Aplicación de la teoría fractal para la estimación de la distribución geométrica de fallas en macizos rocosos

dc.contributor.advisorMesa Sánchez, Oscar Joséspa
dc.contributor.advisorEcheverri Ramírez, Oscarspa
dc.contributor.advisorBrasil Cavalcante, André Luisspa
dc.contributor.authorMoná Graciano, Juan Estebanspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.coverage.cityMedellínspa
dc.date.accessioned2020-05-11T13:44:57Zspa
dc.date.available2020-05-11T13:44:57Zspa
dc.date.issued2019-08-31spa
dc.description.abstractLa geología estructural tiene muchos campos de aplicación, en geotecnia de rocas es fundamental el estado de fracturamiento para realizar una clasi cación geomecánica seg un metodologías establecidas como el RMR (Rock Mass Rating) y el GSI (Geological Strength Index), sin embargo la estimación cualitativa de fracturas conlleva errores de metodología, interpretación y valoración en las obras subterraneas. Este aporte investigativo involucra la teoría fractal para realizar estimaciones en términos de clasi cación geomecánica y como herramienta para simular geométricamente el comportamiento de una falla. Para esto se establecen las características de los fractales y las características del fracturamiento donde la dimensión fractal es utilizada como herramienta para realizar la clasi cación geomecánica en 15 frentes de obra subterranea y en cartografía geotécnica en dos localidades del departamento de Antioquia, Colombia. Por otro lado, se lograron obtener modelos de distribución geométrica de fracturas utilizando autómatas celulares probabil ísticos programados en el lenguaje de programción Wolfram Mathematica. Ambos métodos muestran tener una buena potencialidad para ser aplicados en la ingeniería con las calibraciones e investigaciones (Tomado de la fuente)spa
dc.description.abstractThe structural geology have lots of applications, in rock geomechanics for example, the geotechnical classi cation depends on how much fractured is the massif is, that classi cation is made upon some metodologies which the most common ones are the (Rock Mass Rating) and the GSI (Geological Strength Index ), however, the cualitative approximation of the fracture networks carries on common mistakes on the intrepretation and construction of underground excavations. This works implies the fractal theory to make geotechnical classi cations and to estimate the geometrical behaviour of a fault. Some relationships between the fractals and the fracture networks are established where the fractal dimension are used as tool to make geotechnical clasi cation of 15 massifs in one underground excavation and also used in geotechnical cartography in 2 locations in Antioquia, Colombia. On the other side, one model for the geometrical distribution of fractures are proposed using probabilistic cellular automatons on the Wolfram Mathematica language. Both methods shows a good potenciality to be applied to the engineer work eld with some precitions and some more research to improve the limitants to the methods which are also proposed in the research work.necesarias (tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Geotecniaspa
dc.description.sponsorshipUniversidad Nacional de Colombia - Sede Medellínspa
dc.format.extent95spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMoná, J.E., Echeverri Ramírez, O., Brasil-Cavalcante, A.L., Mesa-Sánchez, O.J., (2019) Aplicación de la teoría fractal para la estimación de la distribución geométrica de fallas en macizos rocosos. Tesis de Maestría. Universidad Nacional de Colombia, Sede Medellín. Facultad de Minas. Departamento de Ingeniería Civil.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77499
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Civilspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAlc arcel, F., G omez, J., and Compiladores (2019). Mapa geol ogico de colombia 2019. escala 1:2.000.000.spa
dc.relation.referencesAyan Misra, Achyuta; Mukherjee, S. (2018). Atlas of Structural Geological Interpretation from Seismic Images. Wyley & Sons Ltd, New York.spa
dc.relation.referencesBagde, M. N., Raina, A. K., Chakraborty, A. K., and Jethwa, J. L. (2002). Rock mass characterization by fractal dimension. Engineering Geology, 63(1-2):141{155.spa
dc.relation.referencesBarton, N. (1973). Review of a new shear-strength criterion for rock joints. Engineering Geology, 7(4):287 { 332.spa
dc.relation.referencesBarton, N., Lien, R., and Lunde, J. (1974). Engineering classi cation of rock masses for the design of tunnel support. Rock Mechanics Felsmechanik Mecanique des Roches, 6:189{236.spa
dc.relation.referencesBieniawski, Z.T; Balkema, A. (1976). Rock mass classi cations in rock engineering. pages pp 27{32.spa
dc.relation.referencesBieniawski, Z. T. (1989). Engineering rock mass classi cations: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. John Wiley & Sons.spa
dc.relation.referencesBinglei, L., Yongtao, G., and Xiaojuan, L. (2011). Rock failure process research and analysis of fractal. 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), pages 1630{1633.spa
dc.relation.referencesde Faria Borges, L. P., de Moraes, R. M., Crestana, S., and Cavalcante, A. L. B. (2019). Geometric features and fractal nature of soil analyzed by x-ray microtomography image processing. International Journal of Geomechanics, 19(8):04019088.spa
dc.relation.referencesDe Saussure, H. B. (1796). Agenda ou Tableau g en eral des observations et des recherches dont les r esultats doivent servir de base a la th eorie de la terre.spa
dc.relation.referencesde SM Ozelim, L. C., Cavalcante, A. L. B., and Baetens, J. M. (2017). On the iota-delta function: a link between cellular automata and partial di erential equations for modeling advection{dispersion from a constant source. The Journal of Supercomputing, 73(2):700{712.spa
dc.relation.referencesDearman, W. R. (1974). Weathering classi cation in the characterisation of rock for engineering purposes in british practice. Bulletin of the International Association of Engineering Geology - Bulletin de l'Association Internationale de G eologie de l'Ing enieur, 9(1):33{42.spa
dc.relation.referencesDeere, D. (1963). Technical description of rock cores for engineering purposes. pages pp 16{22.spa
dc.relation.referencesDixon, T. H. and Xie, S. (2018). A kinematic model for the evolution of the Eastern California Shear Zone and Garlock Fault, Mojave Desert, California. Earth and Planetary Science Letters, 494:60{68.spa
dc.relation.referencesEhlen, J. (2000). Fractal analysis of joint patterns in granite. International Journal of Rock Mechanics and Mining Sciences, 37(6):909{922.spa
dc.relation.referencesFernandez-Gutierrez, J.D; P erez-Acebo, H. M.-A. D. (2017). Correlaci on entre el ndice RMR de Bieniawski y el ndice Q de Barton en formaciones sedimentarias de grano no. 69(547).spa
dc.relation.referencesFossen, H. (2010). Structural Geology. Cambridge University Press.spa
dc.relation.referencesGardener, M. (1970). The fantastic combinations of john conway's new solitaire game \life" by martin gardner. Scienti c American, 223:120{123.spa
dc.relation.referencesGhosh, A. and Daemen, J. J. (1993). Fractal characteristics of rock discontinuities.spa
dc.relation.referencesHall, J. (1815). Ii. on the vertical position and convolutions of certain strata, and their relation with granite. Transactions of the Royal Society of Edinburgh, 7(1):79{108.spa
dc.relation.referencesHealy, D., Rizzo, R. E., Cornwell, D. G., Farrell, N. J. C., Watkins, H., Timms, N. E., Gomez-rivas, E., and Smith, M. (2017). FracPaQ : A MATLAB TM toolbox for the quanti cation of fracture patterns. Journal of Structural Geology, 95:1{16.spa
dc.relation.referencesHern andez Zubeldia, E., de SM Ozelim, L. C., Lu s Brasil Cavalcante, A., and Crestana, S. (2015). Cellular automata and x-ray microcomputed tomography images for generating arti cial porous media. International Journal of Geomechanics, 16(2):04015057.spa
dc.relation.referencesHobbs, B. E. (2019). The development of structural geology and the historical context of the journal of structural geology: A re ection by bruce hobbs. Journal of Structural Geology, 125:3 { 19. Back to the future.spa
dc.relation.referencesHoek, E. (1983). Strength of jointed rock masses. Geotechnique, 33(3):187{223.spa
dc.relation.referencesHutton, J. (1788). X. theory of the earth; or an investigation of the laws observable in the composition, dissolution, and restoration of land upon the globe. Transactions of the Royal Society of Edinburgh, 1(2):209{304.spa
dc.relation.referencesJiang, H. and Zhao, J. (2015). A simple three-dimensional failure criterion for rocks based on the hoek{ brown criterion. Rock Mechanics and Rock Engineering, 48(5):1807{1819.spa
dc.relation.referencesKert esz, J. (1992). Fractal fracture. Physica A: Statistical Mechanics and its Applications, 191(1):208 { 212.spa
dc.relation.referencesKruhl, J. H. (2013). Fractal-geometry techniques in the quanti cation of complex rock structures: A special view on scaling regimes, inhomogeneity and anisotropy. Journal of Structural Geology, 46:2{21spa
dc.relation.referencesLindenmayer, A. (1968). Mathematical models for cellular interactions in development i. laments with one-sided inputs. Journal of Theoretical Biology, 18(3):280 { 299.spa
dc.relation.referencesLiu, R., Jiang, Y., Li, B., and Wang, X. (2015). A fractal model for characterizing uid ow in fractured rock masses based on randomly distributed rock fracture networks. Computers and Geotechnics, 65:45{ 55.spa
dc.relation.referencesMandelbrot, B. (1967). How long is the coast of britain? statistical self-similarity and fractional dimension. Science, 156(3775):636{638.spa
dc.relation.referencesMandelbrot, B., Freeman, W., and Company (1983a). The Fractal Geometry of Nature. Einaudi paperbacks. Henry Holt and Company.spa
dc.relation.referencesMandelbrot, B., Freeman, W., and Company (1983b). The Fractal Geometry of Nature. Einaudi paperbacks. Henry Holt and Company.spa
dc.relation.referencesMukherjee, S. (2015). Atlas of Structural Geology. Number 1. Elsevier, Waltham, Massachussets.spa
dc.relation.referencesNewton, I. (1687). Philosophiae naturalis principia mathematica. J. Societatis Regiae ac Typis J. Streater.spa
dc.relation.referencesOzelim, L. C. and Cavalcante, A. L. (2014). On the iota-delta function: Mathematical representation of two-dimensional cellular automata. Complex Systems, 22(4):405{422.spa
dc.relation.referencesOzelim, L. C. d. S. and Cavalcante, A. L. (2017). Representative elementary volume determination for permeability and porosity using numerical three-dimensional experiments in microtomography data. International Journal of Geomechanics, 18(2):04017154.spa
dc.relation.referencesOzelim, L. C. d. S. and Cavalcante, A. L. (2018a). 3d cellular automata as a computational tool to generate arti cial porous media. International Journal of Geomechanics, 18(9):04018096spa
dc.relation.referencesOzelim, L. C. d. S. and Cavalcante, A. L. (2018b). Combining microtomography, 3d printing, and numerical simulations to study scale e ects on the permeability of porous media. International Journal of Geomechanics, 19(2):04018194.spa
dc.relation.referencesPal, S. K. and Chakravarty, D. (2003). Rock-mass Characterization using Fractals. National Conference on Nonlinear Systems & Dynamics, (January):217{220.spa
dc.relation.referencesPatton, F. and Deere, D. (1970). Signi cant geologic factors in rock slope stability. Planning Open Pit Mines: AA Balkema, Capetown, South Africa, pages 143{151.spa
dc.relation.referencesPlayfair, J. (1802). Illustrations of the Huttonian Theory of the Earth. Cambridge University Press.spa
dc.relation.referencesPoincare, H. (1881). M emorie sur les courbes d e nies par une equation di erentielle (i). Journal des Math ematiques Pures et Appliqu ees 3 S erie 7, pages 375{422.spa
dc.relation.referencesPoincare, H. (1882). M emorie sur les courbes d e nies par une equation di erentielle (ii). Journal des Math ematiques Pures et Appliqu ees 3 S erie 8, pages 251{296.spa
dc.relation.referencesPoincare, H. (1885). M emorie sur les courbes d e nies par une equation di erentielle (iii). Journal des Math ematiques Pures et Appliqu ees 4 S erie 1, pages 167{244.spa
dc.relation.referencesPoincare, H. (1905). La science et l'hypothese, ammarion, paris 1902. CR Acad. Sci. Paris, 140:1504.spa
dc.relation.referencesPointe, P. R. L. A. (1988). A Method to Characterize Fracture Density and Connectivity Through Fractal Geometry. 25(6):421{429.spa
dc.relation.referencesPollard, P., Pollard, D., Fletcher, R., Press, C. U., and Fletcher, R. (2005). Fundamentals of Structural Geology. Cambridge University Press.spa
dc.relation.referencesPrusinkiewicz, P., Hammel, M., Mech, R., and Hanan, J. (1995). The arti cial life of plants. Arti cial life for graphics, animation, and virtual reality, 7:1{38.spa
dc.relation.referencesRappaport, R. (1997). When Geologists Were Historians, 1665{1750. Cornell University Press.spa
dc.relation.referencesReyes G omez, D. A. (2011). Descripci on y Aplicaciones de los Aut omatas Celulares. U.N.a.M., pages 1{26.spa
dc.relation.referencesRiedel, W. (1929). Zur mechanik geologischer brucherscheinungen ein beitrag zum problem der ederspatten. Zentbl. Miner. Geol. Palaont. Abt., pages 354{368.spa
dc.relation.referencesSharpe, D. (1847). On slaty cleavage. Quarterly Journal of the Geological Society, 3(1-2):74{105.spa
dc.relation.referencesSierpinski, W. (1915). Sur une courbe dont tout point est un point de rami cation. CR Acad. Sci., 160:302{305.spa
dc.relation.referencesSmith, W. (1815). A geological map of england and wales and part of scotland. J. Cary, London.spa
dc.relation.referencesSoldo, L., Vendramini, M., and Eusebio, A. (2019). Tunnels design and geological studies. Tunnelling and Underground Space Technology, 84(June 2018):82{98.spa
dc.relation.referencesT Chelidze; Y, G. (1990). Technical Note Evidence of Fractal Fracture. Earth, 27(3):223{225.spa
dc.relation.referencesTarbuck, E. (2005). Ciencias de la tierra: Una Introducci on a la geolog a F sica. Fuera de colecci on Out of series. Pearson Educaci on.spa
dc.relation.referencesTerzaghi, K. (1946). Rock defects and loads on tunnel supports. page 95 p. : ill. ; 27 cm.spa
dc.relation.referencesTrouw, R. A., Passchier, C. W., and Wiersma, D. J. (2009). Atlas of Mylonites-and related microstructures. Springer Science & Business Media.spa
dc.relation.referencesTurcotte, D. (1997). Fractals and chaos in geology and geophysics. Cambridge University Press, second edi edition.spa
dc.relation.referencesVernon, R. H. (2004). A Practical Guide to Rock Microstructure. Cambridge University Press, Cambridge.spa
dc.relation.referencesVon Neumann, J. and Burks, A. (1966). Theory of self-reproducing automata. University of Illinois Press.spa
dc.relation.referencesWang, W. D., Su, Y. L., Zhang, Q., Xiang, G., and Cui, S. M. (2018). Performance-based fractal fracture model for complex fracture network simulation. Petroleum Science, 15(1):126{134.spa
dc.relation.referencesWolfram, S. (2002). A New Kind of Science. Wolfram Media Inc, Illinois, USA.spa
dc.relation.referencesYangsheng, Z., Zengchao, F., Dong, Y., Weiguo, L., and Zijun, F. (2015). Three-dimensional fractal distribution of the number of rock-mass fracture surfaces and its simulation technology. Computers and Geotechnics, 65:136{146.spa
dc.relation.referencesZhang, L. and Ding, X. (2010). Variance of non-parametric rock fracture mean trace length estimator. International Journal of Rock Mechanics and Mining Sciences, 47(7):1222{1228.spa
dc.relation.referencesZhao, Y., Feng, Z., Liang, W., Yang, D., Hu, Y., and Kang, T. (2009). Investigation of fractal distribution law for the trace number of random and grouped fractures in a geological mass. Engineering Geology, 109(3-4):224{229.spa
dc.relation.referencesZhou, Z., Su, Y., Wang, W., and Yan, Y. (2017). Application of the fractal geometry theory on fracture network simulation. Journal of Petroleum Exploration and Production Technology, 7(2):487{496.spa
dc.relation.referencesZibra, I., Gessner, K., Smithies, H., and Peternell, M. (2014). On shearing, magmatism and regional deformation in neoarchean granite-greenstone systems: Insights from the yilgarn craton. Journal of Structural Geology, 67:253{267.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.proposalFractalseng
dc.subject.proposalFractalesspa
dc.subject.proposalFractureseng
dc.subject.proposalFracturamientospa
dc.subject.proposalCellular Automatoneng
dc.subject.proposalAutómatas Celularesspa
dc.subject.proposalFractal Dimensioneng
dc.subject.proposalDimensión Fractalspa
dc.subject.proposalRMRspa
dc.subject.proposalRMReng
dc.subject.proposalGSIspa
dc.subject.proposalGSIeng
dc.titleAplicación de la teoría fractal para la estimación de la distribución geométrica de fallas en macizos rocososspa
dc.title.alternativeOn the application of fractal theory for the geometrical behaviour of faults among rock massifsspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020452976.2019.pdf
Tamaño:
136.41 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: