Efecto de la carga de frutos sobre el crecimiento, desempeño fisiológico, producción de la planta y composición bioquímica de la almendra de Coffea arabica L

dc.contributor.advisorBalaguera López, Helber Enriquespa
dc.contributor.advisorRendón Sáenz, José Raúlspa
dc.contributor.authorLeón Burgos, Andrés Felipespa
dc.contributor.researchgroupAgronomía-Cenicaféspa
dc.date.accessioned2024-03-13T18:49:54Z
dc.date.available2024-03-13T18:49:54Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl incremento de la carga de frutos en las plantas de café, afecta el crecimiento vegetativo, las concentraciones de nutrientes, clorofilas y azúcares solubles a nivel foliar, y la composición bioquímica de las almendras. El objetivo de esta investigación fue evaluar el efecto de la carga de frutos sobre el crecimiento y desarrollo de las plantas de C. arabica, en etapa de producción, en un cultivo ubicado en la zona central cafetera colombiana. Se empleó plantas de la variedad “Cenicafé 1” de tres años de edad después de establecidas en campo, las cuales, se sometieron a nueve tratamientos con diferentes intensidades de cargas de frutos aplicados en toda la planta (desde el 20% hasta 100%), bajo un diseño experimental completamente aleatorio con seis repeticiones. Se realizaron mediciones de crecimiento vegetativo y reproductivo, intercambio de gases, concentración de nutrientes, clorofilas y azúcares solubles en las hojas, acumulación de biomasa seca y mediciones bioquímicas en las almendras. Se determinó que con cargas de frutos del 100% se afectó de manera significativa y con disminuciones el crecimiento vegetativo aéreo, el contenido de clorofilas foliar, concentraciones de macronutrientes y micronutrientes, así como la relación del área foliar específica-RAE, área foliar específica-AFE y cantidad de frutos mal formados. Asimismo, se observaron disminuciones lineales de la tasa de crecimiento de las ramas, azúcares solubles en hojas y almendras, reducciones de ácidos orgánicos y alcaloides en las almendras. Con estos resultados se evidenció el efecto de las altas cargas de frutos en el desempeño fisiológico y crecimiento vegetativo de la planta, así como en la composición bioquímica de las almendras de la variedad “Cenicafé 1” ampliamente sembrada en la caficultura de Colombia. (Texto tomado de la fuente).spa
dc.description.abstractThe increased fruit loads in the coffee trees affects the vegetative growth, the concentrations of nutrients, chlorophylls, and soluble sugars at the foliar level, as well as the biochemical composition of the bean. The objective of this research was to evaluate the effect of fruit load on the growth and development of C. arabica coffee plants at the production stage located in the central Colombian coffee zone. The evaluations were carried out on three-year-old "Cenicafé 1" variety plants established under field conditions and were subjected to nine treatments with different intensities of fruit loads applied whole-plant-level (20% until 100%) under a completely randomized experimental design with six repetitions. Measurements of vegetative and reproductive growth, gas exchange, and content of nutrients, chlorophylls, and soluble sugars in the leaves were performed; additionally, the accumulation of dry biomass and bean biochemical content also were analyzed. It was determined that with 100%-fruit loads, the vegetative shoot growth, the concentrations of chlorophylls, macronutrients, and micronutrients, and the specific leaf area ratio-LAR were significantly affected, as well as the significant increase of the specific leaf area-SLA and malformed fruits were reported. Likewise, linear decreases in the growth rate of the branches, soluble sugars in leaves and beans, and reductions in organic acids and alkaloids are evident. The results indicated that the high fruit loads alter the physiological performance and vegetative plant growth, and biochemical composition of beans from coffee cv “Cenicafé 1” plants widely sown in the coffee growing areas of Colombianeng
dc.description.curricularareaCiencias Agronómicas.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.researchareaFisiología de cultivosspa
dc.format.extentxviii, 107 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85806
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAhmed, S., Brinkley, S., Smith, E., Sela, A., Theisen, M., Thibodeau, C., Warne, T., Anderson, E., Van Dusen, N., Giuliano, P., Ionescu, K. E., & Cash, S. B. (2021). Climate Change and Coffee Quality: Systematic Review on the Effects of Environmental and Management Variation on Secondary Metabolites and Sensory Attributes of Coffea arabica and Coffea canephora. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.708013spa
dc.relation.referencesAlmeida, W. L., Ávila, R. T., Pérez-Molina, J. P., Barbosa, M. L., Marçal, D. M. S., de Souza, R. P. B., Martino, P. B., Cardoso, A. A., Martins, S. C. V., & DaMatta, F. M. (2021). The interplay between irrigation and fruiting on branch growth and mortality, gas exchange and water relations of coffee trees. Tree Physiology, 41(1), 35-49. https://doi.org/10.1093/treephys/tpaa116spa
dc.relation.referencesArcila‐Pulgarín, J., Buhr, L., Bleiholder, H., Hack, H., Meier, U., & Wicke, H. (2002). Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Annals of Applied Biology, 141(1), 19-27. https://doi.org/10.1111/j.1744-7348.2002.tb00191.xspa
dc.relation.referencesArcila P, J. (2007). Capítulo 2. Crecimiento y desarrollo de la planta de café. Cap. 21-60 Pp. En Arcila P, J., Farfán V, F., Moreno B, A., Salazar G, L F & Hincapié G, E. (2007). Sistemas de producción de café en Colombia. Centro Nacional de investigaciones del café. Chinchiná, Caldas. 309 p. http://hdl.handle.net/10778/720spa
dc.relation.referencesAvila, R. T., Martins, S. C. V., Sanglard, L. M. V. P., dos Santos, M. S., Menezes-Silva, P. E., Detman, K. C., Sanglard, M. L., Cardoso, A. A., Morais, L. E., Vital, C. E., Araújo, W. L., Nunes-Nesi, A., & DaMatta, F. M. (2020). Starch accumulation does not lead to feedback photosynthetic downregulation in girdled coffee branches under varying source-to-sink ratios. Trees, 34(1), 1-16. https://doi.org/10.1007/s00468-019-01893-8spa
dc.relation.referencesBastianin, A., Lanza, A., & Manera, M. (2018). Economic impacts of El Niño southern oscillation: Evidence from the Colombian coffee market. Agricultural Economics, 49(5), 623-633. https://doi.org/10.1111/agec.12447spa
dc.relation.referencesBote, A. D., & Jan, V. (2016). Branch growth dynamics, photosynthesis, yield and bean size distribution in response to fruit load manipulation in coffee trees. Trees, 30(4), 1275-1285. https://doi.org/10.1007/s00468-016-1365-xspa
dc.relation.referencesBote, A. D., & Vos, J. (2017). Tree management and environmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS - Wageningen Journal of Life Sciences, 83, 39-46. https://doi.org/10.1016/j.njas.2017.09.002spa
dc.relation.referencesCannell, M. G. (1985). Chapter 5. Physiology of the coffee crop.108-134Pp. In Clifford, M. N. (Ed.).Coffee: Botany, Biochemistry and Production of Beans and Beverage. Springer US. https://doi.org/10.1007/978-1-4615-6657-1spa
dc.relation.referencesCeballos-Sierra, F., & Dall’Erba, S. (2021). The effect of climate variability on Colombian coffee productivity: A dynamic panel model approach. Agricultural Systems, 190, 103126. https://doi.org/10.1016/j.agsy.2021.103126spa
dc.relation.referencesCunha, R. L. (2007). Crescimento, metabolismo do carbono e partição de assimilados, em resposta à manipulação da razão fonte:dreno, em Coffea arabica L. sob condições de campo. https://locus.ufv.br//handle/123456789/995spa
dc.relation.referencesChaves, A. R. M., Martins, S. C. V., Batista, K. D., Celin, E. F., & DaMatta, F. M. (2012). Varying leaf-to-fruit ratios affect branch growth and dieback, with little to no effect on photosynthesis, carbohydrate or mineral pools, in different canopy positions of field-grown coffee trees. Environmental and Experimental Botany, 77, 207-218. https://doi.org/10.1016/j.envexpbot.2011.11.011spa
dc.relation.referencesChemura, A., Mudereri, B. T., Yalew, A. W., & Gornott, C. (2021). Climate change and specialty coffee potential in Ethiopia. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-87647-4spa
dc.relation.referencesDaMatta, F. M., Ronchi, C. P., Maestri, M., & Barros, R. S. (2007). Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, 19(4), 485-510. https://doi.org/10.1590/S1677-04202007000400014spa
dc.relation.referencesDaMatta, F. M., Cunha, R. L., Antunes, W. C., Martins, S. C. V., Araujo, W. L., Fernie, A. R., & Moraes, G. A. B. K. (2008). In field-grown coffee trees source–sink manipulation alters photosynthetic rates, independently of carbon metabolism, via alterations in stomatal function. New Phytologist, 178(2), 348-357. https://doi.org/10.1111/j.1469-8137.2008.02367.xspa
dc.relation.referencesDaMatta, F. M., Avila, R. T., Cardoso, A. A., Martins, S. C. V., & Ramalho, J. C. (2018). Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. Journal of Agricultural and Food Chemistry, 66(21), 5264-5274. https://doi.org/10.1021/acs.jafc.7b04537spa
dc.relation.referencesFederación Nacional de Cafeteros de Colombia. (2020b). Publicaciones en Informe de Gestión. (2022). https://federaciondecafeteros.org/app/uploads/2022/12/Informe-del-Gerente-D.pdf (consultado abril, 2023)spa
dc.relation.referencesFilho L, O. F. de, & Malavolta, E. (2003). Studies on mineral nutrition of the coffee plant (Coffea arabica L. cv. Catuaí Vermelho): LXIV. Remobilization and re-utilization of nitrogen and potassium by normal and deficient plants. Brazilian Journal of Biology, 63(3), 481-490. https://doi.org/10.1590/S1519-69842003000300014spa
dc.relation.referencesFranck, N., Vaast, P., Génard, M., & Dauzat, J. (2006). Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiology, 26(4), 517-525. https://doi.org/10.1093/treephys/26.4.517spa
dc.relation.referencesGarcía L, J. C., Posada-Suárez, H., & Läderach, P. (2014). Recommendations for the Regionalizing of Coffee Cultivation in Colombia: A Methodological Proposal Based on Agro-Climatic Indices. Plos one, 9(12), e113510. https://doi.org/10.1371/journal.pone.0113510spa
dc.relation.referencesGómez G., L. F. (2012). Metabolismo de carbono y relación fuente-demanda en el cafeto (Coffea arabica L). Tesis de doctorado. Universidad Nacional de Colombia, Sede Medellín.spa
dc.relation.referencesGonzález O, Hernán., Sadeghian K, Siavosh & Jaramillo R, Álvaro. (2014). Épocas recomendables para la fertilización de cafetales. Avances Técnicos 442: 1-12 p. http://hdl.handle.net/10778/498spa
dc.relation.referencesHameed, A., Hussain, S. A., & Suleria, H. A. R. (2020). “Coffee Bean-Related” Agroecological Factors Affecting the Coffee. En J.-M. Mérillon & K. G. Ramawat (Eds.), Co-Evolution of Secondary Metabolites (pp. 641-705). Springer International Publishing. https://doi.org/10.1007/978-3-319-96397-6_21spa
dc.relation.referencesInternational Coffee Organization. Trade Statistics Table. (2023). Coffee production by exporting countries. https://www.ico.org/trade_statistics.asp?section=Statistics (Consultado Abril, 2023)spa
dc.relation.referencesJawo, T. O., Kyereh, D., & Lojka, B. (2022). The impact of climate change on coffee production of small farmers and their adaptation strategies: A review. Climate and Development, 0(0), 1-17. https://doi.org/10.1080/17565529.2022.2057906spa
dc.relation.referencesLeibovich, J., Sánchez-Céspedes, L. M., Marín, Córdoba, C. C., Y. A., Méndez, J. D., & Izquierdo, J. M. (2022). Proyección de productores y de la población en hogares cafeteros a 2050. Ensayos de Economía Cafetera, 35(1), 9-95. https://doi.org/10.38141/10788/035-1-1spa
dc.relation.referencesLeguizamón C., J. E., & Arcila P., J. (1991). Secamiento de ramas y frutos del cafeto y su relación con la roya. Avances Técnicos Nº 166. Cenicafé. 4 Pp. https://biblioteca.cenicafe.org/handle/10778/944spa
dc.relation.referencesMolina, D. M., & Rivera, R. M. (2022). Identifying Coffea genotypes tolerant to water deficit. Coffee Science - ISSN 1984-3909, 17, e171994-e171994. https://doi.org/10.25186/.v17i.1994spa
dc.relation.referencesUnigarro-Muñoz, C. A., Hernández-Arredondo, J. D., Montoya-Restrepo, E. C., Medina-Rivera, R. D., Ibarra-Ruales, L. N., Carmona-González, C. Y., Flórez-Ramos, C. P. (2015). Estimation of leaf area in coffee leaves (Coffea arabica L.) of the Castillo® variety. Bragantia, 74(4), 412-416. https://doi.org/10.1590/1678-4499.0026spa
dc.relation.referencesUnigarro, C. A. U., Bejarano, L. M. D., & Acuña, J. R. (2022). Effect of fruit load of the first coffee harvests on leaf gas exchange. Pesquisa Agropecuária Tropical, 51, e69865. https://doi.org/10.1590/1983-40632021v5169865spa
dc.relation.referencesValencia A., G. (1974). El paloteo del cafeto. Avances Técnicos Nº 82. Cenicafé. 2Pp. https://biblioteca.cenicafe.org/handle/10778/873spa
dc.relation.referencesValencia A., G. (1999). Fisiología, nutrición y fertilización del cafeto. Agroinsumos del café S.A.-Cenicafé. 94 Pp.spa
dc.relation.referencesVaast, P., Angrand, J., Franck, N., Dauzat, J., & Génard, M. (2005). Fruit load and branch ring-barking affect carbon allocation and photosynthesis of leaf and fruit of Coffea arabica in the field. Tree Physiology, 25(6), 753-760. https://doi.org/10.1093/treephys/25.6.753spa
dc.relation.referencesAgroclimática cafetera-Agroclima. (2023). Portal web. Disponible en https://agroclima.cenicafe.org/ (Consultado en Mayo, 2023)spa
dc.relation.referencesAmaral, J. a. T., Da Matta, F. M., & Rena, A. B. (2001). Effects of fruiting on the growth of Arabica coffee trees as related to carbohydrate and nitrogen status and to nitrate reductase activity. Revista Brasileira de Fisiologia Vegetal, 13(1), 66-74. https://doi.org/10.1590/S0103-31312001000100008spa
dc.relation.referencesBihmidine, S., Hunter, C. T., Johns, C. E., Koch, K. E., & Braun, D. M. (2013). Regulation of assimilate import into sink organs: Update on molecular drivers of sink strength. Frontiers in Plant Science, 4, 177. https://doi.org/10.3389/fpls.2013.00177spa
dc.relation.referencesCastro-Tanzi, S., Flores, M., Wanner, N., Dietsch, T. V., Banks, J., Ureña-Retana, N., & Chandler, M. (2014). Evaluation of a non-destructive sampling method and a statistical model for predicting fruit load on individual coffee (Coffea arabica) trees. Scientia Horticulturae, 167, 117-126. https://doi.org/10.1016/j.scienta.2013.12.013spa
dc.relation.referencesCentro Nacional de Investigaciones de Café. (2021). Guía más agronomía, más productividad, más calidad (3a ed.). Cenicafé. https://doi.org/10.38141/cenbook-0014spa
dc.relation.referencesDe Castro, R. D., & Marraccini, P. (2006). Cytology, biochemistry and molecular changes during coffee fruit development. Brazilian Journal of Plant Physiology, 18, 175-199. https://doi.org/10.1590/S1677-04202006000100013spa
dc.relation.referencesDias, E. C., Borém, F. M., Pereira, R. G. F. A., & Guerreiro, M. C. (2012). Amino acid profiles in unripe Arabica coffee fruits processed using wet and dry methods. European Food Research and Technology, 234(1), 25-32. https://doi.org/10.1007/s00217-011-1607-5spa
dc.relation.referencesDuque O, H., Salazar, H. M., Rojas-Sepúlveda, L. A., & Gaitán, Á. (2021). Análisis económico de tecnologías para la producción de café en Colombia. Cenicafé. https://doi.org/10.38141/cenbook-0016spa
dc.relation.referencesFederación Nacional de Cafeteros de Colombia. (2021b). Publicaciones en Informe de Gestión 2020. https://federaciondecafeteros.org/wp/tipos/informes/ (Consultado mayo, 2023).spa
dc.relation.referencesFlórez, C. P., Maldonado, C. E., Cortina, H. A., Moncada, M. del P., Montoya, E. C., Ibarra, L. N., Unigarro, C. A., Rendón, J. R., & Duque Orrego, H. (2016). Cenicafé 1 : Nueva variedad de porte bajo altamente productiva resistente a la roya y al CBD con mayor calidad física del grano. Avances Técnicos Cenicafé, 469, 1-8. https://doi.org/10.38141/10779/0469spa
dc.relation.referencesJaramillo, A. (2018). El clima de la caficultura en Colombia. Cenicafé. 206 p. https://doi.org/10.38141/cenbook-0031spa
dc.relation.referencesLaviola, B. G., Martínez, H. E. P., Souza, R. B. de, Salomão, L. C. C., & Cruz, C. D. (2009). Macronutrient Accumulation in Coffee Fruits at Brazilian Zona Da Mata Conditions. Journal of Plant Nutrition, 32(6), 980-995. https://doi.org/10.1080/01904160902872164spa
dc.relation.referencesLeón-Rojas, F. R., Valderrama-Palacios, D., Borjas-Ventura, R., Alvarado-Huaman, L., Julca-Otiniano, A., Figueroa, L. T. y, Castro-Cepero, V., Ninahuanca, S. M., & Cardoza-Sánchez, A. (2023). Low water availability has a greater influence on the development of coffee seedlings than an increase in temperature. Agronomía Colombiana, 41(1), Article 1. https://doi.org/10.15446/agron.colomb.v41n1.105778spa
dc.relation.referencesMaldonado, C. E. M., & Giraldo, L. Á. (2020). Resistencia genética a la enfermedad de la cereza del café en variedades cultivadas en Colombia. Revista Cenicafé, 71(1), 69-90. https://doi.org/10.38141/10778/1121spa
dc.relation.referencesMendiburu, F. (2021). Agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-5. https://cran.rproject.org/web/packages/agricolae/index.htmlspa
dc.relation.referencesOsorio Pérez, V., Matallana Pérez, L. G., Fernandez-Alduenda, M. R., Alvarez Barreto, C. I., Gallego Agudelo, C. P., & Montoya Restrepo, E. C. (2023). Chemical Composition and Sensory Quality of Coffee Fruits at Different Stages of Maturity. Agronomy, 13(2), Article 2. https://doi.org/10.3390/agronomy13020341spa
dc.relation.referencesR Development Core Team (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://cran.r-project.org/bin/windows/base/old/4.0.4/spa
dc.relation.referencesRakocevic, M., Braga, K. S. M., Batista, E. R., Maia, A. H. N., Scholz, M. B. S., & Filizola, H. F. (2020). The vegetative growth assists to reproductive responses of Arabic coffee trees in a long-term FACE experiment. Plant Growth Regulation, 91(2), 305-316. https://doi.org/10.1007/s10725-020-00607-2spa
dc.relation.referencesRakocevic, M., dos Santos Scholz, M. B., Pazianotto, R. A. A., Matsunaga, F. T., & Ramalho, J. C. (2023). Variation in Yield, Berry Distribution and Chemical Attributes of Coffea arabica Beans among the Canopy Strata of Four Genotypes Cultivated under Contrasted Water Regimes. Horticulturae, 9(2), Article 2. https://doi.org/10.3390/horticulturae9020215spa
dc.relation.referencesRendón S., J. R., & Montoya R., E. C. (2015). Cómo registrar las floraciones en los cafetales. Avances Técnico Nº 455,1-8. https://biblioteca.cenicafe.org/handle/10778/598spa
dc.relation.referencesRendón S., J., Arcila P., J., Montoya-Restrepo, E C. (2008). Estimación de la producción de café con base en los registros de floración. Revista Cenicafé 59 (3): 238-259. https://doi.org/10.38141/rev.cenicafe59-3spa
dc.relation.referencesRendón S., J. R. (2020). Administración de sistemas de producción de café a libre exposición solar. En Centro Nacional de Investigaciones de Café (Ed.), Manejo Agronómico de los Sistemas de Producción de Café (pp. 34–71). Cenicafé. https://doi.org/10.38141/10791/0002_2spa
dc.relation.referencesSágio, S. A., Lima, A. A., Barreto, H. G., de Carvalho, C. H. S., Paiva, L. V., & Chalfun-Junior, A. (2013). Physiological and molecular analyses of early and late Coffea arabica cultivars at different stages of fruit ripening. Acta Physiologiae Plantarum, 35(11), 3091-3098. https://doi.org/10.1007/s11738-013-1342-6spa
dc.relation.referencesSadeghian, S. (2022). Nutrición de café. Consideraciones para el manejo de la fertilidad del suelo. Cenicafé. https://doi.org/10.38141/cenbook-0017spa
dc.relation.referencesSanz-Uribe, J. R., Oliveros-Tascón, C. E., Duque Orrego, H., Mejía, C. G., Benavides Machado, P., & Medina-Rivera, R. (2018). Retención de pases: Una opción para mejorar la productividad de la mano de obra en la cosecha de café. Avances Técnicos Cenicafé, 488, 1-8. https://doi.org/10.38141/10779/0488spa
dc.relation.referencesSomarriba, E., & Quesada, F. (2022). Modeling age and yield dynamics in Coffea arabica pruning systems. Agricultural Systems, 201, 103450. https://doi.org/10.1016/j.agsy.2022.103450spa
dc.relation.referencesTaiz, L., Zeiger, E., Maller, I A., & Murphy, A. (2015). Plant Physiology and Development. Six edition. Massachusetts, USA. Sinauer Associates Inc Publisher. 692 pp.spa
dc.relation.referencesVaast, P., Bertrand, B., Perriot, J.-J., Guyot, B., & Génard, M. (2006). Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture, 86(2), 197-204. https://doi.org/10.1002/jsfa.2338spa
dc.relation.referencesAndresen, E., Peiter, E., & Küpper, H. (2018). Trace metal metabolism in plants. Journal of Experimental Botany, 69(5), 909-954. https://doi.org/10.1093/jxb/erx465spa
dc.relation.referencesÁvila, E. A. da S., Sousa, C. M., Pereira, W., Melo, H. C. de, Almeida, V. G., & Sarti, J. K. (2020). Relationship of gas exchanges in different phenological phases with coffee productivity in the Cerrado. Research, Society and Development, 9(7), Art. 7. https://doi.org/10.33448/rsd-v9i7.4123spa
dc.relation.referencesCannell, M. G. R. (1971). Production and distribution of dry matter in trees of Coffea arabica L. in Kenya as affected by seasonal climatic differences and the presence of fruits. Annals of Applied Biology, 67(1), 99-120. https://doi.org/10.1111/j.1744-7348.1971.tb02910.xspa
dc.relation.referencesCarrillo, I.F., Mejía, B, Franco, H.F. (1994). Manual de laboratorio análisis foliares. Cenicafé, 1-52p.spa
dc.relation.referencesde Bang, T. C., Husted, S., Laursen, K. H., Persson, D. P., & Schjoerring, J. K. (2021). The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist, 229(5), 2446-2469. https://doi.org/10.1111/nph.17074spa
dc.relation.referencesFarquhar, G. D., & Sharkey, T. D. (1982). Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology, 33(1), 317-345. https://doi.org/10.1146/annurev.pp.33.060182.001533spa
dc.relation.referencesHänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259-266. https://doi.org/10.1016/j.pbi.2009.05.006spa
dc.relation.referencesLaviola, B. G., Martinez, H. E. P., Salomão, L. C. C., Cruz, C. D., Mendonça, S. M., & Rosado, L. D. S. (2007). Acúmulo de nutrientes em frutos de cafeeiro em duas altitudes de cultivo: Micronutrientes. Revista Brasileira de Ciência do Solo, 31, 1439-1449. https://doi.org/10.1590/S0100-06832007000600021spa
dc.relation.referencesLeón-Burgos, A. F., Unigarro, C., & Balaguera-López, H. E. (2022). Can prolonged conditions of water deficit alter photosynthetic performance and water relations of coffee plants in central-west Colombian? South African Journal of Botany, 149, 366-375. https://doi.org/10.1016/j.sajb.2022.06.034spa
dc.relation.referencesLichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. En Methods in Enzymology (Vol. 148, pp. 350-382). Academic Press. https://doi.org/10.1016/0076-6879(87)48036-1spa
dc.relation.referencesMartinez, H. E. P., Menezes, J. F. S., Souza, R. B. de, Alvarez Venegas, V. H., & Guimarães, P. T. G. (2003). Faixas críticas de concentrações de nutrientes e avaliação do estado nutricional de cafeeiros em quatro regiões de Minas Gerais. Pesquisa Agropecuária Brasileira, 38, 703-713. https://doi.org/10.1590/S0100-204X2003000600006spa
dc.relation.referencesMohan, M. M., Narayanan, S. L., & Ibrahim, S. M. (2000). Chlorophyll stability index (CSI): its impact on salt tolerance in rice. International Rice Research Notes, 25(2), 38-39.spa
dc.relation.referencesOcampo A., D.M.; Riaño H., N.M.; López R., J.C.; López F., Y. (2010). Intercambio de dióxido de carbono y cambios bioquímicos del pericarpio durante el desarrollo del fruto del cafeto. Cenicafé, 61(4):327-343. https://doi.org/10.38141/rev.cenicafe61-4spa
dc.relation.referencesPillitteri, L. J., & Torii, K. U. (2012). Mechanisms of Stomatal Development. Annual Review of Plant Biology, 63(1), 591-614. https://doi.org/10.1146/annurev-arplant-042811-105451spa
dc.relation.referencesPompelli, M. F., Martins, S. C. V., Antunes, W. C., Chaves, A. R. M., & DaMatta, F. M. (2010). Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. Journal of Plant Physiology, 167(13), 1052-1060. https://doi.org/10.1016/j.jplph.2010.03.001spa
dc.relation.referencesRevelle, W. (2020). Psych: Procedures for Personality and Psychological Research. Northwestern University, Evanston, https://CRAN.r-project.org/package=psych. R package version 2.0.8.spa
dc.relation.referencesRoby, J. F., & White, B.J., (1987). Biochemical techniques: Theory and practice. Books/Cole, Publishing Company, Monterey, CA, USA. 267-275 pp.spa
dc.relation.referencesSadeghian K., S., Mejia M, B., & González O, H. (2012). Acumulación de nitrogeno, fosforo y potasio en los frutos de café (Coffea arabica L). Revista de Cenicafé, 63(1), 7-18. https://doi.org/10.38141/rev.cenicafe63-1spa
dc.relation.referencesSadeghian K., S.; Salamanca J., A. (2015). Micronutrientes en frutos y hojas de café. Revista Cenicafé 66 (2): 73-87.spa
dc.relation.referencesSalamanca, A., & González-Osorio, H. (2020). Respuesta del café a la aplicación foliar de nutrientes. Revista Cenicafé, 71(2), Article 2. https://doi.org/10.38141/10778/71210spa
dc.relation.referencesSousa, J. S., Neves, J. C. L., Martinez, H. E. P., & Alvarez, V. H. V. (2018). Relationship between Coffee Leaf Analysis and Soil Chemical Analysis. Revista Brasileira de Ciência Do Solo, 42, e0170109. https://doi.org/10.1590/18069657rbcs20170109spa
dc.relation.referencesSouza, B. P., Martinez, H. E. P., de Carvalho, F. P., Loureiro, M. E., & Sturião, W. P. (2020). Gas exchanges and chlorophyll fluorescence of young coffee plants submitted to water and nitrogen stresses. Journal of Plant Nutrition, 43(16), 2455-2465. https://doi.org/10.1080/01904167.2020.1771589spa
dc.relation.referencesToro-Herrera, M. A., Pennacchi, J. P., Vieira, D. A., Costa, V. E., Honda Filho, C. P., Barbosa, A. C. M. C., & Barbosa, J. P. R. a. D. (2023). Source-sink patterns on coffee trees related to annual climate variability: An approach through stable isotopes analysis. Annals of Applied Biology, 1-13. https://doi.org/10.1111/aab.12872spa
dc.relation.referencesTripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D. K., & Dubey, N. K. (2015). Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta Physiologiae Plantarum, 37(7), 139. https://doi.org/10.1007/s11738-015-1870-3spa
dc.relation.referencesValencia A., G. (1986). Niveles adecuados de nutrimentos en suelos y hojas para varios cultivos. Avances Técnicos Cenicafé, 130, 1-4.spa
dc.relation.referencesWang, Y., Chen, Y.-F., & Wu, W.-H. (2021). Potassium and phosphorus transport and signaling in plants. Journal of Integrative Plant Biology, 63(1), 34-52. https://doi.org/10.1111/jipb.13053spa
dc.relation.referencesAraújo, W. L., Nunes-Nesi, A., Nikoloski, Z., Sweetlove, L. J., & Fernie, A. R. (2012). Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell & Environment, 35(1), 1-21. https://doi.org/10.1111/j.1365-3040.2011.02332.xspa
dc.relation.referencesBertrand, B., Vaast, P., Alpizar, E., Etienne, H., Davrieux, F., & Charmetant, P. (2006). Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiology, 26(9), 1239-1248. https://doi.org/10.1093/treephys/26.9.1239spa
dc.relation.referencesCambou, A., Thaler, P., Clément-Vidal, A., Barthès, B. G., Charbonnier, F., Van den Meersche, K., Aguilar Vega, M. E., Avelino, J., Davrieux, F., Labouisse, J.-P., de Melo Virginio Filho, E., Deleporte, P., Brunet, D., Lehner, P., & Roupsard, O. (2021). Concurrent starch accumulation in stump and high fruit production in coffee (Coffea arabica). Tree Physiology, 41(12), 2308-2325. https://doi.org/10.1093/treephys/tpab075spa
dc.relation.referencesClemente, J. M., Martinez, H. E. P., Alves, L. C., Finger, F. L., & Cecon, P. R. (2015). Effects of nitrogen and potassium on the chemical composition of coffee beans and on beverage quality. Acta Scientiarum. Agronomy, 37, 297-305. https://doi.org/10.4025/actasciagron.v37i3.19063spa
dc.relation.referencesCrisosto, C. H., Grantz, D. A., & Meinzer, F. C. (1992). Effects of water deficit on flower opening in coffee (Coffea arabica L.). Tree Physiology, 10(2), 127-139. https://doi.org/10.1093/treephys/10.2.127spa
dc.relation.referencesKoutouleas, A., Sarzynski, T., Bordeaux, M., Bosselmann, A. S., Campa, C., Etienne, H., Turreira-García, N., Rigal, C., Vaast, P., Ramalho, J. C., Marraccini, P., & Ræbild, A. (2022). Shaded-Coffee: A Nature-Based Strategy for Coffee Production Under Climate Change? A Review. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.877476spa
dc.relation.referencesKoshiro, Y., Zheng, X.-Q., Wang, M.-L., Nagai, C., & Ashihara, H. (2006). Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits. Plant Science, 171(2), 242-250. https://doi.org/10.1016/j.plantsci.2006.03.017spa
dc.relation.referencesKoshiro, Y.; Jackson, M.C.; Nagai, C.; Ashihara, H. Changes in the content of sugars and organic acids during ripening of Coffea arabica and Coffea canephora fruits. Eur. Chem. Bull. 2022, 4, 378–383. Disponible en: http://www.eurchembull.com/.../_193 (Consultado 23 Julio 2023).spa
dc.relation.referencesLäderach, P., Oberthür, T., Cook, S., Estrada Iza, M., Pohlan, J. A., Fisher, M., & Rosales Lechuga, R. (2011). Systematic agronomic farm management for improved coffee quality. Field Crops Research, 120(3), 321-329. https://doi.org/10.1016/j.fcr.2010.10.006spa
dc.relation.referencesLinne, B. M., Tello, E., Simons, C. T., & Peterson, D. G. (2023). Characterization of the impact of chlorogenic acids on tactile perception in coffee through an inverse effect on mouthcoating sensation. Food Research International, 172, 113167. https://doi.org/10.1016/j.foodres.2023.113167spa
dc.relation.referencesLópez, M. E., Santos, I. S., Oliveira, R. R. de, Lima, A. A., Cardon, C. H., Chalfun-Junior, A., López, M. E., Santos, I. S., Oliveira, R. R. de, Lima, A. A., Cardon, C. H., & Chalfun-Junior, A. (2021). An overview of the endogenous and environmental factors related to the Coffea arabica flowering process. Beverage Plant Research, 1(1), 1-16. https://doi.org/10.48130/BPR-2021-0013spa
dc.relation.referencesOsorio, V., Medina, R., Acuña, J. R., Pabón, J., Álvarez, C. I., Matallana, L. G., & Fernández-Alduenda, M. R. (2023b). Transformation of organic acids and sugars in the mucilage and coffee beans during prolonged fermentation. Journal of Food Composition and Analysis, 105551. https://doi.org/10.1016/j.jfca.2023.105551spa
dc.relation.referencesPeñuela-Martínez, A. E., Sanz-Uribe, J. R., Guerrero, A., & Ramírez, C. A. (2022). Siete prácticas en el beneficio para obtener café de buena calidad - Proceso 7P®. Avances Técnicos Cenicafé, 546, 1-8. https://doi.org/10.38141/10779/0546spa
dc.relation.referencesSarmiento-Herrera, N., Ramírez-Carabalí, C., García-López, J. C., Hincapié-Velásquez, K. A., & Orozco-Jaramillo, D. (2022). Aplicativo de balance hídrico para el cultivo de café en Colombia. Avances Técnicos Cenicafé, 539, 1-8. https://doi.org/10.38141/10779/0539spa
dc.relation.referencesSilva, P. C. da, Junior, W. Q. R., Ramos, M. L. G., Rocha, O. C., Veiga, A. D., Silva, N. H., Brasileiro, L. de O., Santana, C. C., Soares, G. F., Malaquias, J. V., & Vinson, C. C. (2022). Physiological Changes of Arabica Coffee under Different Intensities and Durations of Water Stress in the Brazilian Cerrado. Plants, 11(17), Art. 17. https://doi.org/10.3390/plants11172198spa
dc.relation.referencesTognetti, J. A., Horacio, P., & Martinez-Noel, G. (2013). Sucrose signaling in plants: A world yet to be explored. Plant Signaling & Behavior, 8(3), e23316. https://doi.org/10.4161/psb.23316spa
dc.relation.referencesVélez A., B. E., Jaramillo R., A., Chaves C., B., & Franco A., M. (2000). Distribución de la floración y la cosecha de café en tres altitudes. Avances Técnicos Nº 272. Cenicafé. 4 Pp. https://biblioteca.cenicafe.org/handle/10778/794spa
dc.relation.referencesVinecky, F., Davrieux, F., Mera, A. C., Alves, G. S. C., Lavagnini, G., Leroy, T., Bonnot, F., Rocha, O. C., Bartholo, G. F., Guerra, A. F., Rodrigues, G. C., Marraccini, P., & Andrade, A. C. (2017). Controlled irrigation and nitrogen, phosphorous and potassium fertilization affect the biochemical composition and quality of Arabica coffee beans. The Journal of Agricultural Science, 155(6), 902-918. https://doi.org/10.1017/S0021859616000988spa
dc.relation.referencesWind, J., Smeekens, S., & Hanson, J. (2010). Sucrose: Metabolite and signaling molecule. Phytochemistry, 71(14), 1610-1614. https://doi.org/10.1016/j.phytochem.2010.07.007spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocCrecimiento de plantaspa
dc.subject.agrovocplant growtheng
dc.subject.agrovocProducción de productos agrícolasspa
dc.subject.agrovocagricultural productioneng
dc.subject.agrovocIndustria cafeteraspa
dc.subject.agrovoccoffee industryeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.proposalRelación área foliar por frutospa
dc.subject.proposalIntercambio de gases foliarspa
dc.subject.proposalAzúcares solublesspa
dc.subject.proposalPartición de masa secaspa
dc.subject.proposalContenido bioquímico en granosspa
dc.subject.proposalLeaf-to-fruit ratioeng
dc.subject.proposalLeaf gas exchangeseng
dc.subject.proposalSoluble sugarseng
dc.subject.proposalDry mass partitioningeng
dc.subject.proposalBean biochemical contenteng
dc.titleEfecto de la carga de frutos sobre el crecimiento, desempeño fisiológico, producción de la planta y composición bioquímica de la almendra de Coffea arabica Lspa
dc.title.translatedEffect of the fruit load on growth, physiological performance, plant production, and bean biochemical composition of Coffea arabica Leng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCentro Nacional de Investigaciones del Café-Cenicaféspa
oaire.fundernameUniversidad Nacional de Colombia-Sede Bogotáspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1121936615.2024.pdf
Tamaño:
2.8 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: