Modelo de optimización estocástica de leyes de corte para una compañía minera aurífera

dc.contributor.advisorFranco Sepúlveda, Giovanni
dc.contributor.advisorDel Rio Cuervo, Juan Camilo
dc.contributor.authorToro Morales, Diego Alejandro
dc.contributor.orcidFranco Sepúlveda, Giovanni [0000-0003-4579-8389]spa
dc.contributor.orcidDel Rio Cuervo, Juan Camilo [0000-0003-0091-354X]spa
dc.date.accessioned2023-11-14T19:54:48Z
dc.date.available2023-11-14T19:54:48Z
dc.date.issued2023-11-09
dc.descriptionilustraciones, diagramasspa
dc.description.abstractUna de las variables de decisión más estudiada en la bibliografía técnica minera en relación con su estimación y optimización es la ley de corte, en la que la función objetivo más aceptada ha sido la maximización del Valor Presente Neto (VPN). Sin embargo, un número considerable de proyectos mineros determinan sus leyes de corte a través del uso de modelos determinísticos que no permiten realizar un análisis basado en la incertidumbre. En el presente trabajo se formula un modelo de optimización estocástica de leyes de corte para un depósito aurífero, considerando los riesgos e incertidumbres propias de la actividad minera, con el propósito de maximizar el VPN del proyecto de una compañía con operaciones mineras subterráneas. La metodología seleccionada para el modelo corresponde a la optimización estocástica implícita, que utiliza un enfoque híbrido el cual combina un algoritmo metaheurístico (Algoritmo Genético) y la simulación de Montecarlo. La validación del modelo se realizó utilizando datos reales para verificar su aplicabilidad industrial y proporcionar una alternativa a los modelos tradicionales comúnmente utilizados hasta la fecha. El modelo formulado presentó una vida más corta del proyecto y una ley de corte dinámica en el tiempo, lo que se traduce en ingresos anuales variables. En cuanto a rentabilidad, se presentó un incremento de 21,142,372 USD al comparar la media del VPN del modelo estocástico con el VPN del modelo determinístico. Los resultados obtenidos demuestran los beneficios de aplicar este tipo de modelos a escala industrial para aumentar el valor de los proyectos. (Texto tomado de la fuente]spa
dc.description.abstractOne of the most studied decision variables in the technical mining literature regarding its estimation and optimization is the cut-off grade, where the most accepted objective function has been the maximization of NPV (Net Present Value). However, a considerable number of mining projects determine their cut-off grades using deterministic models that do not facilitate analysis based on uncertainty. In this study, a stochastic optimization model for cut-off grades is formulated for a gold deposit, taking into account the risks and uncertainties inherent in mining activities, with the purpose of maximizing the project's NPV for a company with underground mining operations. The selected methodology for the model is implicit stochastic optimization, employing a hybrid approach that combines a metaheuristic algorithm (Genetic Algorithm) and Monte Carlo simulation. The model's validation is conducted using real data to verify its industrial applicability and to offer an alternative to the commonly employed traditional models. The formulated model exhibits a shorter project life and a dynamic cut-off grade over time, resulting in variable annual revenues. Regarding profitability, a 21,142,372 USD increase is observed when comparing the mean NPV of the stochastic model with that of the deterministic model. These findings demonstrate the advantages of applying such models on an industrial scale to enhance project value.eng
dc.description.curricularareaÁrea Curricular de Recursos Mineralesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería – Recursos Mineralesspa
dc.description.researchareaPlaneamiento minero estocástico y optimización mineraspa
dc.format.extentxiv, 100 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84945
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Mineralesspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdel Sabour, S. A., & Dimitrakopoulos, R. (2011). Incorporating geological and market uncertainties and operational flexibility into open pit mine design. Journal of Mining Science, 47(2), 191–201spa
dc.relation.referencesAbdolahisharif, J., Bakhtavar, E., & Anemangely, M. (2012). Optimal cut-off grade determination based on variable capacities in open-pit mining. Journal of the South African Institute of Mining and Metallurgy, 112(1065–1069)spa
dc.relation.referencesAhmadi, M. A., & Golshadi, M. (2012). Neural network based swarm concept for prediction asphaltene precipitation due to natural depletion. Journal of Petroleum Science and Engineering, 98–99, 40–49spa
dc.relation.referencesAhmadi, M. R. (2018). Cutoff grade optimization based on maximizing net present value using a computer model. Journal of Sustainable Mining, 17(2), 68–75. https://doi.org/10.1016/j.jsm.2018.04.002spa
dc.relation.referencesAhmadi, M. R., & Bazzazi, A. A. (2019). Cutoff grades optimization in open pit mines using meta-heuristic algorithms. Resources Policy, 60, 72–82. https://doi.org/10.1016/j.resourpol.2018.12.001spa
dc.relation.referencesAhmadi, M. R., & Shahabi, R. S. (2018). Cutoff grade optimization in open pit mines using genetic algorithm. Resources Policy, 55, 184–191. https://doi.org/10.1016/j.resourpol.2017.11.016spa
dc.relation.referencesAlford, C., & Hall, B. (2009). Stope optimisation tools for selection of optimum cut-off grade in underground mines. Project Evaluation Conference.spa
dc.relation.referencesArteaga, J. D. (2015). Modelo de optimización estocástica de la ley de corte para depósitos polimetálicos. Universidad Nacional de Colombia.spa
dc.relation.referencesAsad, M. W. A. (2002). Development of generalized cuttoff grade optimization algorithm for open pit mining operations. Journal of Engineering and Applied Sciences, 21(2), 119–127.spa
dc.relation.referencesAsad, M. W. A. (2005a). Cut-off grade optimization algorithm with stockpiling option for open pit mining operations of two economic minerals. International Journal of Surface Mining, Reclamation and Environment, 19(3), 176–187.spa
dc.relation.referencesAsad, M. W. A. (2007). Optimum cut-off grade policy for open pit mining operations through net present value algorithm considering metal price and cost escalation. Engineering Computations, 24(7), 723–736.spa
dc.relation.referencesAsad, M. W. A. (2005b). Cut-off grade optimization algorithm for open pit mining operations with consideration of dynamic metal price and cost escalation during mine life. 32nd International Symposium on Application of Computers and Operations Research in the Mineral Industry, 273–277.spa
dc.relation.referencesAsad, M. W. A., & Dimitrakopoulos, R. (2013). A heuristic approach to stochastic cut-off grade optimization for open pit mining complexes with multiple processing streams. Resources Policy, 38(4), 591–597. https://doi.org/10.1016/j.resourpol.2013.09.008spa
dc.relation.referencesAsad, M. W. A., Qureshi, M. A., & Jang, H. (2016). A review of cut-off grade policy models for open pit mining operations. Resources Policy, 49, 142–152. https://doi.org/10.1016/j.resourpol.2016.05.005spa
dc.relation.referencesAsad, M. W. A., & Topal, E. (2011). Net present value maximization model for optimum cut-off grade policy of open pit mining operations. Journal of the Southern African Institute of Mining and Metallurgy, 111(11), 741–750.spa
dc.relation.referencesAtaei, M., & Osanloo, M. (2003a). Determination of optimum cut-off grades of multiple metal deposits by using the golden section search method. Journal of the South African Institute of Mining and Metallurgy, 493–500.spa
dc.relation.referencesAtaei, M., & Osanloo, M. (2003b). Methods for calculation of optimal cutoff grades in complex ore deposits. Journal of Mining Science, 39(5), 499–507.spa
dc.relation.referencesAtaei, M., & Osanloo, M. (2004). Using a combination of genetic algorithm and the grid search method to determine optimum cut-off grades of multiple metal deposits. International Journal of Surface Mining, Reclamation and Environment, 18(1), 60–78. https://doi.org/10.1076/ijsm.18.1.60.23543spa
dc.relation.referencesAtaei, M., & Osanloo, M. (2013). Determination of optimum cut-off grades of open pit mines with the purpose of maximizing net present value using elimination methods. International Journal of Engineering Science, 14(3), 141–151.spa
dc.relation.referencesAtashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2007, 4661–4667.spa
dc.relation.referencesAzimi, Y., & Osanloo, M. (2011). Determination of open pit mining cut-off grade strategy using combination of nonlinear programming and genetic algorithm. Archives of Mining Sciences, 56(2), 189–212.spa
dc.relation.referencesAzimi, Y., Osanloo, M., & Esfahanipour, A. (2011). Optimisation of mining policy under different economic conditions using a combination of non-linear programing and genetic algorithm. Proceedings of the 35th APCOM Symposium.spa
dc.relation.referencesAzimi, Y., Osanloo, M., & Esfahanipour, A. (2012). Selection of the open pit mining cut-off grade strategy under price uncertainty using a risk based multi-criteria ranking system. Archives of Mining Sciences, 57(3), 741–768.spa
dc.relation.referencesAzimi, Y., Osanloo, M., & Esfahanipour, A. (2013). An uncertainty based multi-criteria ranking system for open pit mining cut-off grade strategy selection. Resources Policy, 38(2), 212–223. https://doi.org/10.1016/j.resourpol.2013.01.004spa
dc.relation.referencesBaker, C. K., & Giacomo, S. M. (1998). Resource and reserves: their uses and abuses by the equity markets. Ore Reserves and Finance: A Joint Seminar between Australasian Institute of Mining and Metallurgy and ASX.spa
dc.relation.referencesBarr, D. (2012). Stochastic Dynamic Optimization of Cut-off Grade in Open Pit Mines. Queen’s University.spa
dc.relation.referencesBascetin, A., & Nieto, A. (2007). Determination of optimal cut-off grade policy to optimize NPV using a new approach with optimization factor. Journal of the South African Institute of Mining and Metallurgy, 107(2), 87–94.spa
dc.relation.referencesBatterham, R., & Elvish, R. (2009). Smarter mineral processing, or, what do mill operators think? 10th Mill Operators’ Conference Proceedings 2009–1. https://app.knovel.com/hotlink/pdf/id:kt008V7C34/tenthmill- operators/smart%0Aer-mineral-abstractspa
dc.relation.referencesBirch, C. (2016). Impact of discount rates on cut-off grades for narrow tabular gold deposits. Journal of the Southern African Institute of Mining and Metallurgy, 116(2), 115–122. https://doi.org/10.17159/2411-9717/2016/v116n2a2spa
dc.relation.referencesBirch, C. (2018). Review of cut-off grade optimisation from Southern African mines. Student assignment based observations. Resources Policy, 56, 134–140. https://doi.org/10.1016/j.resourpol.2017.10.004spa
dc.relation.referencesBlack, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.spa
dc.relation.referencesBootsma, M. T., Alford, C., Bennford, J., & Buxton, M. W. N. (2018). Cut-off grade based sublevel stope mine optimisation. In R. Dimitrakopoulos (Ed.), Advances in Applied Strategic Mine Planning (1st ed., pp. 537–558). Springer.spa
dc.relation.referencesBorder, S. (1991). Optimisation of cut-off grades during design of underground mines. Mining Industry Optimisation Conference.spa
dc.relation.referencesBoyle, P. (1997). Options: a Monte Carlo approach. Journal of Financial Economics, 4, 323–338.spa
dc.relation.referencesBragin, V. I., Kharitonova, M. Y., & Matsko, N. A. (2021). A probabilistic approach to the dynamic cut-off grade assessment. Journal of Mining Institute, 251(3), 617–625. https://doi.org/10.31897/PMI.2021.5.1spa
dc.relation.referencesCepin, M. (2011). Assessment of power system reliability. Springer-Verlag London. https://doi.org/10.1007/978-0-85729-688-7spa
dc.relation.referencesCetin, E., & Dowd, P. A. (2002). The use of genetic algorithms for multiple cut-off grade optimization. In Proceedings of the 23rd International Symposium on Application of Computers and Operations Research in Minerals Industry (pp. 769–779).spa
dc.relation.referencesCetin, E., & Dowd, P. A. (2016). Multiple cut-off grade optimization by genetic algorithms and comparison with grid search method and dynamic programming. Journal of the South African Institute of Mining and Metallurgy, 116, 681–688. https://doi.org/https://doi.org/10.17159/2411-9717/2016/ v116n7a10.spa
dc.relation.referencesChimunhu, P., Topal, E., Ajak, A. D., & Asad, W. (2022). A review of machine learning applications for underground mine planning and scheduling. Resources Policy, 77, 102693. https://doi.org/10.1016/j.resourpol.2022.102693spa
dc.relation.referencesCox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: a simplified approach. Journal of Financial Economics, 7(3), 229–263.spa
dc.relation.referencesDagdelen, K. (1992). Cut-off grade optimization. In Proceedings of the 23rd International Symposium on Application of Computers and Operations Research in Minerals Industry (pp. 157–165).spa
dc.relation.referencesDagdelen, K. (1993). An NPV optimization algorithm for open pit mine design. In Proceedings of the 24th International Symposium on Application of Computers and Operations Research in Minerals Industry (pp. 257–263).spa
dc.relation.referencesDagdelen, K., & Kawahata, K. (2008). Value creation through strategic mine planning and cut-off grade optimization. Mining Engineering, 60(1), 39–45.spa
dc.relation.referencesDagdelen, K., & Kawahata, K. (2007). Cut-off grade optimization for large scale multi-mine, multi process mining operations. In C. Associates (Ed.), Proceedings of the International Symposium on Mine Planning and Equipment Selection (pp. 226–233).spa
dc.relation.referencesDagdelen, K., & Mohammad, W. A. (1997). Multi-mineral cut-off grade optimization with option to stockpile. SME Annual Meeting, Preprint #97186.spa
dc.relation.referencesDimitrakopoulos, R. (2018). Advances in Applied Strategic Mine Planning (1st ed.). https://doi.org/10.1007/978-3-319-69320-0spa
dc.relation.referencesDong, C. H. (2002). Application of Ore Grade Optimization Method on Erfengshan Iron Mine. Metal Mine, 4, 14–17.spa
dc.relation.referencesDullaert, W., Sevaux, M., Sörensen, K., & Springael, J. (2007). Applications of metaheuristics. European Journal of Operational Research, 179, 601–604. https://doi.org/10.1016/j.ejor.2005.03.060spa
dc.relation.referencesFan, J., Xiong, S., Wang, J., & Gong, C. (2008). IMODE: Improving multi-objective differential evolution algorithm. Proceedings of the Fourth International Conference on Natural Computation, ICNC’08, 212–216.spa
dc.relation.referencesFathollahzadeh, K., Asad, M. W. A., Mardaneh, E., & Cigla, M. (2021). Review of solution methodologies for open pit mine production scheduling problem. International Journal of Mining Reclamation and Environment, 35(8), 564–599.spa
dc.relation.referencesFranco-Sepúlveda, G., Del Rio-Cuervo, J. C., & Pachón-Hernández, M. A. (2019). State of the art about metaheuristics and artificial neural networks applied to open pit mining. Resources Policy, 60, 125–133. https://doi.org/10.1016/j.resourpol.2018.12.013spa
dc.relation.referencesFranco-Sepúlveda, G., & Velilla-Avilez, D. (2014). Planeamiento minero como función de la variación de la ley de corte crítica. Boletín Ciencias de La Tierra, 35, 25–30. https://www.redalyc.org/articulo.oa?id=169531421003spa
dc.relation.referencesFranco, G. (2017). Modelo de optimización estocástica para explotaciones mineras a cielo abierto. Universidad Nacional de Colombia.spa
dc.relation.referencesFranks, M. D., Boger, D. V., Côte, C. M., & Mulligan, D. . (2011). Sustainable development principles for the disposal of mining and mineral processing wastes. Resources Policy, 36(2), 114–122.spa
dc.relation.referencesGholamnejad, J. (2008). Determination of the optimum cut-off grade considering environmental cost. Journal of International Environmental Application and Science, 3(3), 186–194.spa
dc.relation.referencesGithiria, J., & Musingwini, C. (2019). A stochastic cut-off grade optimization model to incorporate uncertainty for improved project value. Journal of the Southern African Institute of Mining and Metallurgy, 119(3), 217–228. https://doi.org/10.17159/2411-9717/2019/v119n3a1spa
dc.relation.referencesGoldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning (1st ed.). Addison-Wesley Longman Publishing Co., Inc.spa
dc.relation.referencesGómez, E. A., & Díez, J. M. (2015). Evaluación financiera de proyectos (Segunda Ed).spa
dc.relation.referencesGonzalez, T. (2007). Handbook of Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC.spa
dc.relation.referencesGoodfellow, R. C., & Dimitrakopoulos, R. (2016). Global optimization of open pit mining complexes with uncertainty. Applied Soft Computing, 40, 292–304.spa
dc.relation.referencesGu, X., Wang, Q., Chu, D., & Zhang, B. (2010). Dynamic optimization of cutoff grade in underground metal mining. 17, 492–497. https://doi.org/10.1007/s11771spa
dc.relation.referencesGupta, J. N. D., & Sexton, R. S. (1999). Comparing backpropagation with a genetic algorithm for neural network training. Omega, 27(6), 679–684. https://doi.org/10.1016/S0305-0483(99)00027-4spa
dc.relation.referencesHajkowicz, A. S., Heyenga, S., & Moffat, K. (2011). The relationship between mining and socio-economic well being in Australia’s regions. Resources Policy, 36(1), 30–38.spa
dc.relation.referencesHall, B. (2014). Cut-off Grades and Optimising the Strategic Mine Plan. The Australasian Institute of Mining and Metallurgy.spa
dc.relation.referencesHanafi, S., Wang, Y., Glover, F., Yang, W., & Hennig, R. (2023). Tabu search exploiting local optimality in binary optimization. European Journal of Operational Research, 308, 1037–1055. https://doi.org/10.1016/j.ejor.2023.01.001spa
dc.relation.referencesHassan, R., Cohanim, B., & Weck, O. (2005). A comparison of particle swarm optimization and genetic algorithm. Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 18–21.spa
dc.relation.referencesHe, Y., Xu, S., Zhu, K., Liu, T., & Li, Y. (2008). A Genetic-Neural Method of Optimizing Cut-Off Grade. In Advances in Neural Networks - ISNN 2008 (pp. 588–597). Springer, Berlin, Heidelberg.spa
dc.relation.referencesHe, Y., Zhu, K., Gao, S., Liu, T., & Li, Y. (2009). Theory and method of genetic - neural optimization cut-off grade and grade of crude ore. Expert Systems with Applications, 36(4), 7617–7623.spa
dc.relation.referencesHirai, H., Katamura, K., Mamaclay, F. P., & Fujimura, T. (1987). Development and Mine Operation at Rio Tuba Nickel Mine. International Journal of Mineral Processing, 19, 99–114.spa
dc.relation.referencesHolland, J. H. (1975). Adaptation in Natural and Artificial Systems. The University of Michigan Press/MIT Press.spa
dc.relation.referencesHosseini-Nasab, E., Khezri, M., Khodamoradi, M. S., & Atashpaz-Gargari, E. (2010). An application of imperialist competitive algorithm to simulation of energy demand based on economic indicators: evidence from Iran. European Journal of Scientific Research, 43(4), 495–506.spa
dc.relation.referencesIzmailov, A. F., & Solodov, M. V. (2013). A globally convergent algorithm for convex programming problems with binary variables. Mathematical Programming, 142(1–2), 233–258.spa
dc.relation.referencesJöhnk, J., Weißert, M., & Wyrtki, K. (2020). Ready or not, AI comes - an interview study of organizational AI readiness factors. Business & Information Systems Engineering, 63(5), 20. https://doi.org/https://doi.org/ 10.1007/s12599-020-00676-7spa
dc.relation.referencesKhan, A., & Asad, M. W. A. (2019). A method for optimal cut-off grade policy in open pit mining operations under uncertain supply. Resources Policy, 60, 178–184. https://doi.org/10.1016/j.resourpol.2018.12.003spa
dc.relation.referencesKhan, A., & Asad, M. W. A. (2021). A mixed integer programming based cut-off grade model for open-pit mining of complex poly-metallic resources. Resources Policy, 72, 1–9. https://doi.org/10.1016/j.resourpol.2021.102076spa
dc.relation.referencesKhodayari, A. A., & Jafarnejad, A. (2012). The effect of price changes on optimum cut-off grade of different open-pit mines. Journal of Mining & Environment, 3(1), 61–68.spa
dc.relation.referencesKhodayari, A., & Jafarnejad, A. (2012). Cut-off grade optimization for maximizing the output rate. International Journal of Mining and Geo-Engineering, 46(1), 51–56.spa
dc.relation.referencesKing, B. (2001). Optimal Mine Scheduling Policies. London University, UK.spa
dc.relation.referencesKing, B. (2011). Optimal mining practice in strategic planning. Journal of Mining Science, 47(2), 247–253.spa
dc.relation.referencesKing, B. (2018). Optimal Mining Principles. In R. Dimitrakopoulos (Ed.), Advances in Applied Strategic Mine Planning (1st ed., pp. 19–30).spa
dc.relation.referencesKirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.spa
dc.relation.referencesKumral, M. (2013). Optimizing ore-waste discrimination and block sequencing through simulated annealing. Applied Soft Computing, 13(8), 3737–3744.spa
dc.relation.referencesLane, K. F. (1964). Choosing the optimum cut-off grade. Colorado School of Mines Quarterly, 59, 811–829.spa
dc.relation.referencesLane, K. F. (1988). The economic definition of ore: Cut-off grade in theory and practice. Mining Journal Books.spa
dc.relation.referencesLaurence, D. (2011). A Guide to Leading Practice Sustainable Development in Mining. Australian Government Department of Resources, Energy and Tourism.spa
dc.relation.referencesLi, S., & Yang, C. (2012). An optimal algorithm for cut-off grade calculation using multistage stochastic programming. Journal of Theoretical and Applied Information Technology, 45(1), 117–122.spa
dc.relation.referencesLiu, D., Li, G., Hu, N., Xiu, G., & Ma, Z. (2019). Optimization of the cut-off grade for underground polymetallic mines. Gospodarka Surowcami Mineralnymi / Mineral Resources Management, 35(1), 25–42. https://doi.org/10.24425/gsm.2019.128198spa
dc.relation.referencesMahase, M., Musingwini, C., & Nhleko, A. (2016). A survey of applications of multi-criteria decision analysis methods in mine planning and related case studies. Journal of the Southern African Institute of Mining and Metallurgy, 11, 1051–1056.spa
dc.relation.referencesMaldonado, C. E., & Gómez, N. A. (2011). El mundo de las ciencias de la complejidad. Universidad El Rosario.spa
dc.relation.referencesMalik, H., Iqbal, A., Joshi, P., Agrawal, S., & Bakhsh, F. (2021). Metaheuristic and Evolutionary Computation: Algorithms and Applications (Springer (ed.); 1st ed.).spa
dc.relation.referencesMansouri, M., Osanloo, M., & Gheisari, N. (2014). Establishing a Sustainable Model to Reduce the Risk of Mine Closure. Mine Planning and Equipment Selection, 1427–1436. https://doi.org/http: //dx.doi.org/10.1007/978-3-319-02678-7_137spa
dc.relation.referencesMarques, D. M., & Costa, J. F. C. L. (2013). An algorithm to simulate ore grade variability in blending and homogenization piles. International Journal of Mineral Processing, 120, 48–55.spa
dc.relation.referencesMartinelli, R., Collard, J., & Gamache, M. (2020). Strategic planning of an underground mine with variable cut-off grades. Optimization and Engineering, 21(3), 803–849. https://doi.org/10.1007/s11081-019-09479-6spa
dc.relation.referencesMcCulloch, W. S., & Pitts, W. (1943). A Logical Calculus of Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics, 5, 15–33.spa
dc.relation.referencesMcInerney, M., & Dhawan, A. P. (1993). Use of genetic algorithms with backpropagation in training of feedforward neural networks. Proceedings of the IEEE International Conference on Neural Networks, 203–208.spa
dc.relation.referencesMelián, B., Moreno, J. A., & Moreno, J. M. (2003). Metaheurísticas: Una visión global. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial, 7(19), 7–28.spa
dc.relation.referencesMichalewicz, Z., & Fogel, D. B. (2004). How to Solve It: Modern Heuristics (2nd ed.). Springer Berlin, Heidelberg. https://doi.org/https://doi.org/10.1007/978-3-662-07807-5spa
dc.relation.referencesMinnitt, R. C. A. (2003). Cut-off grade determination for the maximum value of a small Wits-type gold mining operation. Proceedings of the 31st International Symposium on Application of Computers and Operations Research in the Minerals Industries (APCOM).spa
dc.relation.referencesMishra, B. (2006). Development of a Computer Model for Determination of Cut off Grade for Metalliferous Deposits. Journal of Mines, Metals and Fuels, 54, 147–152.spa
dc.relation.referencesMohammad, W. A. (1997). Multi-mineral cut-off grade optimization with option to stockpile. Colorado School of Mines.spa
dc.relation.referencesMohammadi, S., Ataei, M., Kakaie, R., & Pourzamani, E. (2015). Comparison of golden section search method and imperialist competitive algorithm for optimization cut-off grade - case study: Mine No. 1 of Golgohar. Journal of Mining & Environment, 6, 63–71.spa
dc.relation.referencesMohammadi, S., Kakaie, R., Ataei, M., & Pourzamani, E. (2017). Determination of the optimum cut-off grades and production scheduling in multi-product open pit mines using imperialist competitive algorithm ( ICA ). Resources Policy, 51(July 2016), 39–48. https://doi.org/10.1016/j.resourpol.2016.11.005spa
dc.relation.referencesMurphy, K. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.spa
dc.relation.referencesMutti, D., Yakovleva, N., Vazquez-Brust, D., & Di Marco, H. M. (2012). Corporate social responsibility in the mining industry: Perspectives from stakeholder groups in Argentina. Resources Policy, 37(2), 212–222.spa
dc.relation.referencesMyburgh, C. A., Deb, K., & Craig, S. (2014). Applying Modern Heuristics to Maximizing NPV through Cutoff grade Optimization. Orebody Modelling and Strategic Planning Conference, 1–16.spa
dc.relation.referencesNarendran, T. V., & Weinelt, B. (2017). Digital transformation initiative mining and metals industry.spa
dc.relation.referencesNewman, A. M., Rubio, E., Caro, R., Weintraub, A., & Eurek, K. (2010). A review of operations research in mine planning. Interfaces, 40(3), 222–245. https://doi.org/10.1287/inte.1090.0492spa
dc.relation.referencesNiemann-Delius, C., & Sattarvand, J. (2008). Perspective of metaheuristic optimization methods in open pit production planning. Mineral Resources Management = Gospodarka Surowcami Mineralnymi, 24(4,2), 143–155.spa
dc.relation.referencesNoriega, R., & Pourrahimian, Y. (2022). A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning. Resources Policy, 77, 102727. https://doi.org/10.1016/j.resourpol.2022.102727spa
dc.relation.referencesOliva-Romero, Y., Ochoa-Zezatti, A., Marcela-Herrera, A., & Oliva-Navarro, D. A. (2017). Modelo innovador para un aparador comercial usando un algoritmo competitivo imperialista. Research in Computing Science, 134(1), 35–44. https://doi.org/10.13053/rcs-134-1-3spa
dc.relation.referencesOsanloo, M., Ataei, M. (2003). Using Equivalent Grade Factors to Find the Optimum Cut-off Grades of Multiple Metal Deposits. Minerals Engineering, 16, 771–776.spa
dc.relation.referencesOsanloo, M., Rashidinejad, F., & Rezai, B. (2008). Incorporating environmental issues into optimum cut-off grades modelling at porphyry copper deposits. Resources Policy, 33(4), 222–229.spa
dc.relation.referencesPaithankar, A., Chatterjee, S., & Goodfellow, R. (2021). Open-pit mining complex optimization under uncertainty with integrated cut-off grade based destination policies. Resources Policy, 70, 101875. https://doi.org/10.1016/j.resourpol.2020.101875spa
dc.relation.referencesPrior, T., Giurco, D., Mudd, G., Mason, L., & Behrisch, J. (2012). Resource depletion, peak minerals and the implications for sustainable resource management. Global Environmental Change, 22(3), 577–587. https://doi.org/https://doi.org/10.1016/j.gloenvcha.2011.08.009.spa
dc.relation.referencesRafiee, R., Ataei, M., & Azarfar, A. (2016). Determination of optimal open-pit mines with the goal of maximizing net present value using colonial competition algorithm. Journal of Analytical and Numerical Methods in Mining Engineering, 11, 89–99.spa
dc.relation.referencesRahimi, E., & Ghasemzadeh, H. (2015). A new algorithm to determine optimum cut-off grades considering technical, economical, environmental and social aspects. Resources Policy, 46(1), 51–63.spa
dc.relation.referencesRashidinejad, F., Osanloo, M., & Rezai, B. (2008). Cutoff grades optimization with environmental management: a case study: Sungun copper project, IUST. International Journal of Engineering Science, 19, 1–13.spa
dc.relation.referencesRendu, J.-M. (2014). An introduction to cut-off grade estimation. Society for Mining, Metallurgy, and Exploration (SME).spa
dc.relation.referencesRule, C. M., Fouchee, R. J., & Swart, W. C. E. (2015). Run of mine ore upgrading–proof of concept plant for XRF ore sorting. Proceedings of the 6th International Conference on Semi-Autogenous and High Pressure Grinding Technology.spa
dc.relation.referencesRussell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (Pearson (ed.); 4th ed.).spa
dc.relation.referencesSchwartz, E. S. (1977). The valuation of warrants: Implementing a new approach. Journal of Financial Economics, 4(1–2), 79–93.spa
dc.relation.referencesSexton, R. S., Dorsey, R. E., & Johnson, J. D. (1998). Toward global optimization of neural networks: a comparison of the genetic algorithm and backpropagation. Decision Support Systems, 22(2), 171–185.spa
dc.relation.referencesSganzerla, C., Seixas, C., & Conti, A. (2016). Disruptive innovation in digital mining. Procedia Engineering, 138, 64–71.spa
dc.relation.referencesShinkuma, T., & Nishiyama, T. (2000). The grade selection rule of the metal mines; an empirical study on copper mines. Resources Policy, 26(1), 31–38.spa
dc.relation.referencesSotoudeh, F., Nehring, M., Kizil, M., Knights, P., & Mousavi, A. (2021). A novel cut-off grade method for increasing the sustainability of underground metalliferous mining operations. Minerals Engineering, 172, 107168. https://doi.org/10.1016/j.mineng.2021.107168spa
dc.relation.referencesTahmasebi, P., & Hezarkhani, A. (2009). Application of Optimized Neural Network by Genetic Algorithm. In IAMG09. Stanford University.spa
dc.relation.referencesTaylor, H. K. (1972). General background theory of cut-off grades. In Transactions of the Institution of Mining and Metallurgy (pp. A160–A179).spa
dc.relation.referencesThompson, M., & Barr, D. (2014). Cut-off grade: A real options analysis. Resources Policy, 42, 83–92. https://doi.org/10.1016/j.resourpol.2014.10.003spa
dc.relation.referencesTopp, V., Soames, L., Parham, D., & Bloch, H. (2008). Productivity in the Mining Industry: Measurement and Interpretation.spa
dc.relation.referencesTurner-Saad. (2011). A cut-off of liberated and selected ore minerals optimisation based on the geometallurgy concept. Proceedings of the First AUSIMM International Geometallurgy Conference.spa
dc.relation.referencesUqaili, A. M., & Harijan, K. (2012). Energy, Environment and Sustainable Development (1st ed.). Springer Vienna. https://doi.org/https://doi.org/10.1007/978-3-7091-0109-4spa
dc.relation.referencesVallee, M. (2000). Mineral resource + engineering, economic and legal feasibility = ore reserve. CIM Bulletin, 93, 53–61.spa
dc.relation.referencesWheeler, A. J., & Rodrigues, R. L. (2002). Cutoff-grade analysis at Fazenda Brasileiro: Mine planning for declining gold prices. Transactions of the Institution of Mining and Metallurgy, Section A: Mining Technology, 111(1), 35–46.spa
dc.relation.referencesXie, Y. L. (1998). Optimization of Cut-off Grade in Open-pit Based on Control Theory. Transactions of Nonferrous Metals Society of China, 8, 353–356.spa
dc.relation.referencesYang, X. S. (2013). Optimization and Metaheuristic Algorithms in Engineering. Metaheuristics in Water, Geotechnical and Transport Engineering, 1–23. https://doi.org/10.1016/B978-0-12-398296-4.00001-5spa
dc.relation.referencesYoung, A., & Rogers, P. (2019). A review of digital transformation in mining. Mining, Metallurgy & Exploration, 36, 683–699.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.lembMinas de orospa
dc.subject.lembGold mines and miningeng
dc.subject.proposaloptimización estocásticaspa
dc.subject.proposalley de cortespa
dc.subject.proposalValor Presente Netospa
dc.subject.proposalAlgoritmos Genéticosspa
dc.subject.proposalminería subterráneaspa
dc.subject.proposalorospa
dc.subject.proposalstochastic optimizationeng
dc.subject.proposalcut-off gradeeng
dc.subject.proposalNet Present Valueeng
dc.subject.proposalGenetic Algorithmseng
dc.subject.proposalunderground miningeng
dc.subject.proposalgoldeng
dc.titleModelo de optimización estocástica de leyes de corte para una compañía minera auríferaspa
dc.title.translatedStochastic optimization model of cut-off grades for a gold mining companyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037648048.2023.pdf
Tamaño:
1.78 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Minerales

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: