Modelado computacional de astrocito humano usando datos de transcriptómica y proteómica

dc.contributor.advisorPinzón Velasco, Andrés Mauricio
dc.contributor.advisorGonzález Santos, Janet
dc.contributor.authorMendoza Mejía, Nicolás
dc.contributor.researchgroupGrupo de Investigación en Bioinformática y Biología de Sistemasspa
dc.date.accessioned2022-07-19T19:56:11Z
dc.date.available2022-07-19T19:56:11Z
dc.date.issued2022-07-17
dc.descriptionilutraciones, graficasspa
dc.description.abstractAunque la astrogliosis está relacionada con eventos neuroprotectores; su neurotoxicidad se ha correlacionado con enfermedades neurodegenerativas y otros desórdenes (Sofroniew & Vinters, 2010). Lo que ha aumentado la atención en el estudio de estas células. Sin embargo, los procesos de señalización y actividad metabólica relacionados con la neurotoxicidad aún son poco conocidos (González et al., 2020; Sofroniew, 2015), por lo que se han empleado modelos metabólicos a escala genómica (GEM) de astrocito para estudiar estas respuestas. Por lo tanto, en este trabajo se hace la contextualización de un GEM de astrocito humano integrando datos multiomicos con una nueva aproximación en combinación con el algoritmo iMAT, permitiendo incluir información de diversos procesos biológicos en el modelo (Karahalil, 2016; Vivek-Ananth & Samal, 2016). En consecuencia, el GEM resultante presenta una mayor cobertura del metabolismo y una capacidad predictiva superior en los escenarios simulados coincidiendo con lo reportado en la literatura. Además, durante la reconstrucción de este modelo se generaron dos algoritmos, uno permite integrar el proteoma y transcriptoma, mientras el otro corrige los desbalances estequiométricos presentes en el modelo. Finalmente, este modelo tiene el potencial de acelerar el estudio de la astrogliosis, permitiendo descifrar la relación entre el metabolismo del astrocito y la aparición de enfermedades neurodegenerativas mediante la generación de hipótesis y la predicción del desempeño de fármacos. (Texto tomado de la fuente)spa
dc.description.abstractEven though astrogliosis is related to neuroprotective events; its neurotoxicity has been correlated with neurodegenerative diseases and other disorders (Sofroniew & Vinters, 2010). Which have shifted the attention towards the study of these cells. However, the related signaling processes and metabolic activity related to the neurotoxicity are still poorly known (González et al., 2020; Sofroniew, 2015), thus genome-scale metabolic models (GEMs) of astrocytes have been used to study this response, as they allow modelling metabolic interac- tions (Martín-Jiménez et al., 2017; Osorio et al., 2020). Therefore, in this work an astrocyte’s GEM is contextualized by integrating multi-omic data with a new approach in combination with the algorithm iMAT, which allows including information from various biological processes in the model (Karahalil, 2016; Vivek-Ananth & Samal, 2016). Thus, the resulting GEM presets a greater coverage of the metabolic net- work and a higher predictive capability in the simulated scenarios, which is in line with the reported data in the literature. In addition, during the reconstruction of this model two algorithms were generated, one integrates the proteome and transcriptome together, meanwhile the other corrects the stoichiometric imbalances present in the model. Finally, this model has the potential to accelerate the study of astrogliosis allowing to decipher the relationship between astrocyte metabolism and the appearance of neurodegenerative diseases by generating hypotheses and predicting drug performance.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bioinformáticaspa
dc.description.researchareaBiología de sistemasspa
dc.format.extentxii, 73 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81715
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Bioinformáticaspa
dc.relation.referencesA, S., W, J., Di, W., Dp, J., & X, D. (2018, mayo 1). ADAP-GC 3.2: Graphical Software Tool for Efficient Spectral Deconvolution of Gas Chromatography-High- Resolution Mass Spectrometry Metabolomics Data. Journal of Proteome Research; J Proteome Res. https://doi.org/10.1021/acs.jproteome.7b00633spa
dc.relation.referencesAlonso, A., Marsal, S., & Julià, A. (2015). Analytical Methods in Untarget- ed Metabolomics: State of the Art in 2015. Frontiers in Bioengineering and Biotechnology, 3. https://doi.org/10.3389/fbioe.2015.00023spa
dc.relation.referencesAmadio, S., D’Ambrosi, N., Trincavelli, M. L., Tuscano, D., Sancesario, G., Bernar- di, G., Martini, C., & Volonté, C. (2005). Differences in the neurotoxicity profile induced by ATP and ATP γS in cultured cerebellar granule neurons. Neurochem- istry International, 47 (5), 334–342. https://doi.org/10.1016/j.neuint.2005.05.008spa
dc.relation.referencesBecker, S. A., & Palsson, B. O. (2008). Context-Specific Metabolic Networks Are Consistent with Experiments. PLOS Computational Biology, 4(5), e1000082. https://doi.org/10.1371/journal.pcbi.1000082spa
dc.relation.referencesBeleites, C., & Sergo, V. (2020). hyperSpec: A package to handle hyperspectral da- ta sets in R. https://cran.r-project.org/web/packages/hyperSpec/hyperSpec.pdfspa
dc.relation.referencesBernstein, D. B., Sulheim, S., Almaas, E., & Segrè, D. (2021). Addressing un- certainty in genome-scale metabolic model reconstruction and analysis. Genome Biology, 22 (1), 64. https://doi.org/10.1186/s13059-021-02289-zspa
dc.relation.referencesBezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., & Volterra, A. (2001). CXCR4-activated astrocyte glutamate release via TNFalpha: Amplification by microglia triggers neurotoxicity. Nature Neuroscience, 4(7), 702-710. https://doi.org/10.1038/89490spa
dc.relation.referencesBianchi, M. G., Bardelli, D., Chiu, M., & Bussolati, O. (2014). Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease. Cellular and Molecular Life Sciences: CMLS, 71(11), 2001-2015. https://doi.org/10.1007/s00018-013-1484-0spa
dc.relation.referencesBleu Knight, V., & Serrano, E. E. (2017). Hydrogel scaffolds promote neural gene expression and structural reorganization in human astrocyte cultures. PeerJ, 2017(1). Scopus. https://doi.org/10.7717/peerj.2829spa
dc.relation.referencesBöcker, S., Letzel, M. C., Lipták, Z., & Pervukhin, A. (2009). SIRIUS: Decom- posing isotope patterns for metabolite identification. Bioinformatics, 25(2), 218. https://doi.org/10.1093/bioinformatics/btn603spa
dc.relation.referencesBond, N. J., Shliaha, P. V., Lilley, K. S., & Gatto, L. (2013). Improving Qualitative and Quantitative Performance for MSE-based Label-free Proteomics. Journal of Proteome Research, 12(6), 2340-2353. https://doi.org/10.1021/pr300776tspa
dc.relation.referencesBragin, D. E., Zhou, B., Ramamoorthy, P., Müller, W. S., Connor, J. A., & Shi, H. (2010). Differential changes of glutathione levels in astrocytes and neurons in ischemic brains by two-photon imaging. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 30(4), 734–738. https://doi.org/10.1038/jcbfm.2010spa
dc.relation.referencesBranzoi, I. V., Iordoc, M., Branzoi, F., Vasilescu-Mirea, R., & Sbarcea, G. (2010). Influence of diamond-like carbon coating on the corrosion resistance of the NITI- NOL shape memory alloy. Surface and Interface Analysis, 42 (6–7), 502–509. https://doi.org/10.1002/sia.3473spa
dc.relation.referencesBrunk, E., Sahoo, S., Zielinski, D. C., Altunkaya, A., Dräger, A., Mih, N., Gatto, F., Nilsson, A., Preciat Gonzalez, G. A., Aurich, M. K., Prlić, A., Sastry, A., Danielsdottir, A. D., Heinken, A., Noronha, A., Rose, P. W., Burley, S. K., Fleming, R. M. T., Nielsen, J., . . . Palsson, B. O. (2018). Recon3D enables a three- dimensional view of gene variation in human metabolism. Nature Biotechnology, 36 (3), 272–281. https://doi.org/10.1038/nbt.4072spa
dc.relation.referencesCa, S., G, O., Ej, W., C, Q., Sa, T., Tr, B., De, C., R, A., & G, S. (2005, diciembre). METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring; Ther Drug Monit. https://doi.org/10.1097/01.ftd.0000179845.53213.39spa
dc.relation.referencesCarroll, A. J., Badger, M. R., & Harvey Millar, A. (2010). The Metabolome- Express Project: Enabling web-based processing, analysis and transparent dis- semination of GC/MS metabolomics datasets. BMC Bioinformatics, 11(1), 376. https://doi.org/10.1186/1471-2105-11-376spa
dc.relation.referencesCarson, M. J., Doose, J. M., Melchior, B., Schmid, C. D., & Ploix, C. C. (2006). CNS immune privilege: Hiding in plain sight. Immunological Reviews, 213, 48. https://doi.org/10.1111/j.1600-065X.2006.00441.xspa
dc.relation.referencesChai, L. E., Law, C. K., Mohamad, M. S., Chong, C. K., Choon, Y. W., Deris, S., & Illias, R. M. (2014). Investigating the Effects of Imputation Methods for Modelling Gene Networks Using a Dynamic Bayesian Network from Gene Expression Data. The Malaysian Journal of Medical Sciences : MJMS, 21 (2), 20.spa
dc.relation.referencesChambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., Gatto, L., Fischer, B., Pratt, B., Egertson, J., Hoff, K., Kess- ner, D., Tasman, N., Shulman, N., Frewen, B., Baker, T. A., Brusniak, M.- Y., Paulse, C., Creasy, D., . . . Mallick, P. (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30(10), 918-920. https://doi.org/10.1038/nbt.2377spa
dc.relation.referencesChong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S., & Xia, J. (2018). MetaboAnalyst 4.0: Towards more transparent and inte- grative metabolomics analysis. Nucleic Acids Research, 46(W1), W486-W494. https://doi.org/10.1093/nar/gky310spa
dc.relation.referencesConesa, A. (2014). The STATegra project: New statistical tools for anal- ysis and integration of diverse omics data. EMBnet.Journal, 20(A), 768. https://doi.org/10.14806/ej.20.A.768spa
dc.relation.referencesConesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPher- son, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17, 13. https://doi.org/10.1186/s13059-016-0881-8spa
dc.relation.referencesCosta, C., Maraschin, M., & Rocha, M. (2016). An R package for the integrated analysis of metabolomics and spectral data. Computer Methods and Programs in Biomedicine, 129, 117-124. https://doi.org/10.1016/j.cmpb.2016.01.008spa
dc.relation.referencesD, S., I, S., Ne, I., A, H., & Cp, P. (2014, febrero). Sequencing depth and coverage: Key considerations in genomic analyses. Nature Reviews. Genetics; Nat Rev Genet. https://doi.org/10.1038/nrg3642spa
dc.relation.referencesDeutsch, E. W., Albar, J. P., Binz, P.-A., Eisenacher, M., Jones, A. R., Mayer, G., Omenn, G. S., Orchard, S., Vizcaíno, J. A., & Hermjakob, H. (2015). Development of data representation standards by the human proteome organization proteomics standards initiative. Journal of the American Medical Informatics Association : JAMIA, 22(3), 495-506. https://doi.org/10.1093/jamia/ocv001spa
dc.relation.referencesDiaz-Ortiz, M. E., & Chen-Plotkin, A. S. (2020). Omics in neurodegenerative disease: Hope or hype? Trends in Genetics : TIG, 36 (3), 152. https://doi.org/10.1016/j.tig.2019.12.002spa
dc.relation.referencesDs, W., Yd, F., A, M., Ac, G., K, L., R, V.-F., T, S., D, J., C, L., N, K., Z, S., E, L., N, A., M, B., S, S., D, A., Y, L., H, B., J, G., . . . A, S. (2018, abril 1). HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Research; Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1089spa
dc.relation.referencesEbrahim, A., Brunk, E., Tan, J., O’Brien, E. J., Kim, D., Szubin, R., Lerman, J. A., Lechner, A., Sastry, A., Bordbar, A., Feist, A. M., & Palsson, B. O. (2016). Multi-omic data integration enables discovery of hidden biological regularities. Nature Communications, 7(1), 13091. https://doi.org/10.1038/ncomms13091spa
dc.relation.referencesF, N., Y, G., Ea, C., S, M., L, L., & M, H.-M. (2012, enero 9). MSeasy: Unsuper- vised and untargeted GC-MS data processing. Bioinformatics (Oxford, England); Bioinformatics. https://doi.org/10.1093/bioinformatics/bts427spa
dc.relation.referencesFang, X., Wallqvist, A., & Reifman, J. (2012). Modeling Phenotypic Metabolic Adaptations of Mycobacterium tuberculosis H37Rv under Hypoxia. PLOS Com- putational Biology, 8(9), e1002688. https://doi.org/10.1371/journal.pcbi.1002688spa
dc.relation.referencesFang, X., Lloyd, C. J., & Palsson, B. O. (2020). Reconstructing organisms in silico: Genome-scale models and their emerging applications. Nature Reviews Microbiology, 18 (12), 731–743. https://doi.org/10.1038/s41579-020-00440-4spa
dc.relation.referencesFeigin, V. L., Nichols, E., Alam, T., Bannick, M. S., Beghi, E., Blake, N., Culpep- per, W. J., Dorsey, E. R., Elbaz, A., Ellenbogen, R. G., Fisher, J. L., Fitzmaurice, C., Giussani, G., Glennie, L., James, S. L., Johnson, C. O., Kassebaum, N. J., Logroscino, G., Marin, B., . . . Vos, T. (2019). Global, regional, and nation- al burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(5), 459-480. https://doi.org/10.1016/S1474-4422(18)30499-Xspa
dc.relation.referencesFiehn, O., Robertson, D., Griffin, J., van der Werf, M., Nikolau, B., Morrison, N., Sumner, L. W., Goodacre, R., Hardy, N. W., Taylor, C., Fostel, J., Kristal, B., Kaddurah-Daouk, R., Mendes, P., van Ommen, B., Lindon, J. C., & Sansone, S.-A. (2007). The metabolomics standards initiative (MSI). Metabolomics, 3(3), 175-178. https://doi.org/10.1007/s11306-007-0070-6spa
dc.relation.referencesFinkel, L., Millán Arroyo, Crespo, C., & Garcés, M. (2016). Estudio sobre las enfermedades neurodegenerativas en España y su impacto económico y social. https://doi.org/10.13140/RG.2.1.3269.8009spa
dc.relation.referencesFlanagan, B., McDaid, L., Wade, J., Wong-Lin, K., & Harkin, J. (2018). A computational study of astrocytic glutamate influence on post- synaptic neuronal excitability. PLOS Computational Biology, 14 (4), e1006040. https://doi.org/10.1371/journal.pcbi.1006040spa
dc.relation.referencesFondi, M., & Liò, P. (2015). Multi -omics and metabolic modelling pipelines: Challenges and tools for systems microbiology. Microbiological Research, 171, 52-64. https://doi.org/10.1016/j.micres.2015.01.003spa
dc.relation.referencesGatto, L. (2020, abril 27). Human Protein Atlas in R. Bioconductor. https://www.bioconductor.org/packages/release/bioc/vignettes/hpar/inst/doc/hpar.htmlspa
dc.relation.referencesGatto, L., & Christoforou, A. (2014). Using R and Bioconductor for proteomics data analysis. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1844(1, Part A), 42-51. https://doi.org/10.1016/j.bbapap.2013.04.032spa
dc.relation.referencesGevorgyan, A., Poolman, M. G., & Fell, D. A. (2008). Detection of stoichiomet- ric inconsistencies in biomolecular models. Bioinformatics, 24 (19), 2245–2251. https://doi.org/10.1093/bioinformatics/btn425spa
dc.relation.referencesGhazalpour, A., Bennett, B., Petyuk, V. A., Orozco, L., Hagopian, R., Mungrue, I. N., Farber, C. R., Sinsheimer, J., Kang, H. M., Furlotte, N., Park, C. C., Wen, P.-Z., Brewer, H., Weitz, K., Camp, D. G., Pan, C., Yordanova, R., Neuhaus, I., Tilford, C., . . . Lusis, A. J. (2011). Comparative analysis of pro- teome and transcriptome variation in mouse. PLoS Genetics, 7 (6), e1001393. https://doi.org/10.1371/journal.pgen.1001393spa
dc.relation.referencesGonzález-Giraldo, Y., Forero, D. A., Echeverria, V., Garcia-Segura, L. M., & Barreto, G. E. (2019). Tibolone attenuates inflammatory response by palmitic acid and preserves mitochondrial membrane potential in astrocytic cells through estrogen receptor beta. Molecular and Cellular Endocrinology, 486, 65–78. https://doi.org/10.1016/j.mce.2019.02.017spa
dc.relation.referencesGonzález, J., Pinzón, A., Angarita-Rodríguez, A., Aristizabal, A. F., Barreto, G. E., & Martín-Jiménez, C. (2020). Advances in Astrocyte Computational Models: From Metabolic Reconstructions to Multi-omic Approaches. Frontiers in Neuroinformatics, 14. Scopus. https://doi.org/10.3389/fninf.2020.00035spa
dc.relation.referencesGoodrich, G. S., Kabakov, A. Y., Hameed, M. Q., Dhamne, S. C., Rosenberg, P. A., & Rotenberg, A. (2013). Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. Journal of Neurotrauma, 30(16), 1434-1441. https://doi.org/10.1089/neu.2012.2712spa
dc.relation.referencesGu, C., Kim, G. B., Kim, W. J., Kim, H. U., & Lee, S. Y. (2019). Current status and applications of genome-scale metabolic models. Genome Biology, 20. https://doi.org/10.1186/s13059-019-1730-3spa
dc.relation.referencesGuebel, D. V., & Torres, N. V. (2013). Principal Component Analy- sis (PCA). In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, & H. Yoko- ta (Eds.), Encyclopedia of Systems Biology (pp. 1739–1743). Springer. https://doi.org/10.1007/978-1-4419-9863-7_1276spa
dc.relation.referencesHaas, R., Zelezniak, A., Iacovacci, J., Kamrad, S., Townsend, S., & Ralser, M. (2017). Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology. Current Opinion in Systems Biology, 6, 37-45. https://doi.org/10.1016/j.coisb.2017.08.009spa
dc.relation.referencesHamby, M. E., Coppola, G., Ao, Y., Geschwind, D. H., Khakh, B. S., & Sofroniew, M. V. (2012). Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(42), 14489-14510. https://doi.org/10.1523/JNEUROSCI.1256-12.2012spa
dc.relation.referencesHarada, K., Kamiya, T., & Tsuboi, T. (2016). Gliotransmit- ter release from astrocytes: Functional, developmental and patho- logical implications in the brain. Frontiers in Neuroscience, 9. https://www.frontiersin.org/article/10.3389/fnins.2015.00499spa
dc.relation.referencesHeirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., Haraldsdóttir, H. S., Wachowiak, J., Keating, S. M., Vlasov, V., Magnusdóttir, S., Ng, C. Y., Preciat, G., Žagare, A., Chan, S. H. J., Aurich, M. K., Clancy, C. M., Modamio, J., Sauls, J. T., . . . Fleming, R. M. T. (2019). Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nature Protocols, 14 (3), 639–702. https://doi.org/10.1038/s41596-018-0098-2spa
dc.relation.referencesHmdbQuery. (s. f.). Bioconductor. Recuperado 16 de septiembre de 2020, de http://bioconductor.org/packages/hmdbQuery/spa
dc.relation.referencesHuber, W., von Heydebreck, A., Sültmann, H., Poustka, A., & Vingron, M. (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics, 18 (suppl_1), S96–S104. https://doi.org/10.1093/bioinformatics/18.suppl_1.S96spa
dc.relation.referencesIglesias, J., Morales, L., & Barreto, G. E. (2017). Metabolic and Inflammatory Adaptation of Reactive Astrocytes: Role of PPARs. Molecular Neurobiology, 54(4), 2518-2538. Scopus. https://doi.org/10.1007/s12035-016-9833-2spa
dc.relation.referencesIMAT: an integrative metabolic analysis tool | Bioinformatics | Oxford Academic. (s. f.). Recuperado 20 de agosto de 2020, de https://academic.oup.com/bioinformatics/article/26/24/3140/290045spa
dc.relation.referencesJeffrey Kantor (2021). Stoichiometry Tools (https://www.mathworks.com/matlabcentral/fileexchange/29 MATLAB Central File Exchange. Retrieved December 29, 2021.spa
dc.relation.referencesJensen, C. J., Massie, A., & De Keyser, J. (2013). Immune players in the CNS: The astrocyte. Journal of Neuroimmune Pharmacology: The Of- ficial Journal of the Society on NeuroImmune Pharmacology, 8(4), 824-839. https://doi.org/10.1007/s11481-013-9480-6spa
dc.relation.referencesJerby, L., Shlomi, T., & Ruppin, E. (2010). Computational reconstruction of tissue- specific metabolic models: Application to human liver metabolism. Molecular Systems Biology, 6(1), 401. https://doi.org/10.1038/msb.2010.56spa
dc.relation.referencesJha, M. K., Park, D. H., Kook, H., Lee, I.-K., Lee, W.-H., & Suk, K. (2016). Metabolic Control of Glia-Mediated Neuroinflammation. Current Alzheimer Re- search, 13(4), 387-402. https://doi.org/10.2174/1567205013666151116124755spa
dc.relation.referencesJolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A re- view and recent developments. Philosophical Transactions of the Royal Soci- ety A: Mathematical, Physical and Engineering Sciences, 374 (2065), 20150202. https://doi.org/10.1098/rsta.2015.0202spa
dc.relation.referencesJr, C. E. D. (2014). Optimal Algorithm for Metabolomics Classification and Feature Selection varies by Dataset. International Journal of Biology, 7(1), p100. https://doi.org/10.5539/ijb.v7n1p100spa
dc.relation.referencesKarahalil, B. (2016, octubre 31). Overview of Systems Bi- ology and Omics Technologies. Current Medicinal Chemistry. https://www.eurekaselect.com/145809/articlespa
dc.relation.referencesKarpievitch, Y. V., Dabney, A. R., & Smith, R. D. (2012). Normalization and missing value imputation for label-free LC-MS analysis. BMC Bioinformatics, 13 (16), S5. https://doi.org/10.1186/1471-2105-13-S16-S5spa
dc.relation.referencesKim, M., Rai, N., Zorraquino, V., & Tagkopoulos, I. (2016). Multi-omics integra- tion accurately predicts cellular state in unexplored conditions for Escherichia coli. Nature Communications, 7(1), 13090. https://doi.org/10.1038/ncomms13090spa
dc.relation.referencesKitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering – A systematic literature review. Information and Software Technology, 51(1), 7-15. https://doi.org/10.1016/j.infsof.2008.09.009spa
dc.relation.referencesLange, S. C., Bak, L. K., Waagepetersen, H. S., Schousboe, A., & Norenberg, M. D. (2012). Primary cultures of astrocytes: Their value in understanding astrocytes in health and disease. Neurochemical research, 37(11), 2569-2588. https://doi.org/10.1007/s11064-012-0868-0spa
dc.relation.referencesLayé, S. (2010). Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukotrienes and Essential Fatty Acids, 82(4-6), 295-303. Scopus. https://doi.org/10.1016/j.plefa.2010.02.006spa
dc.relation.referencesLi, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 323. https://doi.org/10.1186/1471-2105-12-323spa
dc.relation.referencesLudvigsen, M., & Honoré, B. (2018). Transcriptomics and Pro- teomics: Integration? In ELS (pp. 1–7). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0006188.pub2spa
dc.relation.referencesMachado, D., & Herrgård, M. (2014). Systematic Evaluation of Meth- ods for Integration of Transcriptomic Data into Constraint-Based Mod- els of Metabolism. PLOS Computational Biology, 10(4), e1003580. https://doi.org/10.1371/journal.pcbi.1003580spa
dc.relation.referencesMapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt—PubMed. (s. f.). Recuperado 16 de septiembre de 2020, de https://pubmed.ncbi.nlm.nih.gov/19617889/spa
dc.relation.referencesMardinoglu, A., Agren, R., Kampf, C., Asplund, A., Nookaew, I., Jacobson, P., Walley, A. J., Froguel, P., Carlsson, L. M., Uhlen, M., & Nielsen, J. (2013). Integra- tion of clinical data with a genome-scale metabolic model of the human adipocyte. Molecular Systems Biology, 9, 649. https://doi.org/10.1038/msb.2013.5spa
dc.relation.referencesMardinoglu, A., Agren, R., Kampf, C., Asplund, A., Uhlen, M., & Nielsen, J. (2014). Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nature Communications, 5, 3083. https://doi.org/10.1038/ncomms4083spa
dc.relation.referencesMartín-Jiménez, C. A., Salazar-Barreto, D., Barreto, G. E., & González, J. (2017). Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network. Frontiers in Aging Neuroscience, 9. https://doi.org/10.3389/fnagi.2017.00023spa
dc.relation.referencesMartin-Jiménez, C., González, J., Vesga, D., Aristizabal, A., & Barreto, G. E. (2020). Tibolone Ameliorates the Lipotoxic Effect of Palmitic Acid in Normal Human Astrocytes. Neurotoxicity Research, 38 (3), 585–595. https://doi.org/10.1007/s12640-020-00247-4spa
dc.relation.referencesMasid, M., Ataman, M., & Hatzimanikatis, V. (2020). Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN. Nature Communications, 11(1), 2821. https://doi.org/10.1038/s41467-020-16549-2spa
dc.relation.referencesMcBean, G. J. (2017). Cysteine, Glutathione, and Thiol Redox Balance in Astro- cytes. Antioxidants, 6 (3). https://doi.org/10.3390/antiox6030062spa
dc.relation.referencesmixOmics: An R package for ‘omics feature selection and multiple data integration. (s. f.). Recuperado 16 de septiembre de 2020, de https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005752spa
dc.relation.referencesN, L., Ja, D., Ja, T., V, R., Ai, R., Bm, S., Jd, H., Mn, G., Rm, S., & C, K. (2013, abril 15). EBSeq: An empirical Bayes hierarchical model for infer- ence in RNA-seq experiments. Bioinformatics (Oxford, England); Bioinformatics. https://doi.org/10.1093/bioinformatics/btt087spa
dc.relation.referencesNavid, A., & Almaas, E. (2012). Genome-level transcription data of Yersinia pestis analyzed with a New metabolic constraint-based approach. BMC Systems Biology, 6(1), 150. https://doi.org/10.1186/1752-0509-6-150spa
dc.relation.referencesNeurodegenerative diseases—Latest research and news | Na- ture. (s. f.). Recuperado 12 de septiembre de 2020, de https://www.nature.com/subjects/neurodegenerative-diseasesspa
dc.relation.referencesOliveira, A. de A. B., Melo, N. de F. M., Vieira, É. dos S., Nogueira, P. A. S., Coope, A., Velloso, L. A., Dezonne, R. S., Ueira-Vieira, C., Botelho, F. V., Gomes, J. de A. S., & Zanon, R. G. (2018). Palmitate treated-astrocyte conditioned medium contains increased glutathione and interferes in hypotha- lamic synaptic network in vitro. Neurochemistry International, 120, 140-148. https://doi.org/10.1016/j.neuint.2018.08.010spa
dc.relation.referencesOsorio, D., Pinzón, A., Martín-Jiménez, C., Barreto, G. E., & González, J. (2020). Multiple Pathways Involved in Palmitic Acid-Induced Tox- icity: A System Biology Approach. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.01410spa
dc.relation.referencesOsorio, D., Botero, K., Gonzalez, J., & Pinzon, A. (2016). “exp2flux” Convert Gene EXPression Data to FBA FLUXes. https://doi.org/10.13140/RG.2.2.14401.56168spa
dc.relation.referencesPandey, V., Hadadi, N., & Hatzimanikatis, V. (2019). Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermo- dynamically consistent metabolic models. PLOS Computational Biology, 15(5), e1007036. https://doi.org/10.1371/journal.pcbi.1007036spa
dc.relation.referencesPfefferkorn, C., Kallfass, C., Lienenklaus, S., Spanier, J., Kalinke, U., Rieder, M., Conzelmann, K.-K., Michiels, T., & Staeheli, P. (2016). Abortively Infected Astrocytes Appear To Represent the Main Source of Interferon Beta in the Virus-Infected Brain. Journal of Virology, 90(4), 2031-2038. https://doi.org/10.1128/JVI.02979-15spa
dc.relation.referencesPhatnani, H., & Maniatis, T. (2015a). Astrocytes in Neurodegen- erative Disease. Cold Spring Harbor Perspectives in Biology, 7(6). https://doi.org/10.1101/cshperspect.a020628spa
dc.relation.referencesPhatnani, H., & Maniatis, T. (2015b). Astrocytes in Neurodegen- erative Disease. Cold Spring Harbor Perspectives in Biology, 7(6). https://doi.org/10.1101/cshperspect.a020628spa
dc.relation.referencesPrah, J., Winters, A., Chaudhari, K., Hersh, J., Liu, R., & Yang, S.-H. (2019). A Novel Serum Free Primary Astrocyte Culture Method that Mim- ic Quiescent Astrocyte Phenotype. Journal of Neuroscience Methods, 320, 50. https://doi.org/10.1016/j.jneumeth.2019.03.013spa
dc.relation.referencesR, A., Sg, V.-B., & K, R. (2011, agosto 15). Metab: An R pack- age for high-throughput analysis of metabolomics data generat- ed by GC-MS. Bioinformatics (Oxford, England); Bioinformatics. https://doi.org/10.1093/bioinformatics/btr379spa
dc.relation.referencesR, W., G, W., & F, M. (2014, enero 9). metaMS: An open-source pipeline for GC- MS-based untargeted metabolomics. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences; J Chromatogr B Analyt Technol Biomed Life Sci. https://doi.org/10.1016/j.jchromb.2014.02.051spa
dc.relation.referencesRamus, C., Hovasse, A., Marcellin, M., Hesse, A.-M., Mouton-Barbosa, E., Bouys- sié, D., Vaca, S., Carapito, C., Chaoui, K., Bruley, C., Garin, J., Cianférani, S., Ferro, M., Van Dorssaeler, A., Burlet-Schiltz, O., Schaeffer, C., Couté, Y., & Gonzalez de Peredo, A. (2016). Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset. Journal of Proteomics, 132, 51-62. https://doi.org/10.1016/j.jprot.2015.11.011spa
dc.relation.referencesRobinson, M. (s. f.). flagme: Analysis of Metabolomics GC/MS Data ver- sion 1.44.0 from Bioconductor. Recuperado 16 de septiembre de 2020, de https://rdrr.io/bioc/flagme/spa
dc.relation.referencesRussell, W. M. S., & Burch, R. L. (1959). The principles of humane experimental technique. Methuen.spa
dc.relation.referencesSajitz-Hermstein, M., Töpfer, N., Kleessen, S., Fernie, A. R., & Nikoloski, Z. (2016). iReMet-flux: Constraint-based approach for integrating relative metabolite levels into a stoichiometric metabolic models. Bioinformatics, 32(17), i755-i762. https://doi.org/10.1093/bioinformatics/btw465spa
dc.relation.referencesSchellenberger, J., Lewis, N. E., & Palsson, B. Ø. (2011). Elimination of Ther- modynamically Infeasible Loops in Steady-State Metabolic Models. Biophysical Journal, 100 (3), 544–553. https://doi.org/10.1016/j.bpj.2010.12.3707spa
dc.relation.referencesSchmidt, B. J., Ebrahim, A., Metz, T. O., Adkins, J. N., Palsson, B. Ø., & Hyduke, D. R. (2013). GIM3E: Condition-specific models of cellular metabolism developed from metabolomics and expression data. Bioinformatics, 29(22), 2900- 2908. https://doi.org/10.1093/bioinformatics/btt493spa
dc.relation.referencesSegrè, D., Vitkup, D., & Church, G. M. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proceedings of the National Academy of Sciences, 99(23), 15112-15117. https://doi.org/10.1073/pnas.232349399spa
dc.relation.referencesShinfuku, Y., Sorpitiporn, N., Sono, M., Furusawa, C., Hirasawa, T., & Shimizu, H. (2009). Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microbial Cell Factories, 8 (1), 43. https://doi.org/10.1186/1475-2859-8-43spa
dc.relation.referencesSkogerson, K., Wohlgemuth, G., Barupal, D. K., & Fiehn, O. (2011). The volatile compound BinBase mass spectral database. BMC Bioinformatics, 12(1), 321. https://doi.org/10.1186/1471-2105-12-321spa
dc.relation.referencesStare, T., Stare, K., Weckwerth, W., Wienkoop, S., & Gruden, K. (2017). Com- parison between Proteome and Transcriptome Response in Potato (Solanum tuberosum L.) Leaves Following Potato Virus Y (PVY) Infection. Proteomes, 5 (3). https://doi.org/10.3390/proteomes5030014spa
dc.relation.referencesSwainston, N., Smallbone, K., Mendes, P., Kell, D. B., & Paton, N. W. (2011). The SuBliMinaL Toolbox: Automating steps in the reconstruction of metabolic networks. Journal of Integrative Bioinformatics, 8 (2), 187–203. https://doi.org/10.1515/jib-2011-186spa
dc.relation.referencesSwainston, N., Smallbone, K., Hefzi, H., Dobson, P. D., Brewer, J., Hanscho, M., Zielinski, D. C., Ang, K. S., Gardiner, N. J., Gutierrez, J. M., Kyriakopou- los, S., Lakshmanan, M., Li, S., Liu, J. K., Martínez, V. S., Orellana, C. A., Quek, L.-E., Thomas, A., Zanghellini, J., . . . Mendes, P. (2016). Recon 2.2: From reconstruction to model of human metabolism. Metabolomics, 12 (7), 109. https://doi.org/10.1007/s11306-016-1051-4spa
dc.relation.referencesTejera, N., Crossman, L., Pearson, B., Stoakes, E., Nasher, F., Djeghout, B., Poolman, M., Wain, J., & Singh, D. (2020). Genome-Scale Metabolic Model Driven Design of a Defined Medium for Campylobacter jejuni M1cam. Frontiers in Microbiology, 11, 1072. https://doi.org/10.3389/fmicb.2020.01072spa
dc.relation.referencesThiele, I., Vlassis, N., & Fleming, R. M. T. (2014). fastGapFill: Efficient gap filling in metabolic networks. Bioinformatics (Oxford, England), 30 (17), 2529–2531. https://doi.org/10.1093/bioinformatics/btu321spa
dc.relation.referencesVälikangas, T., Suomi, T., & Elo, L. L. (2018). A comprehensive evalua- tion of popular proteomics software workflows for label-free proteome quan- tification and imputation. Briefings in Bioinformatics, 19 (6), 1344–1355. https://doi.org/10.1093/bib/bbx054spa
dc.relation.referencesVäremo, L., Scheele, C., Broholm, C., Mardinoglu, A., Kampf, C., Asplund, A., Nookaew, I., Uhlén, M., Pedersen, B. K., & Nielsen, J. (2015). Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. Cell Reports, 11 (6), 921–933. https://doi.org/10.1016/j.celrep.2015.04.010spa
dc.relation.referencesVieira, V., Ferreira, J., Rodrigues, R., Liu, F., & Rocha, M. (2019). A Model Integration Pipeline for the Improvement of Human Genome-Scale Metabolic Reconstructions. Journal of Integrative Bioinformatics, 16 (1). https://doi.org/10.1515/jib-2018-0068spa
dc.relation.referencesYang, Z., & Xiong, H.-R. (2012). Culture Conditions and Types of Growth Media for Mammalian Cells. In Biomedical Tissue Culture. IntechOpen. https://doi.org/10.5772/52301spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.lembASTROCITOSspa
dc.subject.lembAstrocyteseng
dc.subject.lembINFLAMACIONspa
dc.subject.lembInflammationeng
dc.subject.proposalModelo a escala genómicaspa
dc.subject.proposalAstrocitospa
dc.subject.proposalDatos multi-omicosspa
dc.subject.proposalEnfermedades neurodegenerativasspa
dc.subject.proposalTranscriptómicaspa
dc.subject.proposalProteómicaspa
dc.subject.proposalGenome-scale metabolic modeleng
dc.subject.proposalAstrocyteeng
dc.subject.proposalLipotoxicityeng
dc.subject.proposalNeurodegenerative diseaseseng
dc.subject.proposalTranscriptomicseng
dc.subject.proposalProteomicseng
dc.titleModelado computacional de astrocito humano usando datos de transcriptómica y proteómicaspa
dc.title.translatedComputational modeling of human astrocyte using transcriptomic and proteomic dataeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032480535.2022.pdf
Tamaño:
2.97 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioinformática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: