agricultural Research (2019), pp. 1-86. Disponible en https://CRAN.R-project.org/package=agricolae.spa
dc.relation.referencesDe Kreij C., y T.H.J.M Van Den Berg. 1990. Nutrient uptake, production and quality of Rosa hybrida in rockwool as affected by electrical conductivity of the nutrient solution. pp. 519-523. En: van Beusichem, M.L. (eds). Plant Nutrition — Physiology and Applications. Developments in Plant and Soil Sciences, vol 41. Dordrecht: Springer. 819p.spa
dc.relation.referencesEuropean Commission. 2018. The EU Nitrates Directive. Disponible en ec.europa.eu/environment/pubs/pdf/factsheets/nitrates.pdf.spa
dc.relation.referencesFarnham, D.S., R.F. Hasek, y J.L. Paul. 1985. Water Quality: Its Effects on Ornamental Plants. University of California Cooperative Extension Leaflet No. 2995. 15p.spa
dc.relation.referencesFascella, G. 2015. Growing substrates alternative to peat for ornamental plants. pp. 47–67. En: Asaduzzaman, M. (ed.). Soilless culture–use of substrates for the production of quality horticultural crops. London: InTech. 164p.spa
dc.relation.referencesFlorverde. 2018. Florverde standards for the sustainable production of flowers and ornamentals Version 7.1 October 2018. Bogotá, Colombia.spa
dc.relation.referencesFujimoto, S.Y., M. Ohta, A. Usui, H. Shinshi y M. Ohme Takagi. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404.spa
dc.relation.referencesFoxboro®. 2007. Sulfuric acid measurements. Disponible en http://www.foxboro.com/NR/rdonlyres/84BD830F-DF72-4B63-A51B-0D39220C518B/0/SulfuricAcidMeas.pdf.spa
dc.relation.referencesGarcés de Granada, E., M. Orozco de Amézquita, O.L. Calderón y G. Arbeláez. 1997. Respuesta de algunas variedades de clavel estándar a Phialophora cinerescens. Agron. Colomb. 14(2):149-153.spa
dc.relation.referencesGrunert, O., D. Reheul, M.C. Van Labeke, M. Perneel, E: Hernandez-Sanabria, S.E. Vlaeminck y N. Boon. 2016. Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture. Microbi. Biotechnol. 9(3):389-399. DOI:10.1111/1751-7915.12354spa
dc.relation.referencesGieling, Th.H., J. Bontsema, T.W.B.M. Bouwmansand y R.H. Steeghs. 1997. Modelling and simulation for control nutrient application in closed growing systems. Neth. J. Agr. Sci. 45(1):127-142.spa
dc.relation.referencesNakamoto, N., N. Graham, M.R. Collins y R. Gimbel. (eds.). 2014. Recent progress in slow sand and alter-native biofiltration processes. London: IWA Publishing. 570p.spa
dc.relation.referencesGiuffrida, F., S. Argento, V. Lipari y L. Cherubino. 2003. Methods for controlling salt accumulation in substrate cultivation. Acta Hortic. 614:799-803.spa
dc.relation.referencesGood, A.G y P.H. Beatty. 2011. Fertilizing nature: A tragedy of excess in the commons. PLoS Biol. 9(8): e1001124. DOI: 10.1371/journal.pbio.1001124.spa
dc.relation.referencesGorbe, E. y A. Calatayud. 2010. Optimization of nutrition in soilless systems: A Review. Ad. Bot. Res. 53:193-245. DOI: 10.1016/S0065-2296(10)53006-4.spa
dc.relation.referencesGuzmán, D.A. 1996. Zonas de vida o formaciones vegetales. Área jurisdiccional CAR. CAR. Disponible en http://sie.car.gov.co/bitstream/handle/20.500.11786/33791/00011.pdf?sequence=1&isAllowed=y.spa
dc.relation.referencesHandreck, K. y N. Black. 1999. Growing media for ornamental plants and turf. UNSW, Sydney.spa
dc.relation.referencesHettiarachchi, E., R. Perera, C. Perera y N. Kottegoda. 2015. Activated coconut coir for removal of sodium and magnesium ions from saline water. Desalination Water Treat. 57(47):22341-22352. DOI: 10.1080/19443994.2015.1129649.spa
dc.relation.referencesIFA (International Fertilizer Association). 2018. Databases of consumption. Disponible en https://www.ifastat.org/databases/plant-nutrition.spa
dc.relation.referencesKämpf, A., C. For y C. Leonhardt. 2009. Lowering pH value with elemental sulfur in the substrate for ex vitro acclimatization. Acta Hortic. 812: 415.420. DOI: 10.17660/ActaHortic.2009.812.58.spa
dc.relation.referencesKhan M.N., M. Mobin, Z.K. Abbas y S.A. Alamri. 2018. Fertilizers and their contaminants in soils, surface and groundwater. vol. 5, pp. 225-240. En: DellaSala, D.A. y M.I. Goldstein (eds.) The Encyclopedia of the Anthropocene. Oxford: Elsevier. 275p.spa
dc.relation.referencesKertesz, M.A. y P. Mirleau. 2004. The role of soil microbes in plant sulphur nutrition. J. Exp. Bot. 55(404):1939-1945. DOI:10.1093/jxb/erh176.spa
dc.relation.referencesLee S. y J. Lee. 2015. Beneficial bacteria and fungi in hydroponic systems: types and characteristics of hydroponic food production methods. Sci. Hortic. 195:206-215. DOI: 10.1016/j.scienta.2015.09.011.spa
dc.relation.referencesLee, M. y M. van Iersel. 2008. Sodium chloride effects on growth, morphology, and physiology of chrysanthemum (Chrysanthemum × morifolium). HortScience. 43:1888-1891. DOI: 10.21273/HORTSCI.43.6.1888.spa
dc.relation.referencesLi, J., Y. Ming y B. Li. 2007. Field evaluation of fertigation uniformity as affected by injector type and manufacturing variability of emitters. Irrig. Sci. 35:117:125.spa
dc.relation.referencesLieth, J.H. y L.R. Oki. 2008. Irrigation in soilless production. pp: 117-156. In: Raviv, M. y J.H. Lieth (eds). Soilless Culture: Theory and Practice. London: Elsevier. 587p.spa
dc.relation.referencesLondra, P.A., A.T. Paraskevopoulou y M. Psychogiou. 2018. Hydrological behavior of peat- and coir-based substrates and their effect on begonia growth. Water. 10(722):1-15. DOI: 10.3390/w10060722.spa
dc.relation.referencesLorenzo, H., M.C. Cid, J.M. Siverio y M.C. Ruano. 2000. Effects of sodium on mineral nutrition in rose plants. Ann. Appl. Biol. 137:65-72. DOI: 10.1111/j.1744-7348.2000.tb00058.x.spa
dc.relation.referencesLucheta, A.R. y M.R. Lambais. 2012. Sulfur in agriculture. Rev. Bras. Ciênc. Solo. 36(5): 1369-1379. DOI: 10.1590/S0100-06832012000500001.spa
dc.relation.referencesMadrigal-Valverde, Á. y G. Garbanzo. 2018. Uso de residuos agroindustriales en previveros de palma aceitera (Elaeis guineensis, Arecaceae): crecimiento y absorción de nutrimentos. UNED Research Journal. 10(2):257-266. DOI: 10.22458/urj.v10i2.2157.spa
dc.relation.referencesMarfà, O. 2000. Chapter 2: La recirculación en los cultivos sin suelo. Elementos básicos. pp. 21-27. En: Marfà, O. (ed.). Recirculación en cultivos sin suelo. Compendios de horticultura. 2. a ed. Madrid: Ediciones de Horticultura. Reus. 269p.spa
dc.relation.referencesMarins-Peil, R., J. López Gálvez y A. Martins. 1998. Cultivo de pepino con técnica de solución nutritiva recirculante. p. 1. En: I congreso ibérico sobre gestión y planificación de aguas. Universidad de Zaragoza. Zaragoza, Spain.spa
dc.relation.referencesMassa, D., L. Incrocci, R. Maggini, C. Bibbiani, G. Carmassi, F. Malorgio y A. Pardossi. 2011. Simulation of crop water and mineral relations in greenhouse soilless culture. Environ. Model. Softw. 26:711-722. DOI: 10.1016/j.envsoft.2011.01.004.spa
dc.relation.referencesMassa, D., N. Mattson y H. Lieth. 2008. Effects of saline root environment (NaCl) on nitrate and potassium uptake kinetics for rose plants: A Michaelis-Menten modelling approach. Plant Soil. 318:101-115. DOI: 10.1007/s11104-008-9821-z.spa
dc.relation.referencesMateo-Sagasta, J., S.M. Zadeh, H. Turral y J. Burke. 2017. Water pollution from agriculture: a global review. Executive summary. Rome, Italy: FAO; Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). 35p.spa
dc.relation.referencesMazuela, P. 2005. Vegetable waste compost as substrate for melon. Commun. Soil Sci. Plant Anal. 36:1557–1572. DOI: 10.1081/CSS-200059054.spa
dc.relation.referencesMADR (Ministerio de Agricultura y Desarrollo Rural). 2019. Cifras del sector floricultor. Disponible en https://www.minagricultura.gov.co/noticias/Paginas/Para-la-celebraci%C3%B3n-del-San-Valent%C3%ADn-Colombia-exporta-35-mil-toneladas-de-flores.aspx?ID=2919spa
dc.relation.referencesNiu, G. y D.S. Rodriguez. 2008. Responses of growth and on uptake of four rose rootstocks to chloride or sulfate-dominated salinity. J. Am. Soc. Hortic. Sci. 133:663-669.spa
dc.relation.referencesNeto, A., S. Zolnier y D. Lopes. 2014. Development and evaluation of an automated system for fertigation control in soilless tomato production. Comput. Electron. Agric. 103:17–25. DOI: 10.1016/j.compag.2014.02.001.spa
dc.relation.referencesNosir, W. 2014. New technique for rose production in soilless culture system and disease reduction. J. Plant. Nutr. Soil Sci. 39(2): 181:188. DOI: 10.1080/01904167.2014.972415.spa
dc.relation.referencesIFA (International Fertilizer Association). 2018. Databases of consumption. Disponible en https://www.ifastat.org/databases/plant-nutrition.spa
dc.relation.referencesOEC (The observatory of economic complexity). 2020. Disponible en https://oec.world/en/profile/hs92/0603/.spa
dc.relation.referencesOkafor P, P. Okon, E. Daniel y E. Ebenso. 2012. Adsorption capacity of coconut (Cocos nucifera L.) shell for lead, copper, cadmium and arsenic from aqueous solutions. Int. J. Electrochem. Sci. 7:12354-12369.spa
dc.relation.referencesPapadopaulus, A.P., A. Ber-TalLieth, A. Silber, U.K. Saha y M. Raviv. 2008. Inorganic and synthetic organic components of soilless culture and potting mixes. pp: 117-156. En: Raviv, M. y J. H. Lieth (eds.). Soilless culture: theory and practice. London: Elsevier. 587p.spa
dc.relation.referencesPrenafeta-Boldú, F.X., I. Trillas, M. Viñas, M. Guivernau, R. Cáceres y O. Marfà. 2017. Effectiveness of a full-scale horizontal slow sand filter for controlling phytopathogens in recirculating hydroponics: From microbial isolation to full microbiome assessment. Sci. Total Environ. 599-600:780-788. DOI: 10.1016/j.scitotenv.2017.04.221.spa
dc.relation.referencesPatiño, M. 2000. Cultivo de clavel sobre sustrato de cascarilla de arroz. pp. 41-43. En: Pizano de Marquez, M. (ed.). El clavel. Bogotá: Ediciones Hortitecnia. 181p.spa
dc.relation.referencesPutra, A. y H. Yuliando. 2015. Soilless culture system to support water use efficiency and product quality: a review. Agric. Agric. Sci. Procedia 3. pp. 283– 288.spa
dc.relation.referencesR Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.spa
dc.relation.referencesRamos, J.H. 2010. Caso de estudio. Tramo desde la confluencia del río Neusa hasta la intersección vía Autopista Norte –Cajicá. Trabajo de grado. Universad Militar Nueva Granada. Disponible en https://repository.unimilitar.edu.co/bitstream/handle/10654/493/RamosCastiblancoJesu2010.pdf;sequence=1spa
dc.relation.referencesRiley, M.M. 1987. Boron toxicity in barley. J. Plant Nutr. 10:2109-2115.spa
dc.relation.referencesSadasivaiah, S.P. y W.D. Holley. 1973. Ion balance in nutrition of greenhouse roses. Roses Inc. Bull. (November), 1–27.spa
dc.relation.referencesRodríguez, M. y V. Flórez. 2012. Changes in EC, pH and in the concentrations of nitrate, ammonium, sodium and chlorine in the drainage solution of a crop of roses on substrates with drainage recycling. Agron. colomb. 30(2):266-273.spa
dc.relation.referencesRomero, R., J.L. Muriel, I. García-Tejero y D. Muñoz-De la Peña. 2012. Research on automatic irrigation control: State of the art and recent results. Agric Water Manag. 114:59-66. 1. DOI: 0.1016/j.agwat.2012.06.026.spa
dc.relation.referencesRouphael, Y. y M. Cardarelli, P. Bonini y G. Colla. 2017. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 8: 131. DOI: 10.3389/fpls.2017.00131.spa
dc.relation.referencesRouphael, Y., M. Cardarelli, L. Lucini, E. Rea y G. Colla. 2012. Nutrient solution concentration affects growth, mineral composition, phenolic acids, and flavonoids in leaves of artichoke and cardoon. HortScience. 47:1424-1429. DOI: 10.21273/HORTSCI.47.10.1424.spa
dc.relation.referencesRoig, A., M.L. Cayuela y M.A. Sánchez-Monedero. 2004. The use of elemental sulphur as organic alternative to control pH during composting of olive mill wastes. Chemosphere. 57:1099-1105.spa
dc.relation.referencesSambo, P., C. Nicoletto, A. Giro, Y. Pii, F. Valentinuzzi, T. Mimmo y S. Cesco, S. 2019. Hydroponic solutions for soilless production systems: issues and opportunities in a smart agriculture perspective. Front. Plant Sci. 10:923. DOI: 10.3389/fpls.2019.00923.spa
dc.relation.referencesSar, D.M., P. Visser y J. Vos. 2014. Nutrient uptake of four cut rose varieties. Acta Hortic. 1034:559-566. DOI: 10.17660/ActaHortic.2014.1034.71.spa
dc.relation.referencesSavci, S. 2012. An agricultural pollutant: Chemical Fertilizer. Int. J. Environ. Sci. Dev. 3(1):73-80. DOI: 10.18178/IJESD.spa
dc.relation.referencesSilberbush, M. y J. Ben-Asher. 1989. The effect of NaCl concentration on NO3−, K+ and orthophosphate-P influx to peanut roots. Sci. Hortic. 39:279-287. DOI: 10.1016/0304-4238(89)90121-0.spa
dc.relation.referencesSolís-Pérez, A.R. y R.I. Cabrera. 2007. Evaluating counter-ion effects on greenhouse roses subjected to moderately-high salinity. Acta Hortic. 751:375-380.spa
dc.relation.referencesSong, C., W. S. Wu, M. Cheng, P. Tao, M. Shao y G. Gao. 2013. Adsorption studies of coconut shell carbons prepared by KOH activation for removal of lead (II) from aqueous solutions. Sustainability. 6:86-98. DOI: 10.3390/su6010086.spa
dc.relation.referencesSonneveld, C. y A.L. van den Bos. 1995. Effects of nutrient levels on growth and quality of radish (Raphanus sativus L.) grown on different substrates. J. Plant Nutr. 18(3):501-513. DOI: 10.1080/01904169509364918.spa
dc.relation.referencesSonneveld, C., R. Bass, H.M.C. Nijssen y J. De Hoog. 1999. Salt tolerance of flower crops grown in soilless culture. J. Plant Nutr. 22(6):1033-1048.spa
dc.relation.referencesSonneveld, C. 2000. Effects of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture. Ph.D. Thesis. University of Wageningen. Wageningen.spa
dc.relation.referencesSonneveld, C. 2002. Composition of nutrient solutions. pp. 179 - 210. En: Savvas, D. y H. Passam (eds.). Hydroponic production of vegetables and ornamentals. Athens: Embryo Publications. 463p.spa
dc.relation.referencesStanghellini, C. y F.L.K. Kempkes. 2004. A blueprint for optimal management of multiple-quality water-resources. En: EU-Hortimed, ICA3–1999–0009: Deliverable 8. Disponible en http://www.aua.gr/ns/project/hortimed/Deliverable_8.pdf; consultado: enero 2010.spa
dc.relation.referencesTajudeen A. L. y O.S. Taiwo. 2018. Soilless farming – a key player in the realisation of “zero hunger” of the sustainable development goals in Nigeria. Int. J. Ecol. Sci. Environ. Eng. 5: 1–7.spa
dc.relation.referencesTourna, M., P. Maclean, L. Condron, M. O'Callaghan y S.A. Wakelin. 2014. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiol. Ecol. 88(3):538–549, DOI: 10.1111/1574-6941.12323.spa
dc.relation.referencesUdayana, S.K., A. Naorem, y N.A. Singh, 2017. The multipurpose utilization of coconut by-products in agriculture: prospects and concerns. Int. J. Curr. Microbiol. App. Sci. 6(6):1408-1415. DOI: 10.20546/ijcmas.2017.606.165.spa
dc.relation.referencesvan Os, E.A. 1999. Closed soilless growing systems: a sustainable solution for Dutch greenhouse horticulture. Water Sci. Technol. 39(5):105-112.spa
dc.relation.referencesvan Os, E.A., Th. H. Gieling y J. H. Lieth. 2019. Technical equipment in soilless production systems. pp. 624-625. En: Raviv, M., J.H. Lieth y A. Bar-Tal (eds). Soilless Culture: Theory and Practice. 2nd edition. London: Academic Press. 712 p.spa
dc.relation.referencesVélez C., N.A., V.J. Flórez R. y S.E. Melo M. 2012. Comportamiento de NPK en un sistema de cultivo sin suelo para clavel estándar cv. Delphi con recirculación de drenajes en la Sabana de Bogotá. 7º Encontro Brasileiro de Hidroponia. Florianópolis, Brasil.spa
dc.relation.referencesXiong, J., T. Yongqiang, W. Jingguo, L. Wei y C. Qing. 2017. Comparison of coconut coir, rockwool, and peat cultivations for tomato production: nutrient balance, plant growth and fruit quality. Front. Plant Sci. 8:1327. DOI: 10.3389/fpls.2017.01327.spa
dc.relation.referencesYahya, A., S. Anieza, B. Rosli y L. Ahmad. 2009. Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. Amer. J. Agric. Biol. Sci. 4:63-71.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocDrenajespa
dc.subject.agrovocdrainageeng
dc.subject.agrovocRosasspa
dc.subject.agrovocroseseng
dc.subject.agrovocsubstrataspa
dc.subject.agrovocsubstrataeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalSubstrateseng
dc.subject.proposalSustratosspa
dc.subject.proposalRecyclingeng
dc.subject.proposalReciclajespa
dc.subject.proposalCut flowerseng
dc.subject.proposalFlor de cortespa
dc.subject.proposalsodiospa
dc.subject.proposalSodiumeng
dc.subject.proposalChlorideeng
dc.subject.proposalClorurospa
dc.subject.proposalAzufrespa
dc.subject.proposalSulfureng
dc.subject.proposalHorticulturaspa
dc.subject.proposalHorticultureeng
dc.titleSistema para la recirculación automática de drenajes en el cultivo de rosaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Cuervo-Bejarano_Trabajo de grado.pdf
Tamaño:
1.54 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: