Algoritmo para la clasificación en línea de fonemas de habla silenciosa utilizando un sistema embebido

dc.contributor.advisorBacca Rodríguez, Jan
dc.contributor.advisorVillamizar Delgado, Sergio Iván
dc.contributor.authorCaballero López, Julian David
dc.contributor.researchgroupGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (Cmun)spa
dc.date.accessioned2022-08-29T17:09:02Z
dc.date.available2022-08-29T17:09:02Z
dc.date.issued2022
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractDurante el desarrollo de este proyecto se analizaron metodologías para la clasificación de fonemas del habla silenciosa basadas en EMD (Empirical mode decomposition). Este análisis tuvo lugar en la Universidad Nacional de Colombia (UNAL) sede Bogotá, con los datos de la base de datos Emotive-DB tomada con el equipo EMOTIVE EPOC +14, la cual contiene la información de 16 sujetos, mientras pensaban en los fonemas /a/, /e/, /i/, /o/, /u/, y las sílabas /fa/, /pe/, /mi/, /lo/, /ru/. En el proceso, se analizó la afectación en los resultados y el tiempo de procesamiento, en relación con las variables superposición, frecuencia de muestreo, cantidad de canales, entre otras; tras dicho análisis, se seleccionó y trató el número de canales, la distribución de electrodos y los vectores de proyección en la descomposición EMD; con lo cual se logró disminuir el tiempo de procesamiento promedio por trial de 8.73 segundos hasta 0.06 segundos, permitiendo así la posibilidad de implementarse en un sistema en línea. (Texto tomado de la fuente)spa
dc.description.abstractDuring the development of this project, methodologies for the classification of phonemes of silent speech based on EMD (Empirical mode decomposition) were analyzed. This analysis took place at the National University of Colombia (UNAL) in Bogotá, with data from the Emotive-DB database taken with the EMOTIVE EPOC + 14 equipment, which contains the information of 16 subjects, while they thought about the phonemes / a /, / e /, / i /, / o /, / u /, and the syllables / fa /, / pe /, / mi /, / lo /, / ru /. In the process, the effect on the results and the processing time were analyzed, in relation to the variables superposition, sampling frequency, number of channels, among others. After said analysis, the number of channels, the electrode distribution and the projection vectors in the EMD decomposition were selected accordingly. As a result, it was possible to reduce the average processing time per-trial from 8.73 seconds to 0.06 seconds, thus allowing the possibility of being implemented in an online system.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaClasificación de fonemas de habla silenciosaspa
dc.description.sponsorshipconvocatoria 777 de 2017 de MinCienciasspa
dc.format.extent66 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82171
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesS. U. Arias, “Principales retos del Derecho Internacional Humanitario (DIH) en el contexto de postconflicto en Colombia,” 2019.spa
dc.relation.references“Víctimas de Minas Antipersonal y Municiones sin Explosionar.” http://www.accioncontraminas.gov.co/estadisticas/Paginas/victimas-minasantipersonal.aspx (accessed Feb. 10, 2020).spa
dc.relation.referencesKim. Norton, “A brief history of prosthetics,” InMotion, vol. 17, no. 7, pp. 11-3- undefined, 2007.spa
dc.relation.referencesS. Daniela García and V. María José Espinoza, “Avances en prótesis: una mirada al presente y al futuro,” Revista Médica Clínica Las Condes, vol. 25, no. 2, pp. 281– 285, Mar. 2014, doi: 10.1016/S0716-8640(14)70039-2.spa
dc.relation.references“History | AOPA – AMERICAN ORTHOTIC & PROSTHETIC ASSOCIATION.” https://www.aopanet.org/about-aopa/history/ (accessed Jul. 11, 2021).spa
dc.relation.referencesJ. L. Brito, M. X. Quinde, D. Cuzco, and J. I. Calle, “Estudio del estado del arte de las prótesis de mano,” 2013, Accessed: Jul. 11, 2021. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/8447spa
dc.relation.referencesH. A. ROMO., J. C. REALPE, and P. E. JOJOA, “ANÁLISIS DE SEÑALES EMG SUPERFICIALES Y SU APLICACIÓN EN CONTROL DE PRÓTESIS DE MANO,” Avances en Sistemas e Informática, vol. 4, no. 1, Jan. 2007, Accessed: Jul. 11, 2021. [Online]. Available: https://revistas.unal.edu.co/index.php/avances/article/view/9725spa
dc.relation.referencesA. A. Adewuyi, L. J. Hargrove, and T. A. Kuiken, “Evaluating EMG Feature and Classifier Selection for Application to Partial-Hand Prosthesis Control,” Frontiers in Neurorobotics, vol. 10, p. 15, Oct. 2016, doi: 10.3389/FNBOT.2016.00015.spa
dc.relation.referencesE. Park and S. G. Meek, “Fatigue compensation of the electromyographic signal for prosthetic control and force estimation,” IEEE Transactions on Biomedical Engineering, vol. 40, no. 10, 1993, doi: 10.1109/10.247800.spa
dc.relation.referencesA. Kübler, V. K. Mushahwar, L. R. Hochberg, and J. P. Donoghue, “BCI Meeting 2005 - Workshop on clinical issues and applications,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 131–134, Jun. 2006, doi: 10.1109/TNSRE.2006.875585.spa
dc.relation.referencesA.-B. Suleiman, T. A. Fathi, A.-B. R. Suleiman, and A.-H. Fatehi, “FEATURES EXTRACTION TECHNIQES OF EEG SIGNAL FOR BCI APPLICATIONS FEATURES EXTRACTION TECHNIQES OF EEG SIGNAL FOR BCI APPLICATIONS”, Accessed: Jul. 11, 2021. [Online]. Available: https://www.researchgate.net/publication/228450475spa
dc.relation.referencesC. Park, D. Looney, N. ur Rehman, A. Ahrabian, and D. P. Mandic, “Classification of Motor Imagery BCI Using Multivariate Empirical Mode Decomposition,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 1, Jan. 2013, doi: 10.1109/TNSRE.2012.2229296.spa
dc.relation.referencesM. Rohm et al., “Hybrid brain–computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury,” Artificial Intelligence in Medicine, vol. 59, no. 2, Oct. 2013, doi: 10.1016/j.artmed.2013.07.004.spa
dc.relation.referencesF. Cincotti et al., “Non-invasive brain–computer interface system: Towards its application as assistive technology,” Brain Research Bulletin, vol. 75, no. 6, Apr. 2008, doi: 10.1016/j.brainresbull.2008.01.007.spa
dc.relation.referencesJ. H. Friedman, “Multivariate Adaptive Regression Splines,” https://doi.org/10.1214/aos/1176347963, vol. 19, no. 1, pp. 1–67, Mar. 1991, doi: 10.1214/AOS/1176347963.spa
dc.relation.referencesN. Rehman and D. P. Mandic, “Multivariate empirical mode decomposition,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 466, no. 2117, May 2010, doi: 10.1098/rspa.2009.0502.spa
dc.relation.referencesA. Hemakom, V. Goverdovsky, D. Looney, and D. P. Mandic, “Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain–computer interface applications,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065, Apr. 2016, doi: 10.1098/rsta.2015.0199.spa
dc.relation.referencesS. Zhao and F. Rudzicz, “Classifying phonological categories in imagined and articulated speech,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol. 2015-August, pp. 992–996, Aug. 2015, doi: 10.1109/ICASSP.2015.7178118.spa
dc.relation.referencesS. I. Villamizar Delgado, “Development of algorithms to improve the technical efficiency of capturing, processing, and identification of EEG signals in the word imagery task,” Feb. 2020, Accessed: Jul. 11, 2021. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/77829spa
dc.relation.referencesN. E. Huang et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454, no. 1971, pp. 903–995, 1998, doi: 10.1098/RSPA.1998.0193.spa
dc.relation.referencesZ. Wu and N. E. Huang, “A study of the characteristics of white noise using the empirical mode decomposition method,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 460, no. 2046, pp. 1597–1611, Jun. 2004, doi: 10.1098/RSPA.2003.1221.spa
dc.relation.referencesG. Rilling, P. Flandrin, and P. Gonçalvès, “ON EMPIRICAL MODE DECOMPOSITION AND ITS ALGORITHMS”.spa
dc.relation.referencesG. Rilling, P. Flandrin, P. Goncalves, and J. M. Lilly, “Bivariate empirical mode decomposition,” IEEE Signal Processing Letters, vol. 14, no. 12, pp. 936–939, Dec. 2007, doi: 10.1109/LSP.2007.904710.spa
dc.relation.referencesN. Ur Rehman and D. P. Mandic, “Empirical mode decomposition for trivariate signals,” IEEE Transactions on Signal Processing, vol. 58, no. 3 PART 1, pp. 1059– 1068, Mar. 2010, doi: 10.1109/TSP.2009.2033730.spa
dc.relation.referencesJ. Fleureau, A. Kachenoura, L. Albera, J. C. Nunes, and L. Senhadji, “Multivariate empirical mode decomposition and application to multichannel filtering,” Signal Processing, vol. 91, no. 12, pp. 2783–2792, Dec. 2011, doi: 10.1016/J.SIGPRO.2011.01.018.spa
dc.relation.referencesX. Lang et al., “Fast Multivariate Empirical Mode Decomposition,” IEEE Access, vol. 6, pp. 65521–65538, 2018, doi: 10.1109/ACCESS.2018.2877150.spa
dc.relation.referencesH. C. Andrews and C. L. Patterson, “Singular Value Decomposition (SVD) Image Coding,” IEEE Transactions on Communications, vol. 24, no. 4, pp. 425–432, 1976, doi: 10.1109/TCOM.1976.1093309.spa
dc.relation.referencesC. Moore, “APPLICATION OF SINGULAR VALUE DECOMPOSITION TO THE DESIGN, ANALYSIS, AND CONTROL OF INDUSTRIAL PROCESSES.,” Proceedings of the American Control Conference, pp. 643–650, 1986, doi: 10.23919/ACC.1986.4789019.spa
dc.relation.referencesR. Izmailov, D. Bassu, A. McIntosh, L. Ness, and D. Shallcross, “Application of multiscale singular vector decomposition to vessel classification in overhead satellite imagery,” Seventh International Conference on Digital Image Processing (ICDIP 2015), vol. 9631, p. 963108, Jul. 2015, doi: 10.1117/12.2196925.spa
dc.relation.references“Understanding Singular Value Decomposition and its Application in Data Science | by Reza Bagheri | Towards Data Science.” https://towardsdatascience.com/understanding-singular-value-decomposition-andits-application-in-data-science-388a54be95d (accessed Jul. 11, 2021).spa
dc.relation.references“Una introducción a los Árboles de Decisión | DABIA.” https://www.grupodabia.com/post/2020-05-19-arbol-de-decision/ (accessed Jul. 11, 2021).spa
dc.relation.references“6 AdaBoost | Modelos Predictivos.” https://fhernanb.github.io/libro_mod_pred/adaboost.html (accessed Jul. 11, 2021).spa
dc.relation.referencesM. Mandal and A. Mukhopadhyay, “An Improved Minimum Redundancy Maximum Relevance Approach for Feature Selection in Gene Expression Data,” Procedia Technology, vol. 10, pp. 20–27, Jan. 2013, doi: 10.1016/J.PROTCY.2013.12.332.spa
dc.relation.referencesS. Ramírez-Gallego et al., “Fast-mRMR: Fast Minimum Redundancy Maximum Relevance Algorithm for High-Dimensional Big Data,” International Journal of Intelligent Systems, vol. 32, no. 2, pp. 134–152, Feb. 2017, doi: 10.1002/INT.21833.spa
dc.relation.referencesP. Bugata and P. Drotar, “On some aspects of minimum redundancy maximum relevance feature selection,” Science China Information Sciences 2019 63:1, vol. 63, no. 1, pp. 1–15, Dec. 2019, doi: 10.1007/S11432-019-2633-Y.spa
dc.relation.referencesA. Atyabi, S. Fitzgibbon, and D. Powers, “The impact of Biasing on Overlapping windows : An EEG study,” Jul. 2012.spa
dc.relation.referencesA. Atyabi, S. P. Fitzgibbon, and D. M. W. Powers, “Multiplication of EEG Samples through Replicating, Biasing, and Overlapping,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7670 LNAI, pp. 209–219, 2012, doi: 10.1007/978-3-642-35139- 6_20.spa
dc.relation.referencesA. Atyabi, S. Fitzgibbon, and D. M. W. Powers, “Biasing the overlapping and nonoverlapping sub-windows of EEG recording,” Jun. 2012. doi: 10.1109/IJCNN.2012.6252465.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.otherProcesamiento Automatizado de Datosspa
dc.subject.otherElectronic Data Processingeng
dc.subject.proposalEMDeng
dc.subject.proposalMEMDeng
dc.subject.proposalSVDeng
dc.subject.proposalPLVeng
dc.subject.proposalLDAeng
dc.subject.proposalCLASIFICADORES MULTICLASEspa
dc.subject.proposalMULTICLASS CLASSIFIERSeng
dc.subject.unescoProgramación informáticaspa
dc.subject.unescoComputer programmingeng
dc.titleAlgoritmo para la clasificación en línea de fonemas de habla silenciosa utilizando un sistema embebidospa
dc.title.translatedAlgorithm for online classification of silent speech phonemes using an embedded systemeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo de una Interfaz Cerebro Computador con señales electroencefalográficas (EEG) que utilice el pensamiento del lenguaje para el control de una prótesis de miembro superior con aplicación a personas discapacitadas con amputaciones debidas al conflicto armado colombianospa
oaire.fundernameMinCienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1098707202.2022.pdf
Tamaño:
1.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: