En 6 día(s), 15 hora(s) y 0 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Evaluación de la resistencia de la corrosión de grafeno sobre un sustrato de cobre

dc.contributor.advisorOlaya Florez, Jhon Jairospa
dc.contributor.advisorPrieto de Castro, Carlosspa
dc.contributor.authorTriana Martínez, Rudolf Arthurspa
dc.contributor.researchgroupAFISspa
dc.date.accessioned2020-07-17T22:10:59Zspa
dc.date.available2020-07-17T22:10:59Zspa
dc.date.issued2020-01-31spa
dc.description.abstractEste trabajo de investigación se realiza un estudio de la resistencia a la de corrosión de recubrimientos (película de grafeno monocapa) sintetizados mediante deposición química de vapor (CVD) en sustratos de cobre. Este nanomaterial presenta propiedades como película impermeable, estabilidad química, térmica y otras cualidades (mecánicas, eléctricas, y ópticas) que lo proponen como un candidato para la protección de metales ante diferentes ambientes electroquímicos. Para la caracterización morfológica y estructural de las películas de grafeno, se evaluaron antes de la prueba de corrosión mediante la Microscopía Óptica Confocal y la Espectrometría Raman. Se estudió la corrosión química del óxido de cobre en las películas del recubrimiento a un tiempo corto (6 meses) y largo plazo (12 meses). La resistencia a la de corrosión de las muestras de las películas de grafeno monocapa en los sustratos de cobre se estudiaron mediante Espectrometría de Impedancia Electroquímica y Ensayos de Polarización Potenciodinámica utilizando diferentes electrolitos (0.5M HCl, 0,5M H2SO4,3,5wt% NaCl, 3,5% NaCl+0,5M H2SO4 y Na2S2O3 +NaCl +CH3 COOH). Para la morfología y caracterización después de las pruebas de corrosión se utilizo la Microscopía Auger, Microscopía Óptica Confocal, Espectrometría Raman y Microscopía Electrónica de Barrido (MEB). El grafeno monocapa sin defectos es un recubrimiento óptimo para la protección de metales ante los ambientes corrosivos ácidos y salinos. Los defectos del recubrimiento proporcionan el flujo de iones de los electrolitos y de la oxidación química que permite la delaminación e inducen a acelerar la corrosión. Por otro lado también se promueve la formación del grafeno multicapa en la huella de corrosión. En este trabajo se observa que mediante los electrolitos 0,5M H2SO4 y 3,5 wt% NaCl se obtiene un mejor comportamiento a la resistencia a la corrosión con respecto al sustrato sin recubrimiento. Como acto culminante el trabajo permite discutir frente a los mecanismos de corrosión del grafeno en el sustrato de cobre, su proyección en el estudio de propiedades físico- químicas del recubrimiento en electródos metálicos y la búsqueda de alternativas para la protección del cobre utilizando películas de grafeno.spa
dc.description.abstractThis research work develops a study on corrosion resistance in coatings (single-layer graphene film) synthesized by chemical vapor deposition (CVD) on copper substrates. Single-layer graphene has properties such as waterproof film, chemical and thermal stability, among other qualities (mechanical, electrical, and optical). These properties make graphene a candidate for the protection of metals against different electrochemical environments. The morphological and structural characterization of graphene films was performed before the corrosion test by Confocal Optical Microscopy and Raman Spectrometry. The chemical corrosion of copper oxide in the coating films at a short time (6 months) and long term (12 months) was studied. The corrosion resistance of single-layer graphene film samples on copper substrates were evaluated by Electrochemical Impedance Spectrometry and Potentiodynamic Polarization Tests, using different electrolytes (0.5M HCl, 0.5M H2SO4.3.5wt% NaCl , 3.5% NaCl + 0.5M H2SO4 and Na2S2O3 + NaCl + CH3 COOH). For morphology and characterization, after the corrosion tests, Auger Microscopy, Confocal Optical Microscopy, Raman Spectrometry and Scanning Electron Microscopy (MEB) were used. Graphene monolayer without defects is an optimal coating for the protection of metals against corrosive acid and saline environments. Defects in the coating generate the flow of electrolyte ions and chemical oxidation that allows delamination and foster the acceleration of corrosion. On the other hand, the formation of multilayer graphene in the corrosion trace is also promoted. This work shows that by means of 0.5M H2SO4 and 3.5 wt% NaCl electrolytes, a better corrosion resistance behavior is obtained, with respect to the uncoated substrate. Finally, the work allows us to discuss the corrosion mechanisms of graphene in the copper substrate, its projection in the study of physicochemical properties of the coating on metal electrodes and the search for alternatives for the protection of copper using graphene films.spa
dc.description.degreelevelMaestríaspa
dc.format.extent201spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77796
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesK. s. Novoselov, V. I. Fal´Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature, vol. 10, no. 192–200, p. 490, 2013.spa
dc.relation.referencesA. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, pp. 183–191, 2007.spa
dc.relation.referencesA. C. Ferrari et al., “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale, vol. 7, pp. 4598–4810, 2015.spa
dc.relation.referencesM. M. et al . Bhuyan, M.S.A, Uddin, M.n., Islam, “Synthesis of graphene Abstract Synthesis of graphene | SpringerLink Synthesis of graphene Mother of all graphene forms . Graphene is a 2D building material for carbon material of all other dimensionalities . It can be wrapped up into 0D buckyballs , rolle,” Int. Nano Lett., vol. 6, no. 2, pp. 65–83, 2016.spa
dc.relation.referencesP. Miró, M. Audiffred, and T. Heine, “An atlas of two-dimensional materials,” Chem. Soc. Rev., vol. 43, no. 18, pp. 6537–6554, 2014.spa
dc.relation.referencesÁ. Camacho et al., “Definición de nanomateriales para Colombia,” Rev. Colomb. Química, vol. 45, no. 1, p. 15, Aug. 2016.spa
dc.relation.referencesK. S. Novoselov et al., “Electric Field Effect in Atomically Thin Carbon Films,” Science (80-. )., vol. 306, no. 5696, pp. 666 LP – 669, Oct. 2004.spa
dc.relation.referencesU. K. S. Strategy, “Developing a UK Standards Strategy for Graphene,” 2018.spa
dc.relation.referencesE. Tem, “Comercialización de la I + D : Análisis de patentes con KMX Patent Analytics Solution Resumen.”spa
dc.relation.referencesK. S. Novoselov et al., “Electronic properties of graphene,” basic solid state physic, vol. 244, no. 11, pp. 4106–4111, 2007.spa
dc.relation.referencesC. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science (80-. )., vol. 321, no. 5887, pp. 385 LP – 388, Jul. 2008.spa
dc.relation.referencesA. Sakhaee-Pour, “Elastic properties of single-layered graphene sheet,” Solid State Commun., vol. 149, no. 1–2, pp. 91–95, Jan. 2009.spa
dc.relation.referencesG. López-Polín, “Propiedades mecánicas de membranas de grafeno: consecuencias de la inducción controlada de defectos,” Sep. 2016. [14]spa
dc.relation.referencesR. A. Bizao, T. Botari, and D. S. Galvao, “Mechanical properties of graphene nanowiggles,” Mater. Res. Soc. Symp. Proc., vol. 1658, no. January, pp. 14–18, 2014.spa
dc.relation.referencesR. Rafiee and A. Eskandariyun, “Comparative study on predicting Young’s modulus of graphene sheets using nano-scale continuum mechanics approach,” Phys. E Low-dimensional Syst. Nanostructures, vol. 90, Mar. 2017.spa
dc.relation.referencesA. Politano and G. Chiarello, “Probing the Young’s modulus and Poisson’s ratio in graphene/metal interfaces and graphite: a comparative study,” Nano Res., vol. 8, no. 6, pp. 1847–1856, 2015.spa
dc.relation.referencesR. Faccio, P. A. Denis, H. Pardo, C. Goyenola, and Á. W. Mombrú, “Mechanical properties of graphene nanoribbons,” J. Phys. Condens. Matter, vol. 21, no. 28, p. 285304, Jul. 2009.spa
dc.relation.referencesV. Berry, “Impermeability of graphene and its applications,” Carbon N. Y., vol. 62, pp. 1–10, 2013.spa
dc.relation.referencesJ. S. Bunch et al., “Impermeable atomic membranes from graphene sheets,” Nano Lett., vol. 8, no. 8, pp. 2458–2462, 2008.spa
dc.relation.referencesY. Sanguansak et al., “Permselective properties of graphene oxide and reduced graphene oxide electrodes,” Carbon N. Y., vol. 68, pp. 662–669, Mar. 2014.spa
dc.relation.referencesA. A. Balandin et al., “Superior Thermal Conductivity of Single-Layer Graphene,” NANO Lett., vol. 8, no. 3, pp. 902–907, 2008.spa
dc.relation.referencesW. Bao et al., “Controlled ripple texturing of suspended graphene and ultrathin graphite membranes,” Nat. Nanotechnol., vol. 4, no. 9, pp. 562–566, 2009.spa
dc.relation.referencesD. Yoon, Y.-W. Son, and H. Cheong, “Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy,” Nano Lett., vol. 11, no. 8, pp. 3227–3231, 2011.spa
dc.relation.referencesL. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser., vol. 129, p. 012004, Oct. 2008.spa
dc.relation.referencesF. Bonaccorso, Z. Sun, and T. Hasan, “Graphene photonics and optoelectronics.,” Nat. Phot., vol. 4, pp. 611–622, 2010.spa
dc.relation.referencesJ. Atalaya, A. Isacsson, and J. Kinaret, “Continuum elastic modeling of graphene resonators,” Nano Lett., vol. 8, no. 12, pp. 4196–4200, 2008.spa
dc.relation.referencesT. Que, P. Obtener, and E. L. Grado, “Transporte De Carga En Grafeno Bajo,” 2010.spa
dc.relation.referencesS. S. Shams and R. Zhang, “Graphene synthesis: A Review,” Mater. Sci., vol. 33, Jan. 2015.spa
dc.relation.referencesM. Yi and Z. Shen, “A review on mechanical exfoliation for the scalable production of graphene,” J. Mater. Chem. A, vol. 3, no. 22, pp. 11700–11715, 2015.spa
dc.relation.referencesJ. Chen, M. Duan, and G. Chen, “Continuous mechanical exfoliation of graphene sheets via three-roll mill,” J. Mater. Chem., vol. 22, no. 37, pp. 19625–19628, 2012.spa
dc.relation.referencesB. Jayasena and S. Subbiah, “A novel mechanical cleavage method for synthesizing few-layer graphenes,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 1–7, 2011.spa
dc.relation.referencesH. Y et al., “High-yield production of graphene by liquid-phase exfoliation of graphite.,” Pubmed, vol. 3, no. 9, pp. 563–571, 2008.spa
dc.relation.referencesS. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nat. Nanotechnol., vol. 4, no. 4, pp. 217–224, 2009.spa
dc.relation.referencesA. B. Bourlinos, V. Georgakilas, R. Zboril, T. A. Steriotis, and A. K. Stubos, “Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes,” Small, vol. 5, no. 16, pp. 1841–1845, 2009.spa
dc.relation.referencesG. Yazdi, T. Iakimov, and R. Yakimova, “Epitaxial Graphene on SiC: A Review of Growth and Characterization,” Crystals, vol. 6, p. 53, May 2016.spa
dc.relation.referencesG. Yazdi, T. Iakimov, and R. Yakimova, “Epitaxial Graphene on SiC: A Review of Growth and Characterization,” Crystals, vol. 6, p. 53, May 2016.spa
dc.relation.referencesM. Choucair, P. Thordarson, and J. A. Stride, “Gram-scale production of graphene based on solvothermal synthesis and sonication,” Nat. Nanotechnol., vol. 4, no. 1, pp. 30–33, 2009.spa
dc.relation.referencesB. Berlanga de la Mata and J. D. Tutor Sánchez, “USO DE LA TECNOLOGÍA CVD (CHEMICAL VAPOR DEPOSITION) EN LA OBTENCIÓN DE NANOESTRUCTURAS DE COMPUESTOS DE CARBONO,” INGENIERO INDUSTRIAL, 2012.spa
dc.relation.referencesY. Zhang, L. Zhang, and C. Zhou, “Review of Chemical Vapor Deposition of Graphene and Related Applications,” ACCOUNTS Chem. Res., vol. 46, no. 10, pp. 2329–2339, 2013.spa
dc.relation.referencesC. Mattevi, H. Kima, and M. Chhowalla, “A review of chemical vapour deposition of graphene on copper,” J. Mater. Chem., no. 10, pp. 21898–21909, 2011.spa
dc.relation.referencesY. Zhang, Y. Fu, M. Edwards, K. Jeppson, L. Ye, and J. Liu, “Chemical vapor deposition grown graphene on Cu-Pt alloys,” Mater. Lett., vol. 193, pp. 255–258, Apr. 2017.spa
dc.relation.referencesL. Álvarez Fraga, A. Andrés Miguel, C. Prieto de Castro, and L. Bausá López, “Materiales híbridos grafeno- -metal para detección óptica,” Universidad Autonoma de Madrid.spa
dc.relation.referencesC. Goberna, C l UNCI AS Marisol Faraldos. .spa
dc.relation.referencesD. R. Cooper et al., “Experimental Review of Graphene,” ISRN Condens. Matter Phys., vol. 2012, pp. 1–56, 2012.spa
dc.relation.referencesA. K. Geim, “Graphene: Status and Prospects,” Science (80-. )., vol. 324, no. 5934, pp. 1530 LP – 1534, Jun. 2009.spa
dc.relation.referencesD. Prasai, J. C. Tuberquia, R. R. Harl, G. K. Jennings, and K. I. Bolotin, “Graphene: Corrosion-Inhibiting Coating,” ACS Nano, vol. 6, no. 2, pp. 1102–1108, 2012.spa
dc.relation.referencesT.-H. Han, M.-R. C. Youngbin Lee, S.-H. Woo, S.-H. Bae, B. H. Hong, and J.-H. A. & T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics, vol. 6, pp. 105–110, 2012.spa
dc.relation.referencesJ. Wu et al., “Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes,” ACS Nano, vol. 4, pp. 43–48, 2010.spa
dc.relation.referencesQ. Ke and J. Wang, “Graphene-based materials for supercapacitor electrodes – A review,” J. Mater., vol. 2, no. 1, pp. 37–54, Mar. 2016.spa
dc.relation.referencesJ. Zhu, R. Duan, S. Zhang, N. Jiang, Y. Zhang, and J. Zhu, “The application of graphene in lithium ion battery electrode materials,” Springerplus, vol. 3, no. 1, p. 585, Oct. 2014.spa
dc.relation.referencesJ. K. Wassei and R. B. Kaner, “Graphene, a promising transparent conductor,” Mater. Today, vol. 13, no. 3, pp. 52–59, Mar. 2010.spa
dc.relation.referencesS. R. Shin et al., “Graphene-based materials for tissue engineering,” Adv. Drug Deliv. Rev., vol. 105, pp. 255–274, Oct. 2016.spa
dc.relation.referencesN. Shadjou and M. Hasanzadeh, “Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances,” J. Biomed. Mater. Res., vol. 104, no. 5, pp. 1250–1275, 2016.spa
dc.relation.referencesS.-Y. Wu, S. S. A. An, and J. Hulme, “Current applications of graphene oxide in nanomedicine,” Int. J. Nanomedicine, vol. 10 Spec Is, no. Spec Iss, pp. 9–24, Aug. 2015.spa
dc.relation.referencesP. B. Pawar, S. K. Maurya, R. P. Chaudhary, D. Badhe, S. Saxena, and S. Shukla, “Water Purification using Graphene Covered Micro-porous, Reusable Carbon Membrane,” MRS Adv., vol. 1, no. 20, pp. 1411–1416, 2016spa
dc.relation.referencesY. Wang, Z. Li, J. Wang, J. Li, and Y. Lin, “Graphene and graphene oxide: biofunctionalization and applications in biotechnology,” Trends Biotechnol., vol. 29, no. 5, pp. 205–212, May 2011.spa
dc.relation.referencesT. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, “Recent advances in graphene-based biosensors,” Biosens. Bioelectron., vol. 26, no. 12, pp. 4637–4648, Aug. 2011.spa
dc.relation.referencesJ. Hu, Y. Ji, and Y. Shi, “A Review on the use of Graphene as a Protective Coating against Corrosion,” Ann. Mater. Sci. Eng., vol. 1, no. 3, pp. 1–16, 2014.spa
dc.relation.referencesA. Tiwari and R. K. Singh Raman, “Multilayer graphene coating on copper for corrosion mitigation,” Annu. Conf. Australas. Corros. Assoc. 2013 Corros. Prev. 2013, no. April, pp. 711–717, 2013.spa
dc.relation.referencesA. S. Sai Pavan and S. R. Ramanan, “A study on corrosion resistant graphene films on low alloy steel,” Appl. Nanosci., vol. 6, no. 8, pp. 1175–1181, 2016.spa
dc.relation.referencesS. . Chen et al., “Oxidation resistance of graphene-coated Cu and Cu/Ni alloy,” ACS Nano, vol. 5, no. 2, pp. 1321–1327, 2011.spa
dc.relation.referencesE. Corro- et al., “Standard Guide for Laboratory Immersion Corrosion Testing of Metals 1,” 2019.spa
dc.relation.referencesW. Callister Jr, Materials science and Engineering an Introduction, John Wiley. New York, 2003.spa
dc.relation.referencesJ. Ávila and J. Genescá, MÁS ALLÁ DE LA HERRUMBRE, Económica. Ciudad de Mexico, 1987.spa
dc.relation.referencesJ. Avila and J. Genescá, Más allá de la herrumbre II. La lucha contra la corrosión, no. Figura 9. 1996.spa
dc.relation.referencesI. Platzman, R. Brener, H. Haick, and R. Tannenbaum, “Oxidation of polycrystalline copper thin films at ambient conditions,” J. Phys. Chem. C, vol. 112, no. 4, pp. 1101–1108, 2008.spa
dc.relation.referencesF. Yu, “Graphene based coatings for corrosion protection,” Techmical University of Denmark, 2018.spa
dc.relation.referencesD. E. N. Ciencias and R. G. Inzunza, “CALIFORNIA,” 2014.spa
dc.relation.referencesV. AMIGO BORRAS and M. D. SALVADOR MOYA, Fundamentos de Ciencia De los Materiales. Cuaderno de Laboratorio., Universita. Valencia, 1999spa
dc.relation.referencesC. Moreno, “Termodinámica electroquímica,” pp. 4262–4266, 2017.spa
dc.relation.referencesV. G. Celante and M. B. J. G. Freitas, “Electrodeposition of copper from spent Li-ion batteries by electrochemical quartz crystal microbalance and impedance spectroscopy techniques,” J. Appl. Electrochem., vol. 40, no. 2, pp. 233–239, 2010.spa
dc.relation.referencesR. Larios-Durán, “Estudio Electrocinético De La Adsorción De Iones En Electrodos Líquidos Y Sólidos Mediante Técnicas De Impedancia Y Modulación De La Capacitancia,” Centro de Investigación y Desarrollo Tecnológico en Electroquimica, 2007.spa
dc.relation.referencesF. J. Garfias Vázquez, La interfase electrodo-electrolito y el modelo de la doble capa. .spa
dc.relation.referencesJ. hu, Y. Ji, Y. Shi, F. Hui, H. Duan, and M. Lanza, “A Review on the use of Graphene as a Protective Coating against Corrosion,” Ann J Mater. Sci Eng, vol. 1, p. 16, Nov. 2014.spa
dc.relation.referencesU. Mogera, N. Kurra, and D. Radhakrishnan, “Low cost , rapid synthesis of graphene on Ni : An efficient barrier for corrosion and thermal oxidation,” Carbon N. Y., vol. 78, no. Cvd, pp. 384–391, 2014.spa
dc.relation.referencesM. Topsakal, H. Aahin, and S. Ciraci, “Graphene coatings: An efficient protection from oxidation,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 85, no. 15, 2012.spa
dc.relation.referencesA. Tiwari, P. C. Banerjee, R. K. R. Singh, and M. Majumder, “Cvd Graphene on Metals for Remarkable Corrosion Resistance,” Corros. Prev., no. April 2014, pp. 1–7, 2012.spa
dc.relation.referencesA. U. Honor and T. Presented, “Graphene Oxidation Barrier Coating Xu Zhou,” no. April, 2011.spa
dc.relation.referencesB. Luo, P. R. Whelan, A. Shivayogimath, D. M. A. Mackenzie, P. Bøggild, and T. J. Booth, “Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene,” Chem. Mater., vol. 28, no. 11, pp. 3789–3795, 2016.spa
dc.relation.referencesY. P. Hsieh et al., “Complete corrosion inhibition through graphene defect passivation,” ACS Nano, vol. 8, no. 1, pp. 443–448, 2014.spa
dc.relation.referencesS. Chen et al., “Manufacturing Graphene-Encapsulated Copper Particles by Chemical Vapor Deposition in a Cold Wall Reactor,” ChemistryOpen, vol. 8, no. 1, pp. 58–63, 2019.spa
dc.relation.referencesM. Wu et al., “High oxidation resistance of CVD graphene-reinforced copper matrix composites,” Nanomaterials, vol. 9, no. 4, pp. 1–8, 2019.spa
dc.relation.referencesM. Schriver, W. Regan, W. J. Gannett, A. M. Zaniewski, M. F. Crommie, and A. Zettl, “Graphene as a long-term metal oxidation barrier: Worse than nothing,” ACS Nano, vol. 7, no. 7, pp. 5763–5768, 2013.spa
dc.relation.referencesF. Zhou, Z. Li, G. J. Shenoy, L. Li, and H. Liu, “Enhanced Room-Temperature Corrosion of Copper in the Presence of Graphene,” no. 8, pp. 6939–6947, 2013spa
dc.relation.referencesD. W. Boukhvalov et al., “Atomic and electronic structure of a copper/graphene interface as prepared and 1.5 years after,” Appl. Surf. Sci., vol. 426, pp. 1167–1172, 2017.spa
dc.relation.referencesL. Álvarez-Fraga et al., “Oxidation Mechanisms of Copper under Graphene: The Role of Oxygen Encapsulation,” Chem. Mater., vol. 29, no. 7, pp. 3257–3264, 2017.spa
dc.relation.referencesF. Fauzi et al., “A simple method to examine room-temperature corrosion of graphene-coated copper foil after A simple method to examine room-temperature corrosion of graphene-coated copper foil after stored for 2 . 5 years,”spa
dc.relation.referencesR. Ramírez-Jíménez, L. Álvarez-Fraga, F. Jimenez-Villacorta, E. Climent-Pascual, C. Prieto, and A. De Andrés, “Interference enhanced Raman effect in graphene bubbles,” Carbon N. Y., vol. 105, pp. 556–565, 2016.spa
dc.relation.referencesN. T. Kirkland, T. Schiller, N. Medhekar, and N. Birbilis, “Exploring graphene as a corrosion protection barrier,” Corros. Sci., vol. 56, pp. 1–4, 2012spa
dc.relation.referencesR. K. Singh Raman et al., “Protecting copper from electrochemical degradation by graphene coating,” Carbon N. Y., vol. 50, no. 11, pp. 4040–4045, Sep. 2012.spa
dc.relation.referencesJ. H. Huh, S. H. Kim, J. H. Chu, S. Y. Kim, J. H. Kim, and S. Y. Kwon, “Enhancement of seawater corrosion resistance in copper using acetone-derived graphene coating,” Nanoscale, vol. 6, no. 8, pp. 4379–4386, 2014.spa
dc.relation.referencesI. Jung and K. Rhee, “Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution,” vol. 5, 2014.spa
dc.relation.referencesY. Dong, Q. Liu, and Q. Zhou, “Corrosion behavior of Cu during graphene growth by CVD,” Corros. Sci., vol. 89, pp. 214–219, 2014.spa
dc.relation.referencesN. Pu et al., “Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates,” J. Power Sources, vol. 282, pp. 248–256, 2015.spa
dc.relation.referencesA. C. Stoot, Protective coatings based on 2D-materials. DTU Nanotech, 2016.spa
dc.relation.referencesY. Wu, X. Zhu, W. Zhao, Y. Wang, and C. Wang, “Corrosion mechanism of graphene coating with different defect levels,” vol. 777, pp. 135–144, 2019.spa
dc.relation.referencesY. J. Ren, M. R. Anisur, W. Qiu, J. J. He, S. Al-Saadi, and R. K. Singh Raman, “Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study,” J. Power Sources, vol. 362, pp. 366–372, Sep. 2017.spa
dc.relation.referencesFREDY ALEJANDRO ORJUELA GUERRERO, “RESISTENCIA A LA CORROSIÓN EN RECUBRIMIENTOS DE CARBURO DE VANADIO Y CARBURO DE NIOBIO DEPOSITADOS CON LA TÉCNICA TRD,” J. Chem. Inf. Model., vol. 53, p. 160, 2013.spa
dc.relation.referencesF. Leonardo, J. Jairo, and H. Bautista, “Síntesis y evaluación de resistencia a la corrosión,” vol. 7, pp. 195–206, 2018.spa
dc.relation.referencesL. Julieta and C. Flechas, “DE Ti-Zr-Si-N,” 2018.spa
dc.relation.referencesI. N. G. Magda, M. Torres, I. N. G. Magda, and M. Torres, “No Title,” 2010.spa
dc.relation.referencesG. Ivonne and C. Gonz, “Evaluación de la resistencia a la corrosión de recubrimientos de ZrO,” 2012.spa
dc.relation.referencesG. Instruments, “Introduction to Electrochemical Impedance Spectroscopy.”spa
dc.relation.referencesB. Soediono et al., “Espectroscopía De Impedancia Electroquímica En Corrosión,” J. Chem. Inf. Model., vol. 41, no. 7, pp. 3–5, 2014.spa
dc.relation.referencesA. C. Ferrari et al., “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett., vol. 97, no. 18, pp. 1–4, 2006.spa
dc.relation.referencesR. K. Singh Raman and A. Tiwari, “Graphene: The thinnest known coating for corrosion protection,” Jom, vol. 66, no. 4, pp. 637–642, 2014.spa
dc.relation.referencesA. S. Sai Pavan and S. R. Ramanan, “A study on corrosion resistant graphene films on low alloy steel,” Appl. Nanosci., vol. 6, no. 8, pp. 1175–1181, 2016.spa
dc.relation.referencesA. Forero Ballesteros, I. de Bott, and J. A. Cunha Ponciano, “Evaluation of the susceptibility to sulphide stress corrosion cracking and hydrogen embrittlement of API 5L X80 girth welds steel manufactured in Brazil,” Rev. ION, vol. 25, no. SPE, pp. 7–15, 2012.spa
dc.relation.referencesC. Material and P. Databases, “Making Potentiodynamic Anodic Polarization,” pp. 1–8, 2013.spa
dc.relation.referencesF. Schedin et al., “Surface Enhanced Raman Spectroscopy of Graphene,” pp. 1–11.spa
dc.relation.referencesA. Manuscript, “c[1] A. Manuscript, ‘ce pte pt,’ 2018.e pte pt,” 2018.spa
dc.relation.referencesJ. Lei, Y. Hu, Z. Liu, G. J. Cheng, and K. Zhao, “Defects Mediated Corrosion in Graphene Coating Layer,” ACS Appl. Mater. Interfaces, vol. 9, no. 13, pp. 11902–11908, 2017.spa
dc.relation.referencesJ. Bartolom, Á. Leo, S. Cortijo, and A. Cremades, “Grain selective Cu oxidation and anomalous shift of graphene 2D Raman peak in the graphene – Cu system Grain selective Cu oxidation and anomalous shift of graphene 2D Raman peak in the graphene – Cu system,” 2019.spa
dc.relation.referencesI. Wlasny et al., “Impact of electrolyte intercalation on the corrosion of graphene-coated copper,” Corros. Sci., vol. 92, pp. 69–75, 2015.spa
dc.relation.referencesH. Zhang, Q. Ma, Y. Wang, B. Xu, and J. Guo, “Improved corrosion resistance of copper coated by graphene,” New Carbon Mater., vol. 34, no. 2, pp. 153–160, 2019.spa
dc.relation.referencesR. K. Singh Raman et al., “Protecting copper from electrochemical degradation by graphene coating,” Carbon N. Y., vol. 50, no. 11, pp. 4040–4045, 2012.spa
dc.relation.referencesR. K. Singh Raman et al., “Protecting copper from electrochemical degradation by graphene coating,” Carbon N. Y., vol. 50, no. 11, pp. 4040–4045, 2012.spa
dc.relation.referencesJ. Wang et al., “The effects of graphene content on the corrosion resistance, and electrical, thermal and mechanical properties of graphene/copper composites,”spa
dc.relation.referencesM. A. Krishnan et al., “Graphene-based anticorrosive coatings for copper,” RSC Adv., vol. 8, no. 1, pp. 499–507, 2018.spa
dc.relation.referencesA. Fateh, M. Aliofkhazraei, and A. R. Rezvanian, “Review of corrosive environments for copper and its corrosion inhibitors,” Arab. J. Chem., vol. 13, no. 1, pp. 481–544, 2020.spa
dc.relation.referencesS. Das, D. Lahiri, D. Lee, A. Agarwal, and W. Choi, “Measurements of the adhesion energy of graphene to metallic substrates,” Carbon N. Y., vol. 59, pp. 121–129,spa
dc.relation.referencesC. Cui, A. T. O. Lim, and J. Huang, “A cautionary note on graphene anti-corrosion coatings,” Nat. Nanotechnol., vol. 12, no. 9, pp. 834–835, 2017.spa
dc.relation.referencesY. Xu, J. Qu, Y. Shen, and W. Feng, “Different graphene layers to enhance or prevent corrosion of polycrystalline copper,” RSC Adv., vol. 8, no. 27, pp. 15181–15187, 2018.spa
dc.relation.referencesH. Ding and L. H. Hihara, “Galvanic corrosion in metal-matrix composites containing semiconducting constituents,” J. Electrochem. Soc., vol. 156, no. 12, 2009.spa
dc.relation.referencesY. H. Zhang et al., “Role of wrinkles in the corrosion of graphene domain-coated Cu surfaces,” Appl. Phys. Lett., vol. 104, no. 14, 2014.spa
dc.relation.referencesS. Akhtar, T. Laoui, A. Ibrahim, A. M. Kumar, J. Ahmed, and I. ul H. Toor, “Few-Layers Graphene Film and Copper Surface Morphology for Improved Corrosion Protection of Copper,” J. Mater. Eng. Perform., vol. 28, no. 9, pp. 5541–5550, 2019.spa
dc.relation.referencesY. X. Zhu, C. Y. Duan, H. Y. Liu, Y. F. Chen, and Y. Wang, “Graphene coating for anti-corrosion and the investigation of failure mechanism,” J. Phys. D. Appl. Phys., vol. 50, no. 11, 2017.spa
dc.relation.referencesA. Tiwari and R. K. Raman, Multilayer Graphene on Copper for Corrosion Mitigation. 2013spa
dc.relation.referencesM. Liu and J. Li, “In-situ Raman characterization of initial corrosion behavior of copper in neutral 3.5% (wt.) NaCl solution,” Materials (Basel)., vol. 12, no. 13, 2019.spa
dc.relation.referencesL. M. S. G. A. Applegarth, C. R. Corbeil, D. J. W. Mercer, C. C. Pye, and P. R. Tremaine, “Raman and ab initio investigation of aqueous Cu(I) chloride complexes from 25 to 80 C,” J. Phys. Chem. B, vol. 118, no. 1, pp. 204–214, 2014.spa
dc.relation.referencesM. Metikoš-Huković, R. Babić, I. Škugor, and Z. Grubač, “Copper-nickel alloys modified with thin surface films: Corrosion behaviour in the presence of chloride ions,” Corros. Sci., vol. 53, no. 1, pp. 347–352, 2011.spa
dc.relation.referencesK. F. Khaled, “Studies of the corrosion inhibition of copper in sodium chloride solutions using chemical and electrochemical measurements,” Mater. Chem. Phys., vol. 125, no. 3, pp. 427–433, 2011.spa
dc.relation.referencesE. P. Grishina, A. M. Udalova, and E. M. Rumyantsev, “Anodic Oxidation of Copper in Concentrated Sulfuric Acid Solutions,” vol. 38, no. 9, pp. 1155–1158, 2002.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.proposalPelícula de Grafenospa
dc.subject.proposalSingle-layer Graphene Filmeng
dc.subject.proposalChemical vapor depositioneng
dc.subject.proposalDeposición Química de Vaporspa
dc.subject.proposalCorrosion Resistanceeng
dc.subject.proposalResistencia a la corrosiónspa
dc.subject.proposalGrafenospa
dc.subject.proposalGrapheneeng
dc.subject.proposalNanomaterialesspa
dc.subject.proposalNanomaterialseng
dc.titleEvaluación de la resistencia de la corrosión de grafeno sobre un sustrato de cobrespa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
80844380.2020.pdf
Tamaño:
7.89 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
80844380.2020.pdf
Tamaño:
7.89 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: