En 5 día(s), 23 hora(s) y 32 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Gravitational radiation from the inspiral of compact binaries based on a Yukawa-type addition to the Newtonian potential

dc.contributor.advisorLarrañaga Rubio, Eduard Alexisspa
dc.contributor.authorConde Ocazionez, Carlos Alfonsospa
dc.contributor.researchgroupAstronomía, Astrofísica y Cosmologiaspa
dc.date.accessioned2020-02-25T16:41:36Zspa
dc.date.available2020-02-25T16:41:36Zspa
dc.date.issued2020-01-21spa
dc.date.issued2020spa
dc.description.abstractIn this work, the gravitational radiation emitted from a compact binary system is analyzed in the context of general relativity and f(R) gravity based on linearized theory. Besides the two standard polarizations of gravitational waves, an additional massive scalar mode is present in f(R). At the Newtonian limit, it implies a Yukawa-like addition to the Newtonian potential. This kind of potential interaction has been studied in other scenarios. Here, the quadrupole radiation for the massless polarizations of a binary source in circular motion under such potential is determined. The back-reaction effect due to the emission of gravitational waves is discussed at linear and second order in Υ = 1/λg where λg is the Compton wavelength of the graviton. It is expected that in future measurements, slightly changes in the frequency waveform pattern of those systems may be put better constraints on the space parameters of alternative theories of gravity such as f(R).spa
dc.description.additionalMaster of Science - Astronomyspa
dc.description.projectDirección de Investigación-Sede Bogotá, Universidad Nacional de Colombia (DIB-UNAL) under Project No. 41673 and Grupo de Astronomía, Astrofísica y Cosmología-Observatorio Astronómico Nacional.spa
dc.format.extent190spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75729
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.relation.referencesFlanagan, E. E. & Hughes, S. A. The basics of gravitational wave theory. New Journal of Physics 7, 204 (2005).spa
dc.relation.referencesEinstein, A. On gravitational waves. Journal of the Franklin Institute 223, 43–54 (1918).spa
dc.relation.referencesRosen, N. Plane polarized waves in the general theory of relativity. Phys. Z. Sowjetunion 12, 366–372 (1937).spa
dc.relation.referencesHill, C. D. & Nurowski, P. How the green light was given for gravitational wave search. arXiv preprint arXiv:1608.08673 (2016).spa
dc.relation.referencesTrautman, A. Radiation and boundary conditions in the theory of gravitation. arXiv reprinted arXiv:1604.03145 (2016).spa
dc.relation.referencesRobinson, I. & Trautman, A. Spherical gravitational waves. Physical Review Letters 4, 431 (1960).spa
dc.relation.referencesKennefick, D. J. Traveling at the speed of thought: Einstein and the quest for gravitational waves (Princeton university press, 2016).spa
dc.relation.referencesMaggiore, M. Gravitational waves: Volume 1: Theory and experiments (Oxford university press, 2008).spa
dc.relation.referencesPoisson, E. & Will, C. M. Gravity: Newtonian, post-newtonian, relativistic (Cambridge University Press, 2014).spa
dc.relation.referencesWeisberg, J. M., Taylor, J. H. & Fowler, L. A. Gravitational waves from an orbiting pulsar. Scientific American 245, 74–83 (1981).spa
dc.relation.referencesPeters, P. & Mathews, J. Gravitational radiation from point masses in a Keplerian orbit. Physical Review 131, 435 (1963).spa
dc.relation.referencesAbbott, B. P. et al. GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Physical review letters 116, 241103 (2016).spa
dc.relation.referencesAbbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Physical review letters 116, 061102 (2016).spa
dc.relation.referencesScientific, L. et al. GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Physical Review Letters 118, 221101 (2017).spa
dc.relation.referencesAbbott, B. P. et al. GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Physical review letters 119, 141101 (2017).spa
dc.relation.referencesAbbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Physical Review Letters 119, 161101 (2017).spa
dc.relation.referencesSotiriou, T. P. & Faraoni, V. f (R) theories of gravity. Reviews of Modern Physics 82, 451 (2010).spa
dc.relation.referencesHaranas, I. & Ragos, O. Yukawa-type effects in satellite dynamics. Astrophysics and Space Science 331, 115–119 (2011).spa
dc.relation.referencesHaranas, I., Ragos, O. & Mioc, V. Yukawa-type potential effects in the anomalistic period of celestial bodies. Astrophysics and Space Science 332, 107–113 (2011).spa
dc.relation.referencesHaranas, I., Kotsireas, I., Gómez, G., Fullana, M. J. & Gkigkitzis, I. Yukawa effects on the mean motion of an orbiting body. Astrophysics and Space Science 361, 365 (2016).spa
dc.relation.referencesPricopi, D. Stability of the celestial body orbits under the influence of Yukawa potential. Astrophysics and Space Science 361, 277 (2016).spa
dc.relation.referencesIorio, L. Constraints on the range λ of Yukawa-like modifications to the Newtonian inverse-square law of gravitation from Solar System planetary motions. Journal of High Energy Physics 2007, 041 (2007).spa
dc.relation.referencesBorka, D, Jovanović, P, Jovanović, V. B. & Zakharov, A. Constraining the range of Yukawa gravity interaction from S2 star orbits. Journal of Cosmology and Astroparticle Physics 2013, 050 (2013).spa
dc.relation.referencesUrsulov, A. & Chuvasheva, T. Influence of Yukawa-type additions to a Newtonian gravitational potential on the perihelion precession of bodies in the solar system. Astronomy Reports 61, 468–474 (2017).spa
dc.relation.referencesDe Martino, I., Lazkoz, R. & De Laurentis, M. Analysis of the Yukawa gravitational potential in f(R) gravity. I. Semiclassical periastron advance. Physical Review D 97, 104067 (2018).spa
dc.relation.referencesDe Laurentis, M., De Martino, I. & Lazkoz, R. Analysis of the Yukawa gravitational potential in f (R) gravity. II. Relativistic periastron advance. Physical Review D 97, 104068 (2018).spa
dc.relation.referencesBerry, C. P. & Gair, J. R. Linearized f (R) gravity: gravitational radiation and solar system tests. Physical Review D 83, 104022 (2011).spa
dc.relation.referencesPoisson, E. A relativist’s toolkit: the mathematics of black-hole mechanics (Cambridge university press, 2004).spa
dc.relation.referencesStephani, H., Kramer, D., MacCallum, M., Hoenselaers, C. & Herlt, E. Exact solutions of Einstein’s field equations (Cambridge university press, 2009).spa
dc.relation.referencesWald, R. M. General relativity (University of Chicago Press (Chicago, 1984), 1987).spa
dc.relation.referencesCarroll, S. M. Spacetime and geometry (Cambridge University Press, 2004).spa
dc.relation.referencesBuonanno, A. Gravitational waves. arXiv preprint arXiv:0709.4682 (2007).spa
dc.relation.referencesMisner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (Princeton University Press, 1973).spa
dc.relation.referencesDe Laurentis, M. The Newtonian and relativistic theory of orbits and the emission of gravitational waves Open Astron. J 4, 1874 (2011).spa
dc.relation.referencesHobson, M. P., Efstathiou, G. P. & Lasenby, A. N. General relativity: an introduction for physicists (Cambridge University Press, 2006).spa
dc.relation.referencesWeinberg, S. Gravitation and cosmology: principles and applications of the general theory of relativity (1972).spa
dc.relation.referencesPadmanabhan, T. Gravitation: foundations and frontiers (Cambridge University Press, 2010).spa
dc.relation.referencesPoisson, E. An advanced course in general relativity. lecture notes at University of Guelph (2002).spa
dc.relation.referencesStein, L. C. & Yunes, N. Effective gravitational wave stress-energy tensor in alternative theories of gravity. Physical Review D 83, 064038 (2011).spa
dc.relation.referencesIsaacson, R. A. Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor. Physical Review 166, 1272 (1968).spa
dc.relation.referencesZalaletdinov, R. M. Averaging out the Einstein equations. General Relativity and Gravitation 24, 1015–1031 (1992).spa
dc.relation.referencesCreighton, J. D. & Anderson, W. G. Gravitational-wave physics and astronomy: An introduction to theory, experiment and data analysis (John Wiley & Sons, 2012).spa
dc.relation.referencesSchutz, B. A first course in general relativity (Cambridge university press, 2009).spa
dc.relation.referencesSchutz, B. F. Gravitational radiation. arXiv preprint gr-qc/0003069 (2000).spa
dc.relation.referencesLandau, L. D. The classical theory of fields (Elsevier, 1975).spa
dc.relation.referencesWalker, M. & Will, C. M. The approximation of radiative effects in relativistic gravity-Gravitational radiation reaction and energy loss in nearly Newtonian systems. The Astrophysical Journal 242, L129–L133 (1980).spa
dc.relation.referencesWalker, M. & Will, C. M. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems. Physical Review Letters 45, 1741 (1980).spa
dc.relation.referencesBlanchet, L. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Reviews in Relativity 17, 2 (2014).spa
dc.relation.referencesLightman, A. P., Press, W. H., Price, R. H. & Teukolsky, S. A. Problem book in relativity and gravitation (Princeton University Press, 1979).spa
dc.relation.referencesGuarnizo, A., Castaneda, L. & Tejeiro, J. M. Boundary term in metric f (R) gravity: field equations in the metric formalism. General Relativity and Gravitation 42, 2713–2728 (2010).spa
dc.relation.referencesDe Felice, A. & Tsujikawa, S. f (R) theories. Living Reviews in Relativity 13, 3 (2010).spa
dc.relation.referencesOlmo, G. J. Palatini approach to modified gravity: f(R) theories and beyond. International Journal of Modern Physics D 20, 413–462 (2011).spa
dc.relation.referencesCapozziello, S., Corda, C. & De Laurentis, M. F. Massive gravitational waves from f(R) theories of gravity: Potential detection with LISA. Physics Letters B 669, 255–259 (2008).spa
dc.relation.referencesCorda, C. Massive gravitational waves from the R2 theory of gravity: production and response of interferometers. International Journal of Modern Physics A 23, 1521–1535 (2008).spa
dc.relation.referencesCorda, C. Massive relic gravitational waves from f (R) theories of gravity: production and potential detection. The European Physical Journal C 65, 257 (2010).spa
dc.relation.referencesNäf, J. & Jetzer, P. Gravitational radiation in quadratic f (R) gravity. Physical Review D 84, 024027 (2011).spa
dc.relation.referencesCapozziello, S. & Bajardi, F. Gravitational waves in modified gravity. International Journal of Modern Physics D 28, 1942002 (2019).spa
dc.relation.referencesPeskin, M. E. An introduction to quantum field theory (CRC Press, 2018).spa
dc.relation.referencesSaff, E. B. & Snider, A. D. Fundamentals of complex analysis for mathematics, science, and engineering BOOK (Prentice-Hall, 1976).spa
dc.relation.referencesCorda, C. The production of matter from curvature in a particular linearized high order theory of gravity and the longitudinal response function of interferometers. Journal of Cosmology and Astroparticle Physics 2007, 009 (2007).spa
dc.relation.referencesGoldstein, H., Poole, C. & Safko, J. Classical mechanics 2002.spa
dc.relation.referencesMarion, J. B. Classical dynamics of particles and systems (Academic Press, 2013).spa
dc.relation.referencesFinn, L. S. & Sutton, P. J. Bounding the mass of the graviton using binary pulsar observations. Physical Review D 65, 044022 (2002).spa
dc.relation.referencesLee, S. Constraint on reconstructed f (R) gravity models from gravitational waves. The European Physical Journal C 78, 449 (2018).spa
dc.relation.referencesTaylor, J. H., Fowler, L. & McCulloch, P. Measurements of general relativistic effects in the binary pulsar PSR1913+ 16. Nature 277, 437 (1979).spa
dc.relation.referencesWeisberg, J. M. & Taylor, J. H. Relativistic binary pulsar B1913+ 16: Thirty years of observations and analysis. arXiv preprint astro-ph/0407149 (2004).spa
dc.relation.referencesWeisberg, J. M. & Huang, Y. Relativistic measurements from timing the binary pulsar PSR B1913+ 16. The Astrophysical Journal 829, 55 (2016).spa
dc.relation.referencesNeedham, T. Visual complex analysis (Oxford University Press, 1998).spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddcAstronomía y ciencias afinesspa
dc.subject.proposalGeneral relativityspa
dc.subject.proposalGravitational wavesspa
dc.titleGravitational radiation from the inspiral of compact binaries based on a Yukawa-type addition to the Newtonian potentialspa
dc.title.alternativeGravitational radiation from the inspiral of compact binaries based on a Yukawa-type addition to the Newtonian potentialspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Thesis.pdf
Tamaño:
2.79 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: