Caracterización experimental de condiciones de flujo mixto en alcantarillado pluvial debido a eventos que exceden el caudal de diseño

dc.contributor.advisorChang, Philippe
dc.contributor.authorBurbano Argoty, Evelyn Esperanza
dc.contributor.researchgroupGrupo de Trabajo Académico en Ingeniería Hidráulica y Ambientalspa
dc.date.accessioned2021-04-08T17:15:04Z
dc.date.available2021-04-08T17:15:04Z
dc.date.issued2020
dc.descriptionfiguras, tablas.spa
dc.description.abstractEsta investigación caracteriza experimentalmente el flujo mixto en el tramo inicial de un alcantarillado pluvial para el caso de entrada en carga desde el extremo aguas arriba, debido al incremento instantáneo de caudal que resulta de la escorrentía de un evento de precipitación que excede el diseño. Un evento de precipitación significativo puede, en muchas ocasiones exceder las medidas de diseño de algunos elementos del drenaje urbano como elementos de captación y conductos, provocando que el sistema de drenaje se encuentre rebosando. En los conductos, se presenta un aumento progresivo del caudal de entrada y, por tanto, inicia una entrada en carga desde el extremo aguas arriba que puede derivar inundación por las calles con las consecuencias asociadas. En este trabajo se revisaron las diferentes formulaciones teóricas que describen el fenómeno de flujo mixto en alcantarillados pluviales y, se estudiaron los criterios prescritos para el diseño de este tipo de conductos en algunas referencias internacionales y en la normativa colombiana. La normativa colombiana proporciona en primer lugar, los criterios para caracterizar la precipitación y la incidencia del drenaje urbano. Posteriormente, establece unos valores límite de las variables que hacen parte del diseño hidráulico de conductos y también específicamente del tramo inicial del alcantarillado pluvial. Sobre los criterios para el diseño hidráulico del tramo inicial, se destacan la estipulación de una pendiente mínima de 2% y un valor máximo permisible de la relación de llenado para el caudal de diseño, de 93%. Siguiendo estos criterios, se desarrolló el diseño teórico del tramo inicial de un alcantarillado pluvial que se encargaría de la evacuación de un caudal que resultaría de la escorrentía de un lote hipotético ubicado en la ciudad de Manizales. Después, se elaboró un montaje experimental que representó este conducto del tramo inicial. El montaje estuvo compuesto de una tubería de 18 m de longitud, 0.26 m de diámetro y 2% de pendiente, en la cual se suministró un aporte variable de caudal con un aumento progresivo hasta alcanzar un caudal pico teórico de 0.14 m3/s. Mediante grabaciones y mediciones de velocidad se observó la evolución del flujo. A la luz de las conclusiones de este estudio, se recomendaría a la normativa colombiana integrar nuevas limitantes para el diseño del tramo inicial del alcantarillado pluvial, estas sugerencias son una pendiente mínima de 3% y una relación de llenado máxima de 80%. Debido a que al hacer el diseño teórico y el experimento, se evidenció que incluso cuando se cumplieron los requisitos actualmente estipulados, el diseño presenta debilidades que pueden llevar a inundaciones sobre la calle o la ocurrencia no prevista de un flujo mixto en la tubería.spa
dc.description.abstractThis experimental study investigated mixed flow conditions in storm sewers that exceed design flow, as it arises from the sudden increase in discharge. Significant precipitation runoff can occasionally exceed the design capacity of some urban drainage elements such as sewer intakes, causing the system to overflow. An increase in the inlet flow may result in a pressure surge that is induced upstream and may lead to flooding with the associated consequences. This investigation reviewed the different theoretical principles that describe the mixed flow phenomenon in storm sewers and examined the various considerations prescribed for storm sewer design internationally and in Colombia. The Colombian regulation for sewer design provides specific standards to characterize precipitation and its incident runoff in an urban context. It subsequently establishes design limit values for the various hydraulic variables, specifically for sewer length and intake to the system; of those, a minimum channel slope of 2% and maximum permissible relative flow depth of 93% stand out. In accordance with such standards, this study undertook the hydraulic design of a storm sewer associated with a hypothetical parking lot located in the city of Manizales. An experimental setup was then implemented to represent the actual intake design of the storm sewer. The experimental setup included a 18 m long pipe, 0.26 m ID upon a 2% longitudinal grade, and was provided with a variable flow intake tank that supplied a progressive but increasing discharge flow over time, up to a theoretical design peak flow of 0.14 m3/s. Through high frequency video recording and velocity measurements, the evolution of the flow over time was characterized. This investigation concluded that the Colombian storm sewer design standard may be improved by providing new guidelines of 3% minimum slope and a maximum relative depth of 80% at the channel intake. The later experiment evidenced that even though the stipulated design standard may be met, flooding may occur at the upstream sewer intake, although the maximum design flow may not have yet been reached, as unanticipated mixed flow conditions is developing in the pipe.eng
dc.description.degreelevelMaestríaspa
dc.description.methodsLa metodología de este trabajo se conforma de cuatro fases, las cuales se describen a continuación: Fase 1: Revisión de la literatura técnica existente de flujo mixto en conductos cerrados Fase 2: Caracterización de la zona de aplicación e identificación de parámetros de diseño de conductos Fase 3: Evaluación experimental Fase 4: Análisisspa
dc.format.extent176 p.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Universidad Nacionalspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79387
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Civilspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizalesspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAguas de Manizales S.A. E.S.P. (2016). Diseño de obras y especificaciones técnicas.spa
dc.relation.referencesAragón Hernández, J. L. (2013). Modelación numérica integrada de los procesos hidráulicos en el drenaje urbano. Tesis doctoral.spa
dc.relation.referencesAragón Hernández, J. L., & Bladé, E. (2017). Modelación numérica de flujo mixto en conductos cerrados con esquemas en volúmenes finitos. Tecnología y ciencias del agua, 8(3), 127-142.spa
dc.relation.referencesAragón Hernández, J. L., Bladé i Castellet, E., & Gómez Valentín, M. (2011). Modelación numérica de flujo mixto y bolsas de aire atrapado en colectores pluviales. En Jia 2011: II Jornadas de ingenieria del agua. Modelos numéricos en dinámica fluvial. Barcelona 5 y 6 octubre 2011 (pp. 1-8).spa
dc.relation.referencesAragón Hernández, J. L., Concha Jopia, R. F., Bladé i Castellet, E., & Gómez Valentín, M. (2009). Comparación de dos esquemas numéricos en la modelación de flujo mixto en colectores pluviales. En I Jornadas de Ingeniería del Agua (pp. 1-9). International Association for Hydro-Environment Engineering and Research.spa
dc.relation.referencesAureli, F., Dazzi, S., Maranzoni, A., & Mignosa, P. (2015). Validation of single- and two-equation models for transient mixed flows: a laboratory test case. Journal of Hydraulic Research, 53(4), 440-451.spa
dc.relation.referencesBodhaine, G. L. (1982). Measurement of peak discharge at culverts by indirect methods. US Government Printing Office.spa
dc.relation.referencesBourdarias, C., Ersoy, M., & Gerbi, S. (2013). Air entrainment in transient flows in closed water pipes: a two-layer approach. ESAIM: Mathematical Modelling and Numerical Analysis, 47(2), 507-538.spa
dc.relation.referencesBourdarias, C., & Gerbi, S. (2007). A finite volume scheme for a model coupling free surface and pressurised flows in pipes. Journal of Computational and Applied Mathematics, 209(1), 109-131.spa
dc.relation.referencesBousso, S., Daynou, M., & Fuamba, M. (2013). Numerical modeling of mixed flows in storm water systems: critical review of literature. Journal of Hydraulic Engineering, 139(4), 385-396.spa
dc.relation.referencesBousso, S., & Fuamba, M. (2014). Numerical and experimental analysis of the pressurized wave front in a circular pipe. Journal of Hydraulic Engineering, 140(3), 300-312.spa
dc.relation.referencesBrière, F. G. (2007). Drinking-water distribution, sewage, and rainfall collection. Presses internationales Polytechnique.spa
dc.relation.referencesCapart, H., Sillen, X., & Zech, Y. (1997). Numerical and experimental water transients in sewer pipes. Journal of Hydraulic Research, 35(5), 659-672.spa
dc.relation.referencesCardie, J. A., Song, C. C., & Yuan, M. (1989). Measurements of mixed transient flows. Journal of Hydraulic Engineering, 115(2), 169-182.spa
dc.relation.referencesCataño-Lopera, Y. A., Tokyay, T. E., Martin, J. E., Schmidt, A. R., Lanyon, R., Fitzpatrick, K., … García, M. H. (2014). Modeling of a transient event in the tunnel and reservoir plan system in Chicago, Illinois. Journal of Hydraulic Engineering, 140(9), 05014005.spa
dc.relation.referencesChoi, S., Hong, S. H., & Lee, S. O. (2019). Practical Approach to Predict Geyser Occurrence in Stormwater Drainage System. KSCE Journal of Civil Engineering, 23(3), 1108-1117.spa
dc.relation.referencesChosie, C. D., Hatcher, T. M., & Vasconcelos, J. G. (2014). Experimental and numerical investigation on the motion of discrete air pockets in pressurized water flows. Journal of Hydraulic Engineering, 140(8), 1-12.spa
dc.relation.referencesChow, V. T. (1994). Hidráulica de canales abiertos. McGraw-Hill.spa
dc.relation.referencesCiraolo, G., & Ferreri, G. B. (2008). Sewer pressurization modelling by a rigid-column method. En Proc. of 11th International Conference on Urban Drainage—11th ICUD, Edinburgh, Scotland (UK), August 31st–September 5th, CD-ROM.spa
dc.relation.referencesCong, J., Chan, S. N., & Lee, J. H. (2017). Geyser formation by release of entrapped air from horizontal pipe into vertical shaft. Journal of Hydraulic Engineering, 143(9), 1-13.spa
dc.relation.referencesDolz Ripollès, J., & Gómez, M. (1994). Problemática del drenaje de aguas pluviales en zonas urbanas y del estudio hidráulico de las redes de colectores. Ingeniería del agua, 1(1), 55-66.spa
dc.relation.referencesEldayih, Y., Cetin, M., & Vasconcelos, J. G. (2020). Air-Pocket Entrapment Caused by Shear Flow Instabilities in Rapid-Filling Pipes. Journal of Hydraulic Engineering, 146(4), 04020016.spa
dc.relation.referencesFerreri, G. B., Ciraolo, G., & Lo Re, C. (2014a). Flow hydraulic characteristics determining the occurrence of either smooth or abrupt sewer pressurization. Journal of Hydraulic Research, 52(5), 676-683.spa
dc.relation.referencesFerreri, G. B., Ciraolo, G., & Lo Re, C. (2014b). Storm sewer pressurization transient - An experimental investigation. Journal of Hydraulic Research, 52(5), 666-675.spa
dc.relation.referencesGómez, M., & Achiaga, V. (2001). Mixed flow modelling produced by pressure fronts from upstream and downstream extremes. En Urban Drainage Modeling (pp. 461-470). Reston, VA: American Society of Civil Engineers.spa
dc.relation.referencesGuo, Q., & Song, C. C. (1990). Surging in Urban Storm Drainage Systems. Journal of Hydraulic Engineering, 116(12), 1523-1537.spa
dc.relation.referencesGuo, Q., & Song, C. C. (1991). Dropshaft hydrodynamics under transient conditions. Journal of Hydraulic Engineering, 117(8), 1042-1055.spa
dc.relation.referencesHamam, M. A., & McCorquodale, J. A. (1982). Transient conditions in the transition from gravity to surcharged sewer flow. Canadian Journal of Civil Engineering, 9(2), 189-196.spa
dc.relation.referencesHatcher, T. M., & Vasconcelos, J. G. (2014). Experimental study on scale effects in surges caused by sudden air pocket entrapments. En World Environmental and Water Resources Congress 2014 (pp. 1282-1291). Reston, VA: American Society of Civil Engineers.spa
dc.relation.referencesHatcher, T. M., & Vasconcelos, J. G. (2017). Peak pressure surges and pressure damping following sudden air pocket compression. Journal of Hydraulic Engineering, 143(4), 04016094.spa
dc.relation.referencesHu, D., Li, S., Yao, S., & Jin, Z. (2019). A simple and unified linear solver for free-surface and pressurized mixed flows in hydraulic systems. Water, 11(10), 1-15.spa
dc.relation.referencesHuang, B., Wu, S., Zhu, D. Z., & Schulz, H. E. (2018). Experimental study of geysers through a vent pipe connected to flowing sewers. Water Science and Technology, 2017(1), 66-76.spa
dc.relation.referencesIDEAM. (2018). CURVAS IDF - Estación APTO La Nubia (Manizales). Recuperado 26 de marzo de 2020, de http://www.ideam.gov.co/curvas-idf?p_p_id=110_INSTANCE_WiU2xPoyv4KA&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_pos=1&p_p_col_count=2&_110_INSTANCE_WiU2xPoyv4KA_redirect=http%3A%2F%2Fwww.ideam.gov.co%2Fcurvas-idf%2F-%2Fdocumspa
dc.relation.referencesINVIAS, I. N. D. V. (2009). Manual de Drenaje para Carreteras. Recuperado 26 de marzo de 2020, de https://www.invias.gov.co/index.php/archivo-y-documentos/documentos-tecnicos/especificaciones-tecnicas/984-manual-de-drenaje-para-carreteras/filespa
dc.relation.referencesKerby, W. S. (1959). Time of concentration for overland flow. Civil Engineering, 29, 60.spa
dc.relation.referencesLa Patria. (2016). Vías inundadas y recámaras tapadas, tras aguacero en Manizales. Recuperado 12 de marzo de 2020, de https://www.lapatria.com/manizales/vias-inundadas-y-recamaras-tapadas-tras-aguacero-en-manizales-222270.spa
dc.relation.referencesLa Patria. (2018). Fin de semana estuvo pasado por agua en Manizales. Recuperado 12 de marzo de 2020, de https://www.lapatria.com/manizales/fin-de-semana-estuvo-pasado-por-agua-en-manizales-411481.spa
dc.relation.referencesLeon, A. S., Elayeb, I. S., & Tang, Y. (2019). An experimental study on violent geysers in vertical pipes. Journal of Hydraulic Research, 57(3), 283-294.spa
dc.relation.referencesLi, J., & McCorquodale, A. (1999). Modeling mixed flow in storm sewers. Journal of Hydraulic Engineering, 125(11), 1170-1180.spa
dc.relation.referencesLi, J., & McCorquodale, A. (2001). Modeling the transition from gravity to pressurized flows in sewers. En Urban Drainage Modeling (pp. 134-145).spa
dc.relation.referencesLiu, L., Shao, W., & Zhu, D. Z. (2020). Experimental Study on Stormwater Geyser in Vertical Shaft above Junction Chamber. Journal of Hydraulic Engineering, 146(2), 04019055.spa
dc.relation.referencesLoftin, M. K., Merritt, F. S., & Rickett, J. T. (2004). Standard Handbook for Civil Engineers. McGraw-Hill.spa
dc.relation.referencesMays, L. W. (2001). Stormwater collection systems design handbook. McGraw-Hill Professional.spa
dc.relation.referencesMcCorquodale, J., & Hamam, M. (1983). Modeling surcharged flow in sewers. En Int’l Symposium on Urban Hydrology, Hydraulics and Sediment Control, University of Kentucky, Lexington, Kentucky (pp. 331-338).spa
dc.relation.referencesMejía, F. F., Londoño, L. J., & Pachón, G. J. (2006). Red de estaciones meteorológicas para prevención de desastres en Manizales - Caldas (Colombia). Taller internacional sobre gestión del riesgo a nivel local el caso de Manizales, Colombia a la administración pública y el rol de la universidad Manizales: una ciudad laboratorio.spa
dc.relation.referencesMinisterio de Desarrollo Económico. (2000). Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico, RAS 2000.spa
dc.relation.referencesMinisterio de Vivienda Ciudad y Territorio. (2017). Reolución 0330 de 2017. Recuperado 24 de marzo de 2020, de http://www.minvivienda.gov.co/ResolucionesAgua/0330 - 2017.pdfspa
dc.relation.referencesMorales Nava, J. G., & Parra Meza, A. (2013). Mejoras al método usual de diseño hidráulico de alcantarillas. Ingeniería hidráulica y ambiental, 34(1), 3-18.spa
dc.relation.referencesMuller, K. Z., Wang, J., & Vasconcelos, J. G. (2017). Water displacement in shafts and geysering created by uncontrolled air pocket releases. Journal of Hydraulic Engineering, 143(10), 1-13.spa
dc.relation.referencesNoto, L., & Tucciarelli, T. (2001). DORA Algorithm for network flow models with improved stability and convergence properties. Journal of Hydraulic Engineering, 127(5), 380-391.spa
dc.relation.referencesPachón, A. (2011). Distribución de la lluvia en Manizales. Boletín Ambiental, 93.spa
dc.relation.referencesPachón Gómez, J. A., Mejía Fernández, F., & Zambrano Nájera, J. D. C. (2018). Sistema Integrado de Monitoreo Ambiental de Caldas-SIMAC Red de estaciones meteorológicas e hidrometeorológicas automáticas de Manizales Estaciones para la gestión del riesgo ante desastres por deslizamientos PRIMERA PARTE. Boletín Ambiental, 145.spa
dc.relation.referencesParra, J. A. P. (2002). Acueductos y alcantarillados. Universidad Nacional de Colombia.spa
dc.relation.referencesPolitano, M., Odgaard, A. J., & Klecan, W. (2007). Case Study: Numerical evaluation of hydraulic transients in a combined sewer overflow tunnel system. Journal of Hydraulic Engineering, 133(10), 1103-1110.spa
dc.relation.referencesPonce, V. M. (1991). New perspective on the Vedernikov Number. Water Resources Research, 27(7), 1777-1779.spa
dc.relation.referencesQian, Y., Zhu, D. Z., Liu, L., Shao, W., Edwini-Bonsu, S., & Zhou, F. (2020). Numerical and experimental study on mitigation of storm geysers in Edmonton, Alberta, Canada. Journal of Hydraulic Engineering, 146(3), 1-13.spa
dc.relation.referencesRey Valencia, D. M. (2019). Propuesta de sistema de drenaje urbano sostenible para cuencas de montaña con alta pendiente. Universidad Nacional de Colombia. Recuperado de http://bdigital.unal.edu.co/73127/1/1053815688.2019.pdfspa
dc.relation.referencesRobert Dickinson. (2017). General Culvert Information from Innovyze H2OCalc for All Culvert Programs. Recuperado 24 de mayo de 2020, de https://swmm5.org/2017/11/07/general-culvert-information-from-innovyze-h2ocalc-for-all-culvert-programs/spa
dc.relation.referencesRocha, A. (2007). Hidráulica de tuberías y canales. Universidad Nacional de Ingeniería. Facultad de Ingeniería Civil.spa
dc.relation.referencesSchall, J. D. (2012). Hydraulic design of highway culverts, Third Edition (FHWA-HIF-12-026). United States: Federal Highway Administration.spa
dc.relation.referencesSong, C. C. S., Cardie, J. A., & Leung, K. S. (1983). Transient Mixed‐Flow Models for Storm Sewers. Journal of Hydraulic Engineering, 109(11), 1487-1504.spa
dc.relation.referencesSwan, & Horton. (1922). Hydraulic Diagrams for the Discharge of Conduits and Canals. McGraw-Hill. Recuperado de https://archive.org/details/hydraulicdiagram00swanrich/page/30/mode/2upspa
dc.relation.referencesSzydłowski, M. (2014). Experimental verification of storm sewer transient flow simulation. Archives of Hydroengineering and Environmental Mechanics, 61(3-4), 205-215.spa
dc.relation.referencesTrajkovic, B., Ivetic, M., Calomino, F., & D’Ippolito, A. (1999). Investigation of transition from free surface to pressurized flow in a circular pipe. Water Science and Technology, 39(9), 105-112.spa
dc.relation.referencesVasconcelos, J. G., Eldayih, Y., Zhao, Y., & Jamily, J. A. (2018). Evaluating storm water management model accuracy in conditions of mixed flows. Journal of Water Management Modeling.spa
dc.relation.referencesVasconcelos, J. G., Klaver, P. R., & Lautenbach, D. J. (2015). Flow regime transition simulation incorporating entrapped air pocket effects. Urban Water Journal, 12(6), 488-501.spa
dc.relation.referencesVasconcelos, J. G., & Wright, S. J. (2003). Laboratory investigation of surges formed during rapid filling of stormwater storage tunnels. En Proc., 30th IAHR Congress. International Association for Hydraulic Research.spa
dc.relation.referencesVasconcelos, J. G., & Wright, S. J. (2004). Numerical Modeling of the Transition between Free Surface and Pressurized Flow in Storm Sewers. Journal of Water Management Modeling, 6062.spa
dc.relation.referencesVasconcelos, J. G., & Wright, S. J. (2005). Experimental Investigation of Surges in a Stormwater Storage Tunnel. Journal of Hydraulic Engineering, 131(10), 853-861.spa
dc.relation.referencesVasconcelos, J. G., & Wright, S. J. (2006). Mechanisms for Air Pocket Entrapment in Stormwater Storage Tunnels. En World Environmental and Water Resource Congress 2006 (pp. 1-10). Reston, VA: American Society of Civil Engineers.spa
dc.relation.referencesVasconcelos, J. G., & Wright, S. J. (2011). Geysering generated by large air pockets released through water-filled ventilation shafts. Journal of Hydraulic Engineering, 137(5), 543-555.spa
dc.relation.referencesVasconcelos, J. G., & Wright, S. J. (2017). Anticipating transient problems during the rapid filling of deep stormwater storage tunnel systems. Journal of Hydraulic Engineering, 143(3), 1-8.spa
dc.relation.referencesVasconcelos, J. G., Wright, S. J., & Roe, P. L. (2006). Improved simulation of flow regime transition in sewers: Two-component pressure approach. Journal of Hydraulic Engineering, 132(6), 553-562.spa
dc.relation.referencesVélez, J. J., Duque, N. D., Mejía, F., & Orozco, M. (2012). Red de monitoreo climático para dar apoyo a la prevención y atención de desastres en Manizales, Colombia. En Convención Trópico (p. 12).spa
dc.relation.referencesWang, J., & Vasconcelos, J. G. (2018). Manhole cover displacement caused by the release of entrapped air pockets. Journal of Water Management Modeling.spa
dc.relation.referencesWang, K. H., Shen, Q., & Zhang, B. (2003). Modeling propagation of pressure surges with the formation of an air pocket in pipelines. Computers and Fluids, 32(9), 1179-1194.spa
dc.relation.referencesWang, X., Qian, S., & Chen, H. (2019). Experimental Study on Geysers Induced by the Release of Trapped Air in Storage Tunnel Systems. Applied Sciences, 9(24), 5326.spa
dc.relation.referencesWright, S. J., Klaver, P., & Vasconcelos, J. G. (2016). Assessment of pressure transients due to trapped air compression in rapidly filling combined sewer overflow tunnels. Journal of Water Management Modeling, 1-8.spa
dc.relation.referencesWright, S. J. (2013). Influence of Air Pocket Volume on Manhole Surge. Journal of Water Management Modeling.spa
dc.relation.referencesWright, S. J., Lewis, J. W., & Vasconcelos, J. G. (2007). Mechanisms for Stormwater Surges in Vertical Shafts. Journal of Water Management Modeling.spa
dc.relation.referencesWright, S. J., Lewis, J. W., & Vasconcelos, J. G. (2011a). Geysering in Rapidly Filling Storm-Water Tunnels. Journal of Hydraulic Engineering, 137(1), 112-115.spa
dc.relation.referencesWright, S. J., Lewis, J. W., & Vasconcelos, J. G. (2011b). Physical Processes Resulting in Geysers in Rapidly Filling Storm-Water Tunnels. Journal of Irrigation and Drainage Engineering, 137(3), 199-202.spa
dc.relation.referencesWright, S. J., Vasconcelos, J. G., Creech, C. T., & Lewis, J. W. (2008). Flow regime transition mechanisms in rapidly filling stormwater storage tunnels. Environmental Fluid Mechanics, 8(5-6), 605-616.spa
dc.relation.referencesWright, S. J., Vasconcelos, J. G., & Lewis, J. W. (2017). Air – water interactions in urban drainage systems. Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics, 170(3), 91-106.spa
dc.relation.referencesYen, B. C., & Pansic, N. (1980). Surcharge of Sewer Systems. Research Report - University of Illinois at Urbana-Champaign, Water Resources Center, (149).spa
dc.relation.referencesZhang, W., Cai, F., Zhou, J., & Hua, Y. (2017). Experimental Investigation on Air-Water Interaction in a Hydropower Station Combining a Diversion Tunnel with a Tailrace Tunnel. Water, 9(4), 274.spa
dc.relation.referencesZhou, F., Hicks, F. E., & Steffler, P. M. (2002a). Observations of Air–Water Interaction in a Rapidly Filling Horizontal Pipe. Journal of Hydraulic Engineering, 128(6), 635-639.spa
dc.relation.referencesZhou, F., Hicks, F. E., & Steffler, P. M. (2002b). Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air. Journal of Hydraulic Engineering, 128(6), 625-634.spa
dc.relation.referencesZhou, F., Hicks, F. E., & Steffler, P. M. (2004). Analysis of effects of air pocket on hydraulic failure of urban drainage infrastructure. Canadian Journal of Civil Engineering, 31(1), 86-94.spa
dc.relation.referencesZhou, L., & Liu, D. (2013). Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469-474.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.proposalAlcantarillado pluvialspa
dc.subject.proposalcaracterización experimentalspa
dc.subject.proposalentrada en cargaspa
dc.subject.proposalflujo mixtospa
dc.subject.proposaloleadaspa
dc.subject.proposalStorm sewer systemeng
dc.subject.proposalexperimental characterizationeng
dc.subject.proposalsurchargedeng
dc.subject.proposalmixed floweng
dc.subject.proposalpressure boreeng
dc.subject.unescoescorrentía
dc.subject.unescoprecipitación
dc.subject.unescorunoff
dc.subject.unescoprecipitation
dc.titleCaracterización experimental de condiciones de flujo mixto en alcantarillado pluvial debido a eventos que exceden el caudal de diseñospa
dc.title.translatedExperimental characterization of mixed flow conditions in storm sewers caused by precipitation events that exceeds design flow
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053856414.2020.pdf
Tamaño:
6.32 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: