Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera

dc.contributor.advisorGalindo Valvuena, Hugo Martin
dc.contributor.authorCastillo Rodriguez, Ferley Yussef
dc.date.accessioned2023-07-17T15:15:05Z
dc.date.available2023-07-17T15:15:05Z
dc.date.issued2023-05-24
dc.descriptionilustraciones, fotografíasspa
dc.description.abstractLas actividades de explotación minera de cantera a cielo abierto para la producción de agregados para la industria de la construcción producen un subproducto microparticulado que hasta ahora no presentan aplicaciones económicas ni tecnológicas viables. La distribución de tamaño de partícula de este subproducto impide su aplicación en la formulación de concretos. La carencia de aplicaciones para este material particulado ha llevado a su clasificación como residuo sólido, cuya disposición final es la apilado a cielo abierto; debido a este apilamiento, las partículas sólidas son dispersadas fácilmente por corrientes de aire y aguas lluvias, impactando negativamente fuentes hídricas, suelos, vegetación y establecimientos urbanos alrededor del lugar de disposición final del material. Atendiendo a la problemática ambiental generada por estos sólidos y su disposición final, esta investigación se planteó el objetivo de desarrollar procesos de conversión que permitan transformar a este residuo en materiales con aplicaciones tecnológicas tales como zeolitas. El sólido, denominado usualmente como fino de cantera o fino producido en la molienda de roca de cantera, es una mezcla de arcillas, cuarzo, materia orgánica y pedazos de vidrio, plásticos y metales. El uso de este microparticulado en procesos de conversión físicoquímicos permitirá posicionar a este sólido como una materia prima de bajo costo para síntesis inorgánicas. Así mismo, la percepción de los finos como materia prima se ajusta a los preceptos de la economía circular. El proceso de conversión del fino de cantera está basado en una hidrólisis alcalina hidrotérmica que produce un material sólido además de silicatos solubles. El producto sólido de la hidrólisis, que es el de interés en esta investigación, fue identificado como la zeolita analcima mediante difracción de rayos X. 3 g de zeolita son obtenidos a partir de 12 g de fino de cantera durante el tratamiento hidrotérmico. La zeolita analcima fue empleada en esta tesis como precursor de procesos hidrotérmicos de activación alcalinos y ácidos que buscaron potenciar su capacidad de retención de adsorbatos en procesos de adsorción. Las condiciones empleadas para las activaciones usaron diferentes ácidos y mezclas de estos, así como diferentes bases y mezclas. Las activaciones con diferentes sistemas alcalinos y básicos fueron promovidas por la actividad diferencial que presentan los ácidos o bases en los procesos de remoción de aluminio o silicio de la estructura del precursor. (Texto tomado de la fuente)spa
dc.description.abstractThe exploitation of open-pit quarries for the production of aggregates used in the construction industry produces microparticulated wastes that so far have no viable economic or technological applications. The particle size distribution of this by-product prevents its application in the concrete formulation. The lack of applications for these particulate matter determines them as solid waste, the final disposal of which is open piles; due to this stacking, the solid particles are easily dispersed by air currents, rainwater, negatively impacting water sources, solids vegetation and urban places around the place of final disposal of the material. Attending to the environmental problems generated by these solids and their final disposal, this research it was proposed to develop conversion processes allow modified this waste in to materials with technological applications such as adsorption. The solid, usually called quarry fines or fines produced in the grinding of quarry rock, is a mixture of clays, quartz, organic matter and pieces of glass, plastics and metals. The use of this microparticle in physicochemical conversion processes will allow this solid to be positioned it as a raw material of low cost for organic synthesis. Likewise, the perception of quarry fines as a raw material is in line with the precepts of the circular economy. The quarry fine conversion process is based on a hydrothermal alkaline hydrolysis that produces a solid material in addition soluble silicates. The solid product of hydrolysis, which is of interest in this research, was identified as analcime zeolite by X-ray diffraction. from 12 g of treated fine quarry solids, three grams of solid product are obtained during the hydrothermal process. Analcime zeolite was used in this research as a precursor for alkaline and acid hydrothermal activation processes that sought to enhance its adsorbate retention capacity in adsorption processes. The conditions used the activation used different acids and mixtures of these, as well as different bases and mixtures of these. The activations whit different alkaline and basic system were promoted by the different activity that the acids or bases present in the aluminum or silicon removal processes from the precursor frameworkeng
dc.description.degreelevelMaestríaspa
dc.description.researchareaConversión físico química de residuos minerosspa
dc.format.extent74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84178
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.references«Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates». https://www.astm.org/c0136_c0136m-19.html (accedido 23 de mayo de 2023).spa
dc.relation.referencesA. Kumar, S. Pratheba, R. Rajendran, K. Perumal, N. Lingeshwaran, y S. Sambaraju, «An experimental study on the mechanical properties of concrete replacing sand with quarry dust and waste foundry sand», Int. Conf. Future Gener. Funct. Mater. Res. 2020, vol. 33, pp. 828-832, ene. 2020, doi: 10.1016/j.matpr.2020.06.271spa
dc.relation.referencesG. K. Attri, R. C. Gupta, y S. Shrivastava, «Sustainable precast concrete blocks incorporating recycled concrete aggregate, stone crusher, and silica dust», J. Clean. Prod., vol. 362, p. 132354, ago. 2022, doi: 10.1016/j.jclepro.2022.132354spa
dc.relation.referencesS. Ponnada, V. Sankar Cheela, y S. Gopala Raju, «Investigation on mechanical properties of composite concrete containing untreated sea sand and quarry dust for 100% replacement of fine aggregate», 3rd Int. Conf. Innov. Technol. Clean Sustain. Dev., vol. 32, pp. 989-996, ene. 2020, doi: 10.1016/j.matpr.2020.06.203spa
dc.relation.referencesB. V. Bahoria, D. K. Parbat, y P. B. Nagarnaik, «XRD Analysis of Natural sand, Quarry dust, waste plastic (ldpe) to be used as a fine aggregate in concrete», Int. Conf. Process. Mater. Miner. Energy July 29th – 30th 2016 Ongole Andhra Pradesh India, vol. 5, n.o 1, Part 1, pp. 1432-1438, ene. 2018, doi: 10.1016/j.matpr.2017.11.230spa
dc.relation.referencesH. Chappidi, «Study on Compressive Strength of Quarry Dust as Fine Aggregate in Concrete», Adv. Civ. Eng., vol. 2016, pp. 1-5, ene. 2016, doi: 10.1155/2016/1742769spa
dc.relation.referencesM. Galetakis y A. Soultana, «A review on the utilisation of quarry and ornamental stone industry fine by-products in the construction sector», Constr. Build. Mater., vol. 102, pp. 769-781, ene. 2016, doi: 10.1016/j.conbuildmat.2015.10.204spa
dc.relation.referencesT. Gupta, S. Kothari, S. Siddique, R. K. Sharma, y S. Chaudhary, «Influence of stone processing dust on mechanical, durability and sustainability of concrete», Constr. Build. Mater., vol. 223, pp. 918-927, oct. 2019, doi: 10.1016/j.conbuildmat.2019.07.188.spa
dc.relation.referencesK. S.K., S. K. Singh, y A. Chourasia, «Alternative fine aggregates in production of sustainable concrete- A review», J. Clean. Prod., vol. 268, p. 122089, sep. 2020, doi: 10.1016/j.jclepro.2020.122089spa
dc.relation.referencesA. Srivastava y S. K. Singh, «Utilization of alternative sand for preparation of sustainable mortar: A review», J. Clean. Prod., vol. 253, p. 119706, abr. 2020, doi: 10.1016/j.jclepro.2019.119706spa
dc.relation.referencesG. Kürklü y G. Görhan, «Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production», Constr. Build. Mater., vol. 217, pp. 498-506, ago. 2019, doi: 10.1016/j.conbuildmat.2019.05.104spa
dc.relation.referencesY. Zhang, L. Korkiala-Tanttu, H. Gustavsson, y A. Miksic, «Assessment for Sustainable Use of Quarry Fines as Pavement Construction Materials: Part I— Description of Basic Quarry Fine Properties», Materials, vol. 12, p. 1209, abr. 2019, doi: 10.3390/ma12081209spa
dc.relation.referencesY. Zhang, L. Korkiala-Tanttu, y M. Borén, «Assessment for Sustainable Use of Quarry Fines as Pavement Construction Materials: Part II-Stabilization and Characterization of Quarry Fine Materials», Materials, vol. 12, p. 2450, ago. 2019, doi: 10.3390/ma12152450spa
dc.relation.referencesA. Khaleque et al., «Zeolite synthesis from low-cost materials and environmental applications: A review», Environ. Adv., vol. 2, p. 100019, dic. 2020, doi:10.1016/j.envadv.2020.100019.spa
dc.relation.referencesM. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, y J. Hojo, «Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process», Fuel, vol. 84, n.o 12, pp. 1482- 1486, sep. 2005, doi: 10.1016/j.fuel.2005.02.002.spa
dc.relation.referencesC. Belviso, L. C. Giannossa, F. J. Huertas, A. Lettino, A. Mangone, y S. Fiore, «Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures», Microporous Mesoporous Mater., vol. 212, pp. 35-47, ago. 2015, doi: 10.1016/j.micromeso.2015.03.012spa
dc.relation.referencesA. M. Cardoso, A. Paprocki, L. S. Ferret, C. M. N. Azevedo, y M. Pires, «Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment», Fuel, vol. 139, pp. 59-67, ene. 2015, doi:10.1016/j.fuel.2014.08.016.spa
dc.relation.referencesT. Aldahri, J. Behin, H. Kazemian, y S. Rohani, «Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment», Fuel, vol. 182, pp. 494-501, oct. 2016, doi: 10.1016/j.fuel.2016.06.019spa
dc.relation.referencesA. M. Cardoso, M. B. Horn, L. S. Ferret, C. M. N. Azevedo, y M. Pires, «Integrated synthesis of zeolites 4A and Na–P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment», J. Hazard. Mater., vol. 287, pp. 69- 77, abr. 2015, doi: 10.1016/j.jhazmat.2015.01.042spa
dc.relation.referencesW. F. Monteiro et al., «Waste to health: Ag-LTA zeolites obtained by green synthesis from diatom and rice-based residues with antitumoral activity», Microporous Mesoporous Mater., vol. 307, p. 110508, nov. 2020, doi: 10.1016/j.micromeso.2020.110508spa
dc.relation.referencesE. A. Abdelrahman, Y. G. Abou El-Reash, H. M. Youssef, Y. H. Kotp, y R. M. Hegazey, «Utilization of rice husk and waste aluminum cans for the synthesis of some nanosized zeolite, zeolite/zeolite, and geopolymer/zeolite products for the efficient removal of Co(II), Cu(II), and Zn(II) ions from aqueous media», J. Hazard. Mater., vol. 401, p. 123813, ene. 2021, doi: 10.1016/j.jhazmat.2020.123813.spa
dc.relation.referencesA. M. Yusof, L. K. Keat, Z. Ibrahim, Z. A. Majid, y N. A. Nizam, «Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ashsynthesized zeolite Y and powdered and granulated forms of mordenite», J. Hazard. Mater., vol. 174, n.o 1, pp. 380-385, feb. 2010, doi: 10.1016/j.jhazmat.2009.09.063spa
dc.relation.referencesN. Na chat, S. Sangsuradet, P. Tobarameekul, y P. Worathanakul, «Modified hierarchical zeolite X derived from riceberry rice husk for propionic acid adsorption», Mater. Chem. Phys., vol. 282, p. 125933, abr. 2022, doi: 10.1016/j.matchemphys.2022.125933spa
dc.relation.referencesF. Collins, A. Rozhkovskaya, J. G. Outram, y G. J. Millar, «A critical review of waste resources, synthesis, and applications for Zeolite LTA», Microporous Mesoporous Mater., vol. 291, p. 109667, ene. 2020, doi: 10.1016/j.micromeso.2019.109667spa
dc.relation.referencesC. W. Purnomo, C. Salim, y H. Hinode, «Synthesis of pure Na–X and Na–A zeolite from bagasse fly ash», Microporous Mesoporous Mater., vol. 162, pp. 6-13, nov. 2012, doi: 10.1016/j.micromeso.2012.06.007spa
dc.relation.referencesM. P. Moisés, C. T. P. da Silva, J. G. Meneguin, E. M. Girotto, y E. Radovanovic, «Synthesis of zeolite NaA from sugarcane bagasse ash», Mater. Lett., vol. 108, pp. 243-246, oct. 2013, doi: 10.1016/j.matlet.2013.06.086spa
dc.relation.referencesJ. A. Oliveira, F. A. Cunha, y L. A. M. Ruotolo, «Synthesis of zeolite from sugarcane bagasse fly ash and its application as a low-cost adsorbent to remove heavy metals», J. Clean. Prod., vol. 229, pp. 956-963, ago. 2019, doi: 10.1016/j.jclepro.2019.05.069.spa
dc.relation.referencesM. P. Moisés et al., «Synthesis of zeolite from multilayer food packing and sugar cane bagasse ash for CO2 adsorption», RSC Adv., vol. 4, n.o 89, pp. 48576-48581, 2014, doi: 10.1039/C4RA04513Kspa
dc.relation.referencesW. Lu y H. Yuan, «A framework for understanding waste management studies in construction», Waste Manag., vol. 31, n.o 6, 2011, doi: 10.1016/j.wasman.2011.01.018spa
dc.relation.referencesI. Zabalza Bribián, A. Valero Capilla, y A. Aranda Usón, «Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential», Build. Environ., vol. 46, n.o 5, 2011, doi: 10.1016/j.buildenv.2010.12.002spa
dc.relation.referencesA. Introduction, Solid state chemistry: an introduction, vol. 43, n.o 06. 2006. doi: 10.5860/choice.43-3402.spa
dc.relation.referencesC. S. Cundy y P. A. Cox, «The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism», Microporous Mesoporous Mater., vol. 82, n.o 1, pp. 1-78, jul. 2005, doi: 10.1016/j.micromeso.2005.02.016spa
dc.relation.referencesM. Maldonado, M. D. Oleksiak, S. Chinta, y J. D. Rimer, «Controlling Crystal Polymorphism in Organic-Free Synthesis of Na-Zeolites», J. Am. Chem. Soc., vol. 135, n.o 7, pp. 2641-2652, feb. 2013, doi: 10.1021/ja3105939spa
dc.relation.referencesS. Goel, S. I. Zones, y E. Iglesia, «Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents», Chem. Mater., vol. 27, n.o 6, pp. 2056-2066, mar. 2015, doi: 10.1021/cm504510fspa
dc.relation.referencesC.-T. Chen et al., «Reaction Kinetics Regulated Formation of Short-Range Order in an Amorphous Matrix during Zeolite Crystallization», J. Am. Chem. Soc., vol. 143, n.o 29, pp. 10986-10997, jul. 2021, doi: 10.1021/jacs.1c03351spa
dc.relation.referencesW. Qin, R. Jain, F. C. Robles Hernández, y J. D. Rimer, «Organic-Free Interzeolite Transformation in the Absence of Common Building Units», Chem. – Eur. J., vol. 25, n.o 23, pp. 5893-5898, abr. 2019, doi: 10.1002/chem.201901067spa
dc.relation.referencesL. Ayele, J. Pérez-Pariente, Y. Chebude, y I. Díaz, «Synthesis of zeolite A from Ethiopian kaolin», Microporous Mesoporous Mater., vol. 215, pp. 29-36, oct. 2015, doi: 10.1016/j.micromeso.2015.05.022spa
dc.relation.referencesM. J. Mendoza-Castro, E. De Oliveira-Jardim, N.-T. Ramírez-Marquez, C.-A. Trujillo, N. Linares, y J. García-Martínez, «Hierarchical Catalysts Prepared by Interzeolite Transformation», J. Am. Chem. Soc., vol. 144, n.o 11, pp. 5163-5171, mar. 2022, doi: 10.1021/jacs.2c00665spa
dc.relation.referencesZ. Asgar Pour y K. O. Sebakhy, «A Review on the Effects of Organic StructureDirecting Agents on the Hydrothermal Synthesis and Physicochemical Properties of Zeolites», Chemistry, vol. 4, n.o 2, pp. 431-446, 2022, doi: 10.3390/chemistry4020032spa
dc.relation.referencesK. Byrappa Masahiro Yoshimura;, Hydrothermal Technology. 2006spa
dc.relation.referencesR. Sánchez-Hernández, A. López-Delgado, I. Padilla, R. Galindo, y S. López-Andrés, «One-step synthesis of NaP1, SOD and ANA from a hazardous aluminum solid waste», Microporous Mesoporous Mater., vol. 226, pp. 267-277, may 2016, doi: 10.1016/j.micromeso.2016.01.037.spa
dc.relation.referencesV. P. Valtchev y K. N. Bozhilov, «Transmission Electron Microscopy Study of the Formation of FAU-Type Zeolite at Room Temperature», J. Phys. Chem. B, vol. 108, n.o 40, pp. 15587-15598, oct. 2004, doi: 10.1021/jp048341c.spa
dc.relation.referencesS. Yang et al., «Bridging Dealumination and Desilication for the Synthesis of Hierarchical MFI Zeolites», Angew. Chem., vol. 129, n.o 41, pp. 12727-12730, oct. 2017, doi: 10.1002/ange.201706566.spa
dc.relation.referencesD. Zhang, C. Jin, M. Zou, y S. Huang, «Mesopore Engineering for Well‐Defined Mesoporosity in Al‐Rich Aluminosilicate Zeolites», Chem. – Eur. J., vol. 25, n.o 11, pp. 2675-2683, feb. 2019, doi: 10.1002/chem.201802912spa
dc.relation.referencesI. Union, O. F. Pure, y A. Chemistry, «INTERNATIONAL UNION OF PURE COMMISSION ON COLLOID AND SURFACE CHEMISTRY INCLUDING CATALYSIS * REPORTING PHYSISORPTION DATA FOR GAS / SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity», Area, vol. 57, n.o 4, pp. 603-619, 1985spa
dc.relation.referencesM. Thommes et al., «Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)», vol. 87, n.o 9- 10, pp. 1051-1069, 2015, doi: 10.1515/pac-2014-1117spa
dc.relation.referencesD. Verboekend, G. Vilé, y J. Pérez-Ramírez, «Hierarchical Y and USY Zeolites Designed by Post-Synthetic Strategies», Adv. Funct. Mater., vol. 22, n.o 5, pp. 916- 928, mar. 2012, doi: 10.1002/adfm.201102411spa
dc.relation.referencesD. V. Peron et al., «External surface phenomena in dealumination and desilication of large single crystals of ZSM-5 zeolite synthesized from a sustainable source», Microporous Mesoporous Mater., vol. 286, pp. 57-64, sep. 2019, doi: 10.1016/j.micromeso.2019.05.033spa
dc.relation.referencesM. Belhachemi, «Chapter 14 - Adsorption of organic compounds on activated carbons», en Sorbents Materials for Controlling Environmental Pollution, A. NúñezDelgado, Ed., Elsevier, 2021, pp. 355-385. doi: 10.1016/B978-0-12-820042-1.00006-7spa
dc.relation.referencesM. Khalid, G. Joly, A. Renaud, y P. Magnoux, «Removal of Phenol from Water by Adsorption Using Zeolites», Ind. Eng. Chem. Res., vol. 43, n.o 17, pp. 5275-5280, ago. 2004, doi: 10.1021/ie0400447spa
dc.relation.referencesR. I. Yousef, B. El-Eswed, y A. H. Al-Muhtaseb, «Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies», Chem. Eng. J., vol. 171, n.o 3, pp. 1143- 1149, jul. 2011, doi: 10.1016/j.cej.2011.05.012spa
dc.relation.referencesN. Jiang, R. Shang, S. G. J. Heijman, y L. C. Rietveld, «Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms», Sep. Purif. Technol., vol. 235, p. 116152, mar. 2020, doi: 10.1016/j.seppur.2019.116152spa
dc.relation.referencesA. J. Mallette et al., «Heteroatom Manipulation of Zeolite Crystallization: Stabilizing Zn-FAU against Interzeolite Transformation», JACS Au, vol. 2, n.o 10, pp. 2295-2306, oct. 2022, doi: 10.1021/jacsau.2c00325spa
dc.relation.referencesR. Jain y J. D. Rimer, «Seed-Assisted zeolite synthesis: The impact of seeding conditions and interzeolite transformations on crystal structure and morphology», Microporous Mesoporous Mater., vol. 300, p. 110174, jun. 2020, doi: 10.1016/j.micromeso.2020.110174.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.ddc540 - Química y ciencias afines::546 - Química inorgánicaspa
dc.subject.ddc540 - Química y ciencias afines::549 - Mineralogíaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.lembIndustria de la zeolitaspa
dc.subject.lembZeolite industryeng
dc.subject.lembSilicatos de aluminiospa
dc.subject.lembAluminum silicateseng
dc.subject.proposalAdsorciónspa
dc.subject.proposalZeolitasspa
dc.subject.proposalResiduos minerosspa
dc.subject.proposalHidrolisisspa
dc.subject.proposalCristalizaciónspa
dc.subject.proposalCatálisisspa
dc.subject.proposalAdsorptioneng
dc.subject.proposalZeoliteeng
dc.subject.proposalWaste miningeng
dc.subject.proposalHydrolysiseng
dc.subject.proposalCrystallizationeng
dc.subject.proposalCatalysiseng
dc.titleSíntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de canteraspa
dc.title.translatedSynthesis of adsorbents from microparticulate by-products of quarry mining activityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80825936-2023.pdf
Tamaño:
2.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: